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Preface

This volume contains the papers presented at the 11th Annual International
Conference on REsearch in COMputational Biology, RECOMB 2007, held in
the San Francisco Bay Area, USA, April 21-25, 2007. The RECOMB conference
series was started in 1997 by Sorin Istrail, Pavel Pevzner and Michael Waterman,
and the history is summarized in a table below. RECOMB 2007 was hosted by
the California Institute for Quantitative Biomedical Research (QB3), and took
place at the Oakland Marriott City Center in Oakland, California, USA. It was
organized by a committee chaired by Sandrine Dudoit. The papers presented
at the conference were selected by a Program Committee (PC) consisting of
40 members, ably assisted by numerous external reviewers. Thirty-seven papers
were chosen by the PC from just under 170 submissions, and these appear in this
volume. Each paper was reviewed by three members of the PC, or by one of the
external reviewers acting as a sub-reviewer to a member of the PC. Following the
initial reviews, there was a Web-based discussion leading to the final decisions.
Selected papers from the proceedings will also be published in a special issue of
the Journal of Computational Biology.

An important aspect of RECOMB is the presence of distinguished scientists
presenting keynote addresses. This year we were honored to have with us at
the meeting Elizabeth H. Blackburn (University of California, San Francisco,
USA), Patrick O. Brown (Stanford University, USA), Abby Dernburg (University
of California, Berkeley, USA). Jennifer Marshall Graves (Australian National
University, Canberra, Australia), Yishi Jin (University of California, San Diego,
USA), Jay D. Keasling (University of California, Berkeley, USA), Harry F. Noller
(University of California, Santa Cruz, USA), and Aviv Regev (Broad Institute of
Harvard and MIT, USA). Dr. Dernburg gave the Distinguished Biology Lecture,
Dr. Brown gave the Distinguished Technology Lecture, and Dr. Regev gave the
Stanislav Ulam Memorial Computational Biology Lecture. We also had close to
200 posters on display.

RECOMB 2007 was only possible through the support, dedication and hard
work by many individuals and organizations. The conference was overseen by
the RECOMB Steering Committee, while the PC and the external reviewers
helped create the program. As well as an Organizing Committee whose mem-
bers gave freely of their time, we were indebted to QB3 for hosting the conference
and providing administrative, logistic and financial support, including the time
of several dedicated QB3 staff members. In addition we received financial and
other assistance from the University of California, the US Department of Energy,
the US National Science Foundation, the International Society of Computational
Biology, and our Sponsors. Finally, it is important to give special thanks to all
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VI Preface

those who contributed papers or posters, and those who attended the conference.
Their enthusiastic participation is what makes RECOMB conferences such fun.

April 2007 Terry Speed
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QNet: A Tool for Querying Protein Interaction

Networks

Banu Dost1,∗, Tomer Shlomi2,∗, Nitin Gupta1, Eytan Ruppin2,3,
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Abstract. Molecular interaction databases can be used to study the
evolution of molecular pathways across species. Querying such pathways
is a challenging computational problem, and recent efforts have been lim-
ited to simple queries (paths), or simple networks (forests). In this pa-
per, we significantly extend the class of pathways that can be efficiently
queried to the case of trees, and graphs of bounded treewidth. Our al-
gorithm allows the identification of non-exact (homeomorphic) matches,
exploiting the color coding technique of Alon et al. We implement a tool
for tree queries, called QNet, and test its retrieval properties in simu-
lations and on real network data. We show that QNet searches queries
with up to 9 proteins in seconds on current networks, and outperforms
sequence-based searches. We also use QNet to perform the first large scale
cross-species comparison of protein complexes, by querying known yeast
complexes against a fly protein interaction network. This comparison
points to strong conservation between the two species, and underscores
the importance of our tool in mining protein interaction networks.

1 Introduction

The study of biological networks has gained substantial interest in recent years.
In particular, technological advances, such as the yeast two-hybrid [11] and
co-immunoprecipitation assays [15], have enabled the large-scale mapping of
protein-protein interactions (PPIs) across many model species. The newly avail-
able PPI networks present a host of new challenges in studying protein function
and evolution. Key to addressing these challenges is the development of efficient
tools for network database searches, much the same as sequence searches have
been instrumental in addressing similar problems at the genome level.

Network queries call for searching a “template” subnetwork within a net-
work of interest. Commonly, the query is a known pathway, and the network is
searched for subnetworks that are similar to the query. Similarity is measured

* These authors contributed equally to this work.

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 B. Dost et al.

both in terms of protein sequence similarity and in terms of topological simi-
larity. The hardness of the problem stems from the non-linearity of a network,
making it difficult to apply sequence alignment techniques for its solution.

Several authors have studied the network querying problem, mostly focusing on
queries with restricted topology. Kelley et al. [13] devised an algorithm for query-
ing linear pathways in PPI networks. While the problem remains NP-hard in this
case as well (as, e.g., finding the longest path in a graph is NP-complete [7]), an
efficient algorithm that is polynomial in the size of the network and exponential
in the length of the query was devised for it. Pinter et al. [17] enable fast queries
of more general pathways that take the form of a tree. However, their algorithm
is limited to searching within a collection of trees rather than within a general
network. Sohler and Zimmer [6] developed a general framework for subnetwork
querying, which is based on translating the problem to that of finding a clique in
an appropriately defined graph. Due to its complexity, their method is applicable
only to very small queries. Recently, some of us have provided a comprehensive
framework, called QPath, for linear pathway querying. QPath is based on an ef-
ficient graph theoretic technique, called color coding [1], for identifying subnet-
works of “simple” topology in a network. It improves upon [13] both in speed and
in higher flexibility in non-exact matches.

In this paper, we greatly extend the QPath algorithm to allow queries with
more general structure than simple paths. We provide an algorithmic framework
for handling tree queries under non-exact (homeomorphic) matches (Section 3.1).
In this regard, our work extends [17] to querying within general networks, and
the results in [1] to searching for homeomorphic rather than isomorphic matches.
More generally, we provide an algorithm for querying subnetworks of bounded
treewidth (Section 3.2). We implemented a tool for tree queries which we call
QNet. We demonstrate that QNet performs well both in simulation of syn-
thetic pathway queries, and when applied to mining real biological pathways
(Section 5). In simulations, we show that QNet can handle queries of up to 9
proteins in seconds in a network with about 5,000 vertices and 15,000 interac-
tions, and that it outperforms sequence-based searches. More importantly, we
use QNet to perform the first large scale cross-species comparison of protein
complexes, by querying known yeast complexes in the fly protein interaction
network. This comparison points to strong conservation of protein complexes
structures between the two species. For lack of space some algorithmic details
are omitted in the sequel.

2 The Graph Query Problem

Let G = (V, E, w) be an undirected weighted graph, representing a PPI net-
work, with a vertex set V of size n, representing proteins, an edge set E of size
m, representing interactions, and a weight function w : E → R, representing
interaction reliabilities.

Let GQ = (VQ, EQ) denote a query graph with k vertices. We reserve the term
node for vertices of GQ and use the term vertex for vertices of G.
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Let h(q, v) denote a similarity score between query node q ∈ VQ and vertex
v ∈ V . In our context, vertices correspond to proteins, and their similarity
score is a function of their sequence similarity. A query node q is referred to
as homologous to a graph vertex v, if the corresponding similarity score h(q, v)
exceeds a predefined threshold.

A subdivision of an edge (u, v) in a graph H = (U, F ) replaces it with two
edges (u, w) and (w, v), where w �∈ U , i.e., creating a new graph H ′ = (U ∪
{w}, F ∪ {(u, w), (w, v)} \ {u, v}). H is considered extendable to a graph G, if
G can be obtained from H by a series of subdivisions. In particular, H is then
homeomorphic to G.

An alignment of the query graph GQ to G is defined as a pair of: (i) a subgraph
GA = (VA, EA) of G, referred to as the alignment subgraph; and (ii) a bijection,
σ : V S

Q → V S
A , between a subset of query nodes, V S

Q ⊆ VQ, and homologous
vertices in the alignment subgraph, V S

A ⊆ VA. The vertices in V S
Q ∪ V S

A are
called skeleton vertices. Pairs of associated vertices (q, σ(q)) ∈ V S

Q × V S
A are

called aligned.
An alignment is proper if there exists a pair of skeleton graphs SQ = (V S

Q , ES
Q)

and SA = (V S
A , ES

A) that satisfy the following conditions: (i) there is an isomor-
phism between SQ and SA which respects the alignment (i.e., there is an edge
(u, v) ∈ ES

Q iff there is an edge (σ(u), σ(v)) ∈ ES
A); and (ii) SQ is extendable

to GQ and SA is extendable to GA. In particular, this means that GQ and GA

are required to be homeomorphic. In the rest of the paper we discuss proper
alignments only. An example of such an alignment is given in Figure 1a.

Query nodes that are not aligned with vertices in the alignment subgraph are
considered to be deleted. Conversely, vertices in the alignment subgraph that
are not aligned with query nodes are considered to be inserted. Insertions and
deletions are also referred to as indels. From the above definitions, inserted and
deleted vertices must be of degree 2 in their respective graphs. An alignment
which involves no insertions or deletions is considered simple. The weight of an
alignment is the sum of: (i) similarity scores of aligned vertices, (ii) weights of
edges in the aligned subgraph, (iii) a penalty score, δd, for each node deletion,
and (iv) a penalty score, δi, for each vertex insertion.

The graph query problem is formally defined as follows: Given a query graph
GQ, a graph G, a similarity score h, and penalty scores for insertions and dele-
tions, find a proper alignment of GQ in G with maximal weight. In practice, we
would also like to limit the number of insertions and deletions in the alignment,
to control the evolutionary distance between the two subnetworks. To this end,
we also consider a variant of the problem in which the number of insertions is
limited by Nins, and the number of deletions is limited by Ndel.

3 Graph Query Algorithms

The complexity of the graph query problem depends on the topology of the query
graph GQ, the topology of the graph G, and the similarity function h. In the
general case, the problem of finding simple alignments is in general equivalent to
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subgraph isomorphism [8], which is computationally hard. In this paper, we focus
on efficient query algorithms by exploiting the underlying biological constraints.
Specifically, motivated by known pathways in KEGG [12], we consider restricted
query topologies, i.e., the query graph being a tree, and a graph of bounded
treewidth (see also [17]). For these special structures, we adapt the color coding
method of Alon et al. [1] to make the problem tractable.

Color coding is a randomized technique for finding simple paths and simple
cycles of a specified length k within a given graph of size n. The basic idea is
to randomly assign k colors to the vertices of the graph and then search for
colorful paths in which each color is used exactly once. Thus, rather than having
to maintain a list of vertices visited so far (of size O(nk)), one can maintain a
list of colors at considerably lower complexity (O(2k)).

The use of the color coding technique within a query algorithm is intuitively
similar. We construct an optimal alignment by extending optimal sub-alignments
using dynamic programming. Adding a network vertex to the optimal alignment
can be done only if this vertex is not already contained in the sub-optimal align-
ment. Thus, naively, each potential sub-optimal alignment should maintain the
list of at most k vertices already matched. This yields O(nk) potential align-
ments. In color coding, we apriori color each network vertex randomly with
one of k colors, looking for a colorful alignment. Consequently, we only need
to maintain a list of used colors (of size O(2k)), which significantly reduces the
computation time. However, the computation returns a correct answer only if
the optimum alignment is colorful, which happens with probability k!

kk � e−k.
Therefore, if we repeat the experiment ln(1

ε )ek times, we get the optimum align-
ment with probability at least 1 − ε for any desired value of ε.

3.1 Tree Query

We describe an algorithm for solving the graph query problem assuming that the
query graph is a tree. For ease of presentation, we start by presenting a simplified
version of the algorithm that limits the number of insertions only. The proper
treatment of limiting both the number of insertions and deletions is deferred to
the end of the section.

First, we root GQ arbitrarily at a node r with degree 1. For each query node
q, denote its children by q1, . . . , qnq , where nq denotes their number. Let Tq,j

denote the tree that includes q and the subtrees rooted at each of its first j
children, for 1 ≤ j ≤ nq. The algorithm proceeds in a series of trials in which
every vertex v ∈ V is independently assigned a color c(v) drawn uniformly at
random from the set C = {1, 2, . . . , k + Nins}. Given the random vertex colors,
we employ dynamic programming to identify an optimal colorful alignment. Let
WM (q, v, S, j) denote the maximal score of an alignment of Tq,j in G, such
that query node q is aligned with graph vertex v, with the aligned subgraph
receiving distinct colors from S ⊆ C. The recursion is initialized by setting
WM (q, v, S, 0) = h(q, v) for leaf nodes q, and is formulated as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



QNet: A Tool for Querying Protein Interaction Networks 5

W M(q, v, S, j) = max
u : (u, v) ∈ E

S′ ⊂ S

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(* Match, child j *)
W M (q, v, S′, j−1)+W M (qj , u, S−S′, nqj )+w(u, v),

(* Insertion, vertex u *)
W M (q, v, S′, j − 1) + W I(qj , u, S − S′) + w(u, v),

(* Deletion, child j *)
W M (q, v, S′, j − 1) + W D(qj , v, S − S′)

Here W I(q, v, S) denotes the optimal score of an alignment of Tq,nq in G, such
that q is aligned with some vertex u that is a descendant of v in the aligned
subgraph. WD(q, v, S) denotes the optimal score of the alignment of Tq,1 in G,
such that q is deleted and v is aligned with an ancestor of q. The recursions for
the insertion and deletions cases are given below. For query nodes q of degree
other than 2, we set WD(q, v, S) = −∞.

W I(q, v, S) = max
u : (u, v) ∈ E

{
W M(q, u, S − {c(v)}, nq) + w(u, v) + δi,
W I(q, u, S − {c(v)}) + w(u, v) + δi

W D(q, v, S) = max
u : (u, v) ∈ E

⎧
⎨

⎩

W M(q1, u, S, nq1) + w(u, v) + δd,

W I(q1, u, S) + w(u, v) + δd,
W D(q1, v, S) + δd

The maximal score of the alignment is maxv,S WM (r, v, S, 1). The optimal
alignment is obtained through standard dynamic programming backtracking.
An application of the dynamic programming recursions to a sample query is
demonstrated in Figure 1.

The running time of each trial is 2O(k+Nins)m. The probability of receiving
distinct colors for the vertices of the optimal matching tree is at least e−k−Nins .
Thus, the running time of the algorithm is 2O(k+Nins)m ln(1

ε ) for any desired
success probability 1 − ε (where ε > 0). We note that it is straightforward to
limit the number of deletions to Ndel by incorporating an additional variable in
the recursions to count the number of deletion in the optimal sub-alignment. The
cost in terms of running time is multiplicative in Ndel. When incorporating such
a variable, it is also easy to limit the number of insertions to Nins by choosing
the optimum solution based on its number of deletions and the cardinality of its
color set.

3.2 Bounded Treewidth Graph Query

The algorithm for matching trees can be extended to subgraphs that have tree-
like properties. We present an algorithm for the simpler case where no indels
are allowed and defer the description of an algorithm for the general case to the
appendix. Intuitively, the treewidth of a graph indicates how close the graph is
to being a tree, where a tree has treewidth 1. The maximal treewidth value for
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VQ (1 )

(a) Query Graph (b) Alignment subgraph

VQ (2 )

VQ (3 )

VQ (4 )

VQ (5 )

VQ (6 )

V(1)

V(2)

V(3)

V(4)

V(6)

V(5)

VQ (7 ) V(7)

h(1,1)

h(2,2)

h(3,3)

h(4,4)

h(6,6)

h(7,7)

1

1

1

1

2
3

(c ) Dynamic Programming steps

Step 1 W M(2,2{},0)=5

Step 2 W M(6,6,{},0)=5

Step 3 W M(7,7,{},0)=5

Step 4 W D(5,3,{})=5+1-3=3

Step 5 W M(3,3,{},0)=5

Step 6 W M(3,3,{},1)=5+3=8

Step 7 W I(7,5,{})=5+1-3=3

Step 8 W M(4,4{},0)=5

Step 9 W M(4,4,{},1)=5+3+1=9

Step 10 W M(1,1,{},0)=5

Step 11 W M(1,1,{},1)=5+5+1=11

Step 12 W M(1,1,{},2)=11+8+2=21

Step 13 WM(1,1,{},3)=21+9+3=33

Fig. 1. (a) An example of a tree query graph and the corresponding alignment sub-
graph. Numbers on the query graph’s edges represent an arbitrary ordering of children
nodes. Aligned query nodes and graph vertices are connected with dashed lines. Nodes
in the skeleton graphs appear in gray. (b) A simulation of the dynamic programming
recursions. For simplicity, we denote color sets as {}. Matched vertices are awarded by
+5, insertions and deletions are penalized by −3 and edge weights are as shown.

a graph with n vertices is n − 1 and this value is attained by an n-vertex clique.
A formal definition of a treewidth and the associated tree-like structure follows.

A tree decomposition (X, T ) of the query graph GQ = (VQ, EQ) is defined as
follows (see, e.g., [14]): T = (I, F ) is a rooted binary tree, and X = {Xi ⊆ VQ :
i ∈ I} is a collection of subsets of VQ, such that

⋃
i∈I Xi = VQ and the following

conditions are satisfied:

1. For each edge (u, v) ∈ EQ there exists i ∈ I such that u, v ∈ Xi.
2. If i, j, k ∈ I and j is on the path from i to k in T , then Xi

⋂
Xk ⊆ Xj .

The treewidth of the tree decomposition is maxi∈I |Xi| − 1. An example of a
graph and its tree decomposition is given in Figure 2a,b.

Let t denote a bound on the treewidth of GQ. We add a dummy node d
as a parent of the root of T , with Xd = ∅. To avoid confusion, we call the
nodes of T , super-nodes. For a non-leaf tree super-node Xi ∈ X , denote its
two children by Xi1 and Xi2 . Let Ti denote the subtree of T that is rooted at
Xi. The algorithm proceeds in a series of trials in which every vertex v ∈ V
is independently assigned a color c(v) drawn uniformly at random from the set
{1, 2, . . . , k}. Given the random vertex colors, we employ dynamic programming
to identify an optimal colorful alignment.

The properties of the tree decomposition enable us to identify the optimal
alignment by recursing on T and maintaining sub-optimal alignments of query
nodes spanned by subtrees of T , similar to the tree query algorithm described
above. However, there are two main difficulties to tackle: (i) A set of query nodes,
Xi, may have an arbitrary topology (e.g., forming a clique), potentially requiring
an exhaustive O(nt+1)-time search of an alignment subgraph for it. (ii) A query
node v may appear in more than a single super-node.
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VQ(1)

VQ(2) VQ(3)

VQ(4)

VQ(6)VQ(5)

VQ(7)

VQ(8)

VQ(1)

VQ(2) VQ(3)

VQ(4)

VQ(6)VQ(5)

VQ(7)

VQ(8)

VQ(2)

VQ(4)

VQ(3)

VQ(7)

(a) Query graph (b) Tree decomposition

V(1)

V(2) V(3)

V(4)

V(6)V(5)

V(7)

V(8)

sigma(X 3)

sigma(X 5)

(c ) Alignment subgraph

X 1

X 2 X 3

X 4 X 5

Fig. 2. (a) An example of a query graph with a treewidth of 2. (b) A tree decomposition
of the query graph such that each super-node has no more than 3 query nodes associated
with it. Non-active query nodes are grayed. (c) An alignment subgraph. σ(X3) and
σ(X5) are mappings of the query nodes in X3 and X5 to graph vertices, respectively,
that identify on the active query node VQ(6) in X5.

For the first issue, we exploit the fact that the treewidth is bounded by t.
Large values of t would make the algorithm impractical. To cope with the second
difficulty, we note that by definition, if v ∈ Xij and v �∈ Xi, then v �∈ Xl for all
super-nodes Xl that are not descendants of Xi in the tree. Thus, when visiting
a certain super-node Xij , it contains active query nodes XA

ij
= Xi ∩ Xij that

are yet to be handled, and non-active nodes XN
ij

that can be removed from
consideration when traversing up the tree (Figure 2b). We define a non-active
edge at a super-node Xi, as a query edge touching a non-active node in Xi. We
let EN

i denote the set of non-active edges in super-node Xi.
We need some more notation before giving the main recurrence of the algo-

rithm. For each Xi ∈ X , let Σi denote the O(nt+1)-size set of all mappings
σ : Xi → V such that: (i) for all distinct q1, q2 ∈ Xi, c (σ(q1)) �= c (σ(q2)); and
(ii) if (q1, q2) ∈ EQ then (σ(q1), σ(q2)) ∈ E. Figure 2b,c shows an example of
mappings between query nodes and graph vertices.

For computing the weight of an alignment, it is convenient to credit each
super-node i (when traversing up the tree) with the similarity scores associ-
ated with its non-active nodes and the edge weights corresponding to its non-
active edges. The node term is WS(i, σ) =

∑
u∈XN

i
h(u, σ(u)). The edge term is

WE(i, σ) =
∑

(u1,u2)∈EN
i

w(σ(u1), σ(u2)).
Let W (i, σ, S) be the maximum weight of an alignment of a subgraph of GQ

that includes all super-nodes in Ti − Xi, identifies on the active query nodes
in super-node i with the assignment σ ∈ Σi, and uses the colors in S ⊆ C.
W (i, σ, S) can be recursively computed as follows. For a leaf i, W (i, σ, S) = 0.
For all other super-nodes:
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W (i, σ, S) = max
S1 � S2 = S

σ1, σ2

2∑

j=1

[
W (ij , σj , Sj) + W S(ij , σj) + W E(ij , σj)

]

where σ is consistent with σ1 ∈ Σi1 and σ2 ∈ Σi2 .
The score of an optimal alignment of GQ is thus maxS W (d, ∅, S). The total

running time is 2O(k)nt+1.

4 Implementation Notes

We implemented a tool, QNet, for querying a given network with a tree subnet-
work, following the algorithm given in Section 3.1. Bounded treewidth queries
will be supported in future versions. To allow higher flexibility in matching a
query, we slightly generalized the tree query algorithm to enable also deletions of
query nodes of degree 1 (leaves of the tree). We also included in QNet a heuristic
that exploits the structure of the homology function to reduce the number of
color coding iterations needed. In the following we describe this heuristic and
the parameter setting employed in QNet.

Restricted Color Coding. We present a heuristic approach to color coding that
tries to take advantage of queries whose protein members tend to have non-
overlapping sets of homologs. First, we assign each query node a distinct match
color, and choose Nins additional insertion colors. Now, we color the network
vertices using the following rule: For each network vertex v, if v is not homologous
to any query protein, then assign it with a random insertion colors. Otherwise,
toss a coin with probability pt = Nins

k+Nins
. If HEADS, choose a random insertion

color for it, else if TAILS, assign it with a random color from the set of query
nodes it is homologous to.

The probability Ps to obtain a colorful alignment subgraph is at least the
probability that: (i) each aligned vertex is given a match color, and each inserted
vertex is given an insertion color; and (ii) all colors are distinct. Let pm be the
probability that aligned vertices are colorful, and pi be the probability that
insertion vertices are colorful. Then

Ps = (1 − pt)kpni
t pipm =

(
k

Nins + k

)k (
Nins

k + Nins

)Nins

pipm

where pi ≥ Nins!
Nins

Nins
. It remains for us to compute a lower bound for pm. To

this end, we form a graph on the set of query nodes, in which for every pair
q, q′ of query nodes, we add the edge (q, q′) if there exists a network vertex v
that is homologous to both. We then partition the query vertices into connected
components Q1, Q2, . . . , Qk′ , and use the following bound: pm ≥

∏k′

u=1
|Qu|!

|Qu||Qu| .
We expect pm to be high since often query nodes are homologous to a single
vertex. When the probability of success with restricted coloring is greater than
the probability of success with the standard color coding (i.e., (k+Nins)!

(k+Nins)k+Nins
),

we use this procedure, and otherwise we use the standard color coding.
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Parameter Setting. QNet involves several parameters controlling sequence sim-
ilarity, insertion/deletion penalties, and the relative weights of edge- and node-
terms. The current settings are as follows:we used blastp with an E-value threshold
of 10−7 to compute sequence similarity, and set h(q, v) = −log(E-value). Inter-
action reliabilities p(u, v) are assigned using a logistic regression scheme based
on the experimental evidences for the interactions, as described in [18]. We use
w(u, v) = c · r(u, v), where c is chosen to ensure the same scale for the reliability
and homology values. We allow at most two insertions and two deletions per query,
i.e., Nins = Ndel = 2. Indel penalties are set to δd = δi = −100. We empirically
tested a range of penalties by querying perturbations of subtrees in the yeast net-
work (see Section 5.1). A small set of queries were examined and the results did not
change over the range as long as the net influence of a deletion or insertion were
kept negative. In all runs reported below, the number of color coding iterations
was set to ensure success probability ≥ 0.99.

5 Experimental Results

To evaluate the performance of QNet we measure its running time and accu-
racy under various configurations. We start by applying QNet to query a set
of synthetic trees in the PPI network of yeast, measuring its running time and
accuracy. Next, we show examples of querying known yeast and human signal
transduction pathways in the PPI network of fly. Finally, we apply QNet to
query known yeast complexes in fly.

Protein-protein interaction data for yeast S. cerevisiae and fly D. melanogaster
were obtained from the Database of Interacting Proteins (DIP) [20] (April 2005
download). The fly data was complemented by PPI interactions from [19] and by
genetic interactions from FlyGRID (see also [18]). Altogether, the yeast network
consists of 4,738 proteins and 15,147 interactions, and the fly network consists
of 7,481 proteins and 26,201 interactions.

5.1 Synthetic Query Trees

To measure the running time and estimate the accuracy of QNet, we applied it
to query the PPI network of yeast with a set of synthetic query trees. This set
consists of 20 randomly chosen subtrees of sizes ranging from k = 5 to k = 9
from the yeast PPI network. Each query tree was perturbed with up to 2 node
insertions and deletions, and by a pre-specified amount of point mutations in
its proteins’ sequences of average length ∼ 500. QNet was applied to identify a
match for each query tree.

The running time measurements were performed on a standard PC (2GHz,
1Gb). We find that the running time of QNet is a few seconds in all cases, reach-
ing an average of 11 seconds for the largest tree queries with 9 nodes (Table 1).
To measure the improvement in running time introduced by the restricted color
coding heuristic, we applied QNet also without this heuristic. We find that re-
stricted color coding significantly reduces the number of iterations required to
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Table 1. Number of color coding iterations and timing statistics for QNet. The last
two columns show the average time per query. The algorithm’s parameters are set as
follows: Nins = 2, Ndel = 2, and the probability of success is set to 0.99.

#Iterations Avg. time (sec.)
Query Standard Restricted Standard Restricted
size (k) color coding color coding color coding color coding

5 752 603 1.71 1.58
6 1916 917 6.36 4.73
7 4916 1282 20.46 6.24
8 12690 1669 61.17 9.08
9 32916 2061 173.88 11.03
10 85720 2509 1463 21.74
11 223990 2987 5501 41.39
12 1891868 4623 50455 97.93

identify the optimal match, while the running time of each iteration remains
similar. Overall, restricted color coding reduces the running time by an order of
magnitude on average (Table 1). The running time of the algorithm is signifi-
cantly affected by the number of insertions allowed. If no insertions are allowed,
the average number of iterations required for queries of size 9 is less than 100.
When increasing the number of allowed insertions to above 2, the restricted color
coding heuristic becomes less effective (data not shown).

To evaluate the accuracy of the matched trees, we computed the symmetric
difference between the protein set of a query and its match, termed their distance
herein. The results show that when perturbing protein sequences in up to 60%
of the residues, the average distance between the matched tree and the original
tree is lower than 1 (Figure 3b). Moreover, we compared the accuracy of matches
obtained by QNet to matches that are based only on best BLAST hits. We
found that matches obtained by QNet are markedly more accurate than purely
sequence-based matches, showing that the topology of the query tree carries
important signal (Figure 3a). Evidently, the advantage of QNet over a sequence-
based approach becomes more pronounced when the mutation rate increases.

5.2 Cross-Species Comparison of MAPK Pathways

The mitogen-activated protein kinase (MAPK) pathways are a collection of re-
lated signal transduction pathways, which play a critical role in mediating the
cellular response to various toxic stresses [5]. The pathways are known to be
conserved across species and, hence, serve as controlled tests to QNet.

We queried MAPK pathways from the KEGG database [12] in the PPI network
of fly. The first pathway is a classical human MAPK pathway involved in cell pro-
liferation and differentiation. Querying this pathway in fly resulted in detecting a
known MAPK pathway involved in dorsal pattern formation (Figure 4a). Specif-
ically, 6 out of the 8 matched proteins in the target are members of the known
MAPK pathway in fly. Similar results were obtained by querying the yeast MAPK
pathways from KEGG against the fly network. As an example, the top output for
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Fig. 3. The average distance of the matched tree from the original tree is plotted against
the total number of insertions and deletions introduced to the query for 4 different
mutation levels. (a) Performance of a sequence-based approach. (b) Performance of
QNet.

the starvation response pathway query (Figure 4b) is a fly MAPK pathway with
a putative MAPK cascade (fray,Dsor1,rl), which includes the GTPases Cdc42,
Ras64b that are homologous to the two GTPases in the query. These results sup-
port the fidelity of QNet.

5.3 Cross-Species Comparison of Protein Complexes

As a large-scale validation of QNet we systematically queried known yeast pro-
tein complexes, obtained from the MIPS database [16,9], in the fly network, and
tested the biological plausibility of the identified matches. We included all hand
curated complexes in MIPS, which are considered a reliable data source, ex-
cluding complexes that were identified via high throughput measurements (cat-
egory 550 in MIPS). Overall, we considered 94 complexes consisting of at least
4 proteins each. As MIPS does not contain information on the topology of the
complexes, we mapped each complex to the yeast network and used the in-
duced subnetworks as queries. More accurately, for each complex, we extracted
an average of 40 random query trees of size in the range 3 − 8 from its induced
subnetwork. We applied QNet to systematically query all of the induced query
trees in fly. The resulting query matches were used to construct a consensus
match, consisting of all proteins that appeared in at least half of the matches.

The biological plausibility of an obtained consensus matches was tested based
on functional enrichment of their member proteins w.r.t. the fly gene ontology
(GO) process annotation [2]. Specifically, let n(t) denote the number of genes in
the consensus match that are annotated with term t. We compute the probability
p(t) of obtaining a random set of genes, of the same size as the original path-
way, with at least n(t) genes annotated with term t, assuming a hypergeometric
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Fig. 4. Querying the fly network using (a) a human MAPK pathway, and (b) a yeast
MAPK pathway induced by starvation, taken from the KEGG database [12]. Matched
nodes appear on the same horizontal line. A dotted edge represents inserted proteins
(not shown).
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Fig. 5. (a) The MIPS Cdc28p complex. (b) The consensus match in fly. Matched nodes
appear on the same horizontal line. Inserted proteins appear in white.

distribution. Having found a term t0 with minimal probability p(t0), we compute
a p-value for the enrichment under term t0 by comparing p(t0) with similar
values computed for 10, 000 random sets of genes. The latter p-values are further
corrected for multiple match testing via the false discovery rate procedure [3].

36 of the yeast complexes resulted in a consensus match with more than one
protein in fly. We find that 72% of these consensus matches are significantly
functionally enriched (p < 0.05). For comparison, we computed the functional
enrichment of randomly chosen trees from the fly PPI network that have the
same distribution of sizes and interactions scores as the consensus matches. We
find that only 17% of the random trees are functionally enriched, and that the
mean enrichment p-values is significantly lower for the true consensus matches
(Wilcoxon rank test p-value< 6.5e − 9).
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Figure 5 illustrates the result of querying the Cdc28p complex. This complex
is composed of cyclin-dependent kinases involved in regulating the cell cycle in
yeast. The consensus match obtained in fly consists solely of cyclin-dependent ki-
nases and significantly overlaps the cyclin-dependent protein kinase holoenzyme
complex (GO:0000307).

6 Conclusion

Data sets of protein-protein interactions are increasingly common, and will con-
tinue to increase in number and complexity. In this paper, we address the problem
of searching such data for specific pathways of interest. We provide efficient algo-
rithms for querying trees and graphs of bounded treewidth within PPI networks.
We implement the tree query algorithm, QNet, and demonstrate its efficiency and
accuracy. QNet can handle queries of up to 9 proteins in seconds on current net-
works, and is shown to outperform sequence-based homology searches. More im-
portantly, we use QNet to perform a large scale cross-species comparison of protein
complexes, by querying known yeast complexes in the fly network. This compar-
ison points to strong conservation between the two species.

While our work has helped in clarifying some algorithmic questions regarding
efficient querying of biological networks, and has shown promising results in
practice, it leaves many aspects open for future research. One important direction
is the development of appropriate score functions to better identify conserved
pathways. Research in this direction could gain from probabilistic models of
network evolution [4,10]. A second important direction is the application of the
methods developed here to queries of more general structure. This entails both
the implementation and testing of a tool for querying bounded treewidth graphs,
and the use of such a tool for querying arbitrary structures, perhaps in a way
similar to that presented in Section 5.2.
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Appendix: A General Alignment Algorithm for Bounded
Treewidth Queries

In Section 3.2 we described an algorithm for identifying optimal simple align-
ments of a bounded treewidth query graph. To generalize the algorithm to sup-
port deletions, we modify the mapping σ to allow mapping to ‘0’. To support
insertions, we allow σ to map connected query nodes to non-connected graph
vertices, and use additional Nins color (as in Section 3.1).

Given the new definition of σ, the node term is modified as follows:

WS(i, σ) = δd|{u ∈ XN
i : σ(u) = 0}| +

∑

u∈XN
i ,σ(u) �=0

h(u, σ(u))

The edge term is more problematic as it depends on the subset of colors used
for insertions, and requires some preprocessing. For a pair of vertices u, v ∈ V
and a set of colors S ⊆ C −{c(u), c(v)}, we denote by WP (u, v, S) the maximum
weight of a path between u and v that visits the colors in S. Given a set of vertex
pairs R = R(l) = {(r1

1 , r
2
2), . . . , (r1

l , r2
l )}, we define WP (R, S) as the maximum

weight of |R| simple paths between all vertex pairs that visit distinct colors
from S:

WP (R, S) = max
S1, S2, . . . Sq

⊎
Sl = S

q∑

l=1

WP (r1
l , r2

l , Sl)

In order to compute WP (R, S) efficiently, we use the following recurrence:

WP (R(l), S) = max
S′⊂S

[WP ((r1
i , r2

i ), S
′) + WP (R(l − 1), S − S′) ]

Define Ei(σ) as the set of graph vertex pairs that are mapped from non-active
edges in super-node i:

Ei(σ) = {(u, v) ∈ E : (u′, v′) ∈ EN
i , σ(u′) = u, σ(v′) = v}

The edge term for super-node i under the mapping σ and colors S, is:

WE(i, σ, S) = WP (Ei(σ), S)

Finally, we modify the main recursion as follows:

W (i, σ, S)= max
S1 � S2 = S,

S′
1 ⊂ S1, S

′
2 ⊂ S2,

σ1, σ2

2∑

j=1

[
W (ij , σj , Sj −S′

j) + W S(ij , σj) + W E(ij , σj , S
′
j)

]

To compute the running time of the preprocessing stage, note that WP ((u, v),
S)) can be pre-computed for all S in O(n22k) time. Therefore, WP (Ei(σ), S)
can be pre-computed in 2O(k)nt+1 time, and hence the total running time is
2O(k)nt+1.
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Abstract. We describe an algorithm, IsoRank, for global alignment of
two protein-protein interaction (PPI) networks. IsoRank aims to max-
imize the overall match between the two networks; in contrast, much of
previous work has focused on the local alignment problem— identify-
ing many possible alignments, each corresponding to a local region of
similarity. IsoRank is guided by the intuition that a protein should be
matched with a protein in the other network if and only if the neighbors
of the two proteins can also be well matched. We encode this intuition
as an eigenvalue problem, in a manner analogous to Google’s PageRank
method. We use IsoRank to compute the first known global alignment
between the S. cerevisiae and D. melanogaster PPI networks. The com-
mon subgraph has 1420 edges and describes conserved functional compo-
nents between the two species. Comparisons of our results with those of a
well-known algorithm for local network alignment indicate that the glob-
ally optimized alignment resolves ambiguity introduced by multiple local
alignments. Finally, we interpret the results of global alignment to iden-
tify functional orthologs between yeast and fly; our functional ortholog
prediction method is much simpler than a recently proposed approach
and yet provides results that are more comprehensive.

1 Introduction

A fundamental goal of biology is to understand the cell as a system of interact-
ing components and, in particular, how proteins in the cell interact with each
other. Towards this goal, high-throughput experimental techniques (e.g., yeast
two-hybrid [12,14] and co-immunoprecipitation [11]) to discover protein-protein
interactions (PPIs) are being used. These techniques have also been supple-
mented by promising new computational approaches [27,24,23,26,17,29,9] to PPI
prediction, resulting in an explosive growth in available PPI data. A powerful
way of representing and analyzing all this data is the PPI network: a network
where each node corresponds to a protein and an edge indicates a direct physical
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interaction between the proteins. Computational analyses of these networks has
already yielded valuable insights: the scale-free character of these networks and
the disproportionate importance of “hub” proteins [30]; the combination of these
networks with gene expression data to discern some of the dynamic character of
the cell [8]; the use of PPI networks for inferring biological function [20], etc.

As more PPI data becomes available, comparative analysis of PPI networks
(across species) is proving to be a valuable tool. Such analysis is similar in spirit
to traditional sequence-based comparative genomic analyses; it also promises
commensurate insights. Such an analysis can identify conserved functional com-
ponents across species [15]. As a phylogenetic tool, it offers a function-oriented
perspective that complements traditional sequence-based methods. It also facili-
tates annotation transfer between species. Indeed, Bandyopadhyay et al. [3] have
demonstrated that the use of PPI networks in computing orthologs produces or-
thology mappings that better conserve protein function across species.

In this paper, we explore a new approach to comparative analysis of PPI
networks. Specifically, we consider the problem of finding the optimal global
alignment between two PPI networks, aiming to find a correspondence between
nodes and edges of the input networks that maximizes the overall match between
the two networks. For this problem, we propose a novel pairwise global alignment
algorithm, IsoRank.

1.1 Contributions

In this paper, we draw attention to the global network alignment problem and
its biological importance (as distinct from local network alignment, see Sec. 1.2).
We propose IsoRank— an algorithm for pairwise global network alignment of
PPI networks; to the best of our knowledge, it is the first such algorithm of its
kind. It simultaneously uses both PPI network data and sequence similarity data
to compute the alignment, the relative weights of the two data sources being
a free parameter (existing local network alignment algorithms have typically
not provided such direct control over the relative weights). The algorithm is
intuitive: a node i in G1 is mapped to a node j in G2 if the neighborhood
topologies of i and j are similar, i.e., the neighbors of i can be well-mapped to
the neighbors of j. This approach has parallels to Google’s PageRank technique;
like the latter, we formalize our intuition as an eigenvalue problem (see Sec. 3).
IsoRank is, by design, tolerant to errors in the input (e.g., missing or spurious
edges) and takes advantage of edge confidence scores as well as other biological
signals (e.g. sequence similarity scores), when available. We use the algorithm
to compute a global alignment of the S. cerevisiae and D. melanogaster PPI
networks and describe the conserved subgraph (possibly disconnected) between
them. The conserved subgraph immediately suggests functions for some hitherto
unannotated proteins. It also suggests sets of functional orthologs between the
two species; these predictions are consistent with those of Bandyopadhyay et al.
[3], and, in some cases, are more precise and accurate.
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Fig. 1. Cartoon comparing global and local network alignments: The local net-
work alignment between G1 and G2 specifies three different alignments; the mappings
for each are marked by a different kind of line (solid, dashed, dotted). Each alignment
describes a small common subgraph. Local alignments need not be consistent in their
mapping— the points marked with ‘X’ each have ambiguous/inconsistent mappings
under different alignments. In global network alignment, the maximum common sub-
graph is desired and it is required that the mapping for a node be unambiguous. In
both cases, there are ‘gap’ nodes for which no mappings could be predicted (here, the
nodes with no incident black edges are such nodes).

1.2 Related Work: The Distinction Between Local and Global
Alignment

The network alignment problem has been formulated previously [6,18,15], with
some variations. To place our work in that context, we first distinguish between
global and local network alignment.

Each input network can be represented as an undirected graph G = (V, E)
where V is the set of nodes and E is the set of edges. Furthermore, G may
be a weighted graph, i.e., a confidence measure w(e) may be associated with
each edge e in E. In this paper, we consider graphs of arbitrary structure; when
graphs have specific structures (e.g., trees) other efficient methods are available
[13,28]. The goal in network alignment is to identify one or multiple possible
mappings between the nodes of the input networks and, for each mapping, the
corresponding set of conserved edges. Mappings may be partial, i.e., they need
not be defined for all the nodes in the networks. Each mapping implies a com-
mon subgraph between the two networks: when protein a1 from network G1 is
mapped to protein a2 from network G2, then a1 and a2 refer to the same node
in the common subgraph; the edges in the common subgraph correspond to the
conserved edges. Based on the kind of mapping(s) sought, we distinguish between
the local and global network alignment (in analogy with sequence alignment).

Local Network Alignment (LNA): The goal in LNA is to find local regions of iso-
morphism (i.e. same graph structure) between the input networks, each region
implying a mapping independently of others. Many independent, high-scoring lo-
cal alignments are usually possible between two input networks; in fact, the cor-
responding local alignments need not even be mutually consistent (i.e., a protein
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might be mapped differently under each, see Fig 1). This may not be undesirable
(e.g., it may indicate gene duplication); however, in some cases LNA algorithms
offer implausibly numerous matches for a single protein. The motivations be-
hind local sequence alignment and local network alignment are analogous— the
former is often used to find conserved sequence motifs; the latter for finding
conserved functional components (e.g., pathways, complexes, etc.).

Previous work on PPI network alignment has almost exclusively focused on
this problem: the pioneering work of Kelley et al. [6] described how BLAST sim-
ilarity scores and PPI network information could be used to identify conserved
functional motifs. Koyuturk et al. [18] proposed another method, motivated by
biological models of duplication and deletion. Recently, Flannick et al. [15] pro-
posed a new approach, using modules of proteins to infer the alignment. The
approach is efficient and is the first LNA method to align multiple species si-
multaneously. In contrast to these methods, our work targets the global network
alignment problem (see Footnote 1).

Global Network Alignment (GNA): The aim in GNA is to find the best overall
alignment between the input networks. A GNA algorithm must define a single
mapping across all parts of the input (see Fig 1), even if it were locally sub-
optimal in some regions of the networks. In contrast, an LNA algorithm has the
freedom to choose the locally optimal mapping for each local region of similarity,
even if this results in overlapping — and mutually inconsistent — local align-
ment. We avoid this in GNA by requiring that for any global alignment to be
valid the corresponding mapping be comprehensive: each node in an input net-
work is either matched to some node in the other network or explicitly marked
as a gap node (i.e., with no match in the other network). Our goal in GNA
then is to find a comprehensive mapping such that the size of the correspond-
ing common subgraph is maximized. The motivations behind global sequence
alignment and GNA are again analogous: the former is often used for compar-
ing genomic sequences to understand variations between species; the latter may
be used to compare interactomes, and to understand cross-species variations.
Also, the GNA problem is related to the detection of functional orthologs, as we
discuss in Sec. 4.

The GNA problem, as we describe it here, is the focus of this paper. It has
previously received little attention in the literature; much of existing work has
focused on the LNA problem1. One can imagine using results of an LNA to
estimate a global alignment: use LNA methods to compute possible matches for

1 We note that in some previous works on network alignment, the distinction between
“global” and “local” network alignment has centered on the relative input sizes for
each. There, the term “global network alignment” is used when the input consists of
roughly equal-sized networks (e.g., two species-wide networks) while “local network
alignment” is used when one input is a small query network and the other is a large
species-wide network. In both instances, however, the output consists of multiple
local subgraphs (and corresponding local alignments). As such, we believe that both
these instances are best characterized as local network alignments, regardless of input
sizes.
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each protein. Then, for each protein select the mapping best supported overall
by the alignment results. Banydopadhyay et al. have used a similar approach for
functional ortholog detection. Unfortunately, this approach is somewhat complex
and, more importantly, ignores inconsistencies across local alignments so that
the node matches in the final alignment might not even be mutually consistent.
Instead, we propose a simpler, yet powerful algorithm.

2 Problem Formulation

The input to the algorithm consists of two PPI networks G1 and G2. Each edge
e may have an associated edge weight w(e) (0 < w(e) ≤ 1). In addition, other
measures of similarity between the nodes may be available. In this paper, we use
BLAST similarity scores, but additional measures (e.g., synteny-based scoring,
functional similarity) can be incorporated.

The desired output, given only PPI network data, is the maximum common
subgraph (MCS) between G1 and G2 (i.e., the largest graph that is isomorphic
to subgraphs of both) and the corresponding node-mapping such that each node
is mapped to at most one node in the other network. Nodes not mapped to
any other node are referred to as gap nodes. MCS is an NP-complete problem
and thus approximate solutions, especially for the large-sized PPI networks, are
essential. Also, when incorporating sequence data, the global alignment problem
is no longer a pure MCS problem. To address these issues, we formulate an
eigenvalue problem that approximates the desired objective.

The “at most one match per node” constraint is motivated by analogy with
two-way global sequence alignment where any position in a sequence can be
matched to at most one position in the other sequence. When performing LNA,
Kelley et al. [6] have imposed a similar constraint. The benefits of imposing this
constraint are: (1) we simplify the alignment problem, and (2) we can unambigu-
ously identify the closest functional equivalent of a protein in the other species;
this is related to the discovery of functional orthologs (see Sec. 4). On the other
hand, in instances of gene duplication across species this constraint requires that
a protein cannot be matched to multiple proteins in another species. In future
work, we plan to relax this constraint.

3 Algorithm: IsoRank

The key problem that our algorithm (IsoRank) targets is identifying the node
mappings between the input networks; given such a mapping, the set of con-
served edges can be easily computed. The algorithm works in two stages. It first
associates a score with each possible match between nodes of the two networks.
Let Rij be the score for the protein pair (i, j) where i is from network G1 and
j is from network G2. Given network and sequence data, we construct an eigen-
value problem and solve it to compute R (the vector of all Rijs). The second
stage constructs the mapping for the GNA by extracting from R high-scoring,
pairwise, mutually-consistent matches.
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Fig. 2. Intuition behind the algorithm: Here we show, for a pair of small, iso-
morphic graphs how the vector of pairwise scores (R) is computed. For each possible
pairing (i, j) between nodes of the two graphs, we compute the score Rij . The scores
are constrained to depend on the scores from the neighborhood as described by Eqn. 1.
Only a partial set of constraints is shown here. The scores Rij are computed by starting
with random values for Rij and using the methods described below to find values that
satisfy these constraints; here we show the vector R reshaped as a table for ease of view-
ing (empty cells indicate a value of zero). The second stage of our algorithm uses R to
extract likely matches. One strategy could: choose the highest-scoring pair, output it,
remove the corresponding row and column from the table, and repeat. This strategy will
return the correct mapping: {(c, c′), (b, b′), (a, a′), (d, d′), (e, e′)}. The {d, e} → {d′, e′}
mapping is ambiguous; using sequence information, such ambiguities can be resolved.

Computing R (setting up the constraints): To compute Rij we pursue the
intuition that (i, j) is a good match if i and j’s respective neighbors also match
well with each other. More precisely, we require the following equality to hold
for all possible pairs (i, j):

Rij =
∑

u∈N(i)

∑

v∈N(j)

1
|N(u)||N(v)|Ruv i ∈ V1, j ∈ V2 (1)

where N(a) is the set of neighbors of node a; |N(a)| is the size of this set; and
V1 and V2 are the sets of nodes in networks G1 and G2, respectively.

These equations require that the score Rij for any match (i, j) be equal to
the total support provided to it by each of the |N(i)||N(j)| possible matches be-
tween the neighbors of i and j. In return, each match (u, v) must distribute back
its entire score Ruv equally among the |N(u)||N(v)| possible matches between
its neighbors. We note that these equations also capture non-local influences on
Rij : the score Rij depends on the score of neighbors of i and j and the latter,
in turn, depend on the neighbors of the neighbors and so on. The extension to
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the weighted-graph case is intuitive: the support offered to neighbors is now in
proportion to the edge weights:

Rij =
∑

u∈N(i)

∑

v∈N(j)

w(i, u)w(j, v)
∑

r∈N(u) w(r, u)
∑

q∈N(v) w(q, v)
Ruv i ∈ V1, j ∈ V2 (2)

Clearly, Eqn. 1 is a special case of Eqn. 2 when all the edge weights are 1. We
can rewrite Eqn. 1 in matrix form (Eqn. 2 can be similarly rewritten):

R = AR

A[i, j][u, v] =
{ 1

|N(u)||N(v)| if (i, u) ∈ E1 and (j, v) ∈ E2

0 otherwise
(3)

where A is a |V1||V2| × |V1||V2| matrix and A[i, j][u, v] refers to the entry at the
row (i, j) and column (u, v) (the row and column are doubly-indexed).

Another interpretation of the above equations is that they describe a random
walk on the product graph of G1 = (V1, E1) and G2 = (V2, E2). We define G∗ =
(V ∗, E∗) where V ∗ = V1×V2 and E∗ = {( (i, j), (u, v) ) | (i, u) ∈ E1, (j, v) ∈ E2}.
Also, if G1 and G2 are weighted, so is G∗: w( (i, j), (u, v) ) = w(i, u)w(j, v). We
now specify a random walk among the nodes of G∗: from any node we can move
to one of its neighbors, with a probability proportional to the edge weight:

P (st = (i, j) | st−1 = (u, v)) =
w(i, u)w(j, v)

∑
r∈N(u) w(r, u)

∑
q∈N(v) w(q, v)

(4)

where st is the node occupied at time t. Eqns. 1, 2 and 3 can now be interpreted as
defining R to be the stationary distribution of this random walk (its transition
matrix is A). Thus, a high Rij implies that the node (i, j) of G∗ has a high
probability of being occupied in the stationary distribution.

The vector R is determined by finding a non-trivial solution to these equations
(a trivial solution is to set all Rijs to zero). In Fig 2, we illustrate, on a pair of
small graphs, how the equations capture the graph topology; their solution also
confirms our intuition: node pairs that match well have higher Rij scores.

Computing R (solving the constraints): In general, to solve the above equa-
tions, we observe that these equations describe an eigenvalue problem (see Eqn. 3).
The value of R we are interested in is the principal eigenvector of A. Note that A is
a stochastic matrix (i.e., each of its columns sums to 1) so that the principal eigen-
value is 1. Also, for numerical stability purposes we require that R be normalized,
i.e., |R|1 = 1. In the case of biological networks, A is typically a very large matrix
(about 108 × 108 for fly-vs.-yeast GNA); however, A and R are both very sparse,
so R can be efficiently computed by iterative techniques. We use the power method
[16], an iterative technique often used for large eigenvalue problems. The power
method repeatedly updates R as per the update rule: R(k+1) ← AR(k)/|AR(k)|,
where R(k) is the value of the vector R in the k-th iteration and has unit norm.
In case of a stochastic matrix (like A), the power method will provably converge
to the principal eigenvector; the convergence can be sped up significantly by a
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judicious choice of the initial value R(0) [16]. As we describe shortly, a good ini-
tial value R(0) is often available in our case.

The incorporation of other information, e.g. BLAST scores, into this model is
straightforward. Let Bij denote the score between i and j; for instance, Bij can
be the Bit-Score of the BLAST alignment between sequences i and j. Bijs need
not even be numeric— they can be binary. Let B be the vector of Bijs. We first
normalize B: E = B/|B|. The eigenvalue equation is then modified to

R = αAR + (1 − α)E where 0 ≤ α ≤ 1. (5)

Eqn. 5 is solved by similar techniques as Eqn. 3. Also, node matches based
purely on sequence similarity are an approximation to the node mappings de-
sired; hence, the vector E is a good choice for the initial value R(0) in the power
method. We emphasize that this choice of starting value does not change the
final value of R— it just speeds up the computation.

In this computation, α controls the weight of the network data (relative to
sequence data), e.g., α = 0 implies no network data will be used, while α = 1
indicates only network data will be used. Tuning α allows us to analyze the
relative importance of PPI data in finding the optimal alignment.

Extracting the mapping from R: Once R has been computed, we extract the
node mappings from it. An appealing approach is to extract the set of mutually-
consistent, pairwise matches (p, q) such that the sum of their scores is maximized.
The optimal solution can thus be found efficiently by interpreting R as encoding a
bipartite graph and finding the maximum-weight bipartite matching [22] for this
graph. Each side of the bipartite graph contains all the nodes from one network.
The weight of the edge (i, j) is then set to Rij . We compute the maximum-weight
matching in this bipartite graph and output the paired nodes. Any remaining
unpaired nodes are designated as gap nodes. This algorithm guarantees the set
of matches that satisfy our criterion.

While this principled algorithm does give good results, in practice we found
that the following greedy algorithm sometimes performs even better: identify the
highest score Rpq and output the pairing (p, q). Then, remove all scores involving
p or q. We then repeat this process until the list is empty. In the bipartite graph,
this strategy corresponds to removing, at each step, the maximum weight edge
and the incident nodes. In future work, we plan to investigate whether this
heuristic’s better performance is related to the structure of R.

Once a comprehensive alignment has been computed, the corresponding sub-
graph in the GNA can be identified relatively easily. For example, if a1 is aligned
to a2, and b1 is aligned to b2, the output subgraph should contain an edge between
(a1, a2) and (b1, b2) if and only if both the input networks contain supporting
edges (i.e., (a1, b1) in G1 and (a2, b2) in G2). When edges also have associated
weights, formalizing the intuition depends on how the edge weights are being
interpreted; for example, we could require that the combined weight be higher
than a threshold or that the minimum of the two be greater than a threshold.
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4 Results: GNA of Yeast and Fly PPI Networks

We now describe the results of two-way global alignment of the S. cerevisiae and
D. melanogaster PPI networks, the two species with the most available network
data. The PPI network data for the species was retrieved from the GRID [4] and
DIP [7] databases, and the sequence data was retrieved from Ensembl [2]. The
edges in the PPI networks did not have associated weights. We applied IsoRank

to this pair of networks, using it to identify the common subgraph.
The common subgraph corresponding to the global alignment between the

yeast and fly PPI networks has 1420 edges (where α = 0.6; the criterion for
choosing α is described later in this section). While this indicates a relatively
low overlap between the yeast and fly networks (both the networks have more
than 25000 edges each), it is not surprising: firstly, currently available PPI data is
known to contain many false-positives, and the number of true interactions in the
current networks is expected to be significantly lower [27,25]. Secondly, current
PPI data is far from comprehensive; e.g., the fly network has no known PPIs for
about 6500 proteins (almost 50% of the genome). As these issues get resolved,
we expect the size of the global alignment to grow substantially. Nevertheless,
the current global alignment already provides many valuable insights.

The alignment subgraph consists of many disconnected components, with the
largest component having 35 edges (Fig. 3). The component’s size may seem
low but is directly related to the poor connectivity of the alignment subgraph.
The poor connectivity is, we believe, because of the poor quality and coverage
of current PPI networks; as the datasets improve, so will the connectivity. Even
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Fig. 3. Largest connected component of the yeast-fly Global Network Align-
ment: The node labels indicate the corresponding “yeast/fly” proteins (the two sep-
arated by a “/”). The proteins in this graph span a variety of functions: metabolic,
signaling, transcription etc. For a discussion of this subgraph’s size, see text.
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(d) Ubiquitin Ligase

Fig. 4. Selected subgraphs of the yeast-fly GNA: The node labels indicate the
corresponding “yeast/fly” proteins (the two separated by a “/”). The subgraphs span
a variety of topologies and are often enriched in specific functions (c) and (d). In (d),
the nodes for which at least one of the corresponding proteins is known to be involved
in ubiquitin ligase activity are shaded.

now, however, the subgraph in Fig. 3 is significantly larger than any common
subgraph we could identify using Pathblast [6], a LNA method. The longest
pathway-like component identified by the latter had 4 nodes, and the largest
complex-like component had 16 nodes. Also, the components of the global align-
ment span various topologies, from linear pathways (Fig. 4(a)) to components
corresponding to protein complexes (Fig 4(d)); in contrast, some of the local
network alignment methods [6,18] are tailored to search only for specific topolo-
gies. We emphasize that our components were discovered simultaneously— they
are just subgraphs of the larger alignment graph. Many of our discovered com-
ponents are de-facto functional modules (though not in the sense Flannick et al.
[15] use the term): they are enriched in proteins involved in a single biological
process (e.g., see Fig 4(d)). These functions range from various signaling cascades
(Fig. 4(b)) to core cellular functions like ribosomal synthesis and function
(Fig. 4(c)), DNA transcription and translation, cell division etc. The preponder-
ance of core cellular functions in the conserved subgraph is not too surprising— it
is exactly these mechanisms that are likely to be highly conserved across species.

The global alignment may be used to predict protein function. For example,
Fig 4(d) shows a subgraph of the global alignment, most of the proteins in which
are involved in SCF ubiquitin ligase activity. Hence, we predict the function of
two hitherto-unannotated fly proteins CG7148 and CG13213 as being involved
in ubiquitin protein ligase activity. In support of this, we note that the FlyBase
database [5] indicates that the involvement of these proteins in ubiquitin ligase
activity has been postulated before in the literature. Of course, more sophisti-
cated methods to transfer annotation may perform even better at elucidating
function of such proteins [20].

Evaluating the algorithm’s error tolerance: Our simulations indicate that
the algorithm is tolerant to error in the input (Fig 5(a)); this is valuable since
PPI networks have high false positive and false negative rates. To evaluate the
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Fig. 5. (a) Effect of error on algorithm’s performance: We believe the solid (red)
curve slightly overestimates the algorithm’s performance, while the dashed (blue) curve
grossly underestimates it. See the discussion in text below. (b) Impact of α on the
size of the alignment graph.

algorithm’s error-tolerance, we first extracted a 200-node subgraph of the yeast
PPI network. We then randomized a fraction p of its edges using the Maslov-
Sneppen trick that preserves node degrees [19]: we randomly choose two edges
(a, b) and (c, d), remove them, and introduce new edges (a, d) and (c, b). We
then computed a GNA between these two graphs, with α = 1 and α = 1− 10−6.
For each choice of p, we created 5 such randomized graphs and computed the
average fraction of nodes that are mapped to themselves in the original graph
after a GNA. Using α = 1 results in a significant underestimate because there
often are multiple possible isomorphism-preserving mappings between two iso-
morphic graphs (e.g., see Fig 2) and our algorithm— even if working correctly—
might choose a mapping that does not preserve node labels. Adding a very small
amount of sequence information (α = 1−10−6) helps avoid this, but also results
in a slight overestimate. We believe the true curve (for Fig 5(a)) is closer to the
top curve than the bottom one. Clearly, the algorithm makes very few mistakes
when the error rate p is low and even for fairly high error rates (20-50%), its
performance degrades smoothly and very slowly. When computing the yeast-fly
GNA, we assigned a significant weight to sequence information (α = 0.6); these
simulations suggest our results are quite robust to errors in PPI data.

Evaluating the influence of α: As α increases, so does the importance of
network data in the alignment process, for both the greedy strategy and the
maximum weight bipartite matching strategy (Fig 5(b)). In line with our ex-
pectations, the size of the common subgraph depends on this parameter: α = 0
results in a graph with 266 edges, while α = 0.9 results in 1544 edges (for the
greedy strategy). Intriguingly, as α gets very close to 1, the common graph’s
size decreases. We believe that this discrepancy is an artifact of the current PPI
data sets being noisy and covering the interactome only partially, resulting in a
relatively small overlap between the yeast and fly PPI networks. Consequently,
in absence of any other information a random mapping of nodes between the two
networks might satisfy Eqn.1 better than the one corresponding to the “true”
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alignment. The use of sequence-based scores helps mitigate this, by directing the
algorithm towards the true alignment.

When choosing the most appropriate value of the free parameter α, we re-
jected the choice corresponding to the largest common subgraph size— the input
networks are noisy and conserved edges may be simply due to noise; thus, the
α leading to the largest-size subgraph may not be a biologically appropriate
choice. Instead, for each choice of α, we compared the resulting node mappings
to sequence-based ortholog predictions from the Inparanoid database [21] and
chose the α (= 0.6) that resulted in the greatest overlap with these. While this
approach is conservative and might undervalue the network component during
the alignment, it also lowers the adverse impact of noise in the PPI data.

The differences between the node pairings found by our algorithm and those
from Inparanoid broadly fall into two categories: (1) those corresponding to low
Rij values indicating low confidence of our approach in that mapping, and (2)
functional orthologs where the use of network data genuinely changes the node
mapping. We discuss the latter in more detail later in this section.

Comparing global and local alignment results: Our global alignment re-
sults compare favorably to the those of NetworkBlast [1] (an implementation
of PathBlast) and sequence-only approaches. We compared the aggregate set of
local alignments from NetworkBlast with our global alignment. Each local align-
ment defines one-to-one matches between some yeast and fly proteins. Many of
the matches from our global alignment are seen in these local alignments: of the
701 matched protein-pairs in the former that consist of proteins seen in at least
one local alignment, 83% (582) of the pairs are also observed in one or more local
alignments. However, there are many overlapping local alignments, resulting in
ambiguity and inconsistency: averaged across the entire set of local alignments, a
yeast protein is aligned to 5.36 different fly proteins. Sometimes, such ambiguity
may be biologically meaningful, e.g., in instances of gene duplication. However,
the degree of ambiguity in some of the PathBlast results is clearly implausi-
ble. For example, the yeast protein SNF1, a Serine-Threonine Kinase (STK), is
matched to 71 different fly proteins. In fact, PathBlast results for many of the
yeast STKs are very ambiguous– over the set of 72 yeast proteins annotated
as STKs, the average number of matching fly proteins per yeast STK is 29.3.
STKs are part of many important signaling pathways, e.g, the MAPK, JNK and
AKT cascades. Sequence-only approaches. (e.g. Inparanoid) too have performed
poorly at ascertaining the correspondence between yeast and fly STKs: Inpara-
noid does not predict any fly orthologs for 58 of the 72 yeast STKs. Thus the
use of GNA to resolve this ambiguity in correspondence is particularly valuable.

GNA and functional orthologs: In analogy with sequence-based compara-
tive genomics methods [10], we apply IsoRank to the detection of functional
orthologs (i.e., sets of proteins that perform the same function in two or more
species) by exploiting the strong connection between these two problems: pro-
teins that are aligned together in the global alignment should have similar in-
teraction patterns in their respective species and are thus likely to be functional
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orthologs. There has been a lot of recent interest in the discovery of functional
orthologs (FO). In particular, Bandyopadhyay et al. [3] took a fairly complex
approach to FO detection between yeast and fly through local network alignment
(LNA): first, possible FOs for a protein are short-listed using a sequence-only ap-
proach; then, using a probabilistic technique (based on Markov Random Fields)
and the results of a LNA of the yeast and fly networks (performed using Path-
Blast), the probability of each short-listed pair of proteins being true FOs is
computed.

Table 1. Interpreting two-way global alignment results as functional or-
thologs (FOs): Comparison of our results with Bandyopadhyay et al.’s results [3].
Our method is often consistent with their results and, moreover, often resolves the
ambiguity in their predictions. 1Our predicted FO for the protein matches Bandyopad-
hyay et al.’s predicted FO, or the most likely FO if their method predicted multiple
FOs. 2Our predicted FO for the protein is one of the likely FOs predicted by Bandy-
opadhyay et al. (but not the most likely one).

Protein Predicted Related Predictions Remarks
(species) Functional from

Ortholog (Bandyopadhyay et al.)
by Our
Method Yeast/Fly pair Prob.

Gid8 (yeast) CG6617 Gid8/CG6617 76.51% Our predictions consistent
Gid8/CG18467 - with Bandyopadhyay et al.1

Tpm2 (yeast) Tm1 Tpm2/Tm1 - Consistent predictions.1

Tpm1 (yeast) Tm2 Tpm1/Tm2 43.98% Consistent predictions.1

Gpa1 (yeast) G-oα47a Gpa1/G-oα47a 41.53% Consistent predictions.1

Gpa1/G-ia65a -

Rpl12 (fly) Rpl12a Rpl12a/Rpl12 48.39% Consistent predictions.1

Rpl12b/Rpl12 -

Btt1 (yeast) CG11835 Btt1/CG11835 70.5% Consistent predictions.1

Btt1/Bcd 40.86%

CG18617 (fly) Vph1 Vph1/CG18617 43.53% Consistent predictions.1

Stv1/CG18617 38.44%

Kap104 (fly) Trn Kap104/Trn 40.64% Partially consistent
Kap104/CG8219 46.78% predictions.2

Act1 (yeast) Act5c Act1/Act5c 39.56% Partially consistent
Act1/Act42a 39.24% predictions.2

Act1/Act87e 43.53%
Act1/Act88f 40.17%
Act/CG10067 38.20%

Kel2 (yeast) CG12081 Kel2/CG12081 - Partially consistent
Kel1/CG12081 45.41% predictions.2

Cmd1 (yeast) Cam Cmd1/Cam 35.90% Partially consistent
Cmd1/And 44.39% predictions.2

Hsc70-4 (fly) Ssa3 Hsc70-4/Ssa3 - Partially consistent
predictions.2
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The results of IsoRank compare favorably with Bandyopadhyay et al.’s. Our
method has the advantage that it guarantees the predicted sets of FOs will be
mutually consistent and achieves higher genome coverage— PathBlast’s yeast-
vs.-fly local alignments cover only 20.56% of the genes covered by our global
alignment. In many cases the FO predictions between the two methods are par-
tially or fully consistent (see Table 1), i.e, FOs predicted by our method are also
the likely FOs predicted by their method. Furthermore, their method often pro-
poses multiple FOs for a protein, and our method resolves the ambiguity in their
results. In a few other cases, predictions of the two methods differ. At least in
some such cases, our method’s predictions are better supported by evidence. For
example, our method predicts Bic (in fly) as the FO of Egd (in yeast). Bandy-
opadhyay et al.’s method is ambiguous here as Bcd, its predicted FO of Egd,
is also predicted as a FO of Btt1. Furthermore, there is experimental evidence
that both Egd and Bic are components of the Nascent Polypeptide-Associated
Complex (NAC) in their respective species, lending support to our prediction;
in contrast, Bcd does not seem to be involved in NAC.

5 Conclusion

In this paper, we focus on the global network alignment problem, and describe an
intuitive yet powerful algorithm for computing the global alignment of two PPI
networks; in contrast, much of the previous work has been focused on the local
alignment problem. Our algorithm, IsoRank, simultaneously uses network and
sequence information and is tolerant of noise in the inputs; furthermore, it is easy
to control the relative weights of the network and sequence information in the
alignment. We use IsoRank to compute a global alignment of the S. cerevisiae
and D. melanogaster PPI networks. The results provide valuable insights about
the conserved functional components between the two species. They also allow
us to predict functional orthologs between the fly and yeast; the quality of our
predictions compare favorably with previous work.

Our algorithm is similar— in spirit— to Google’s PageRank algorithm, which
ranks web-pages in the order of their “authoritativeness”. The intuition be-
hind the two algorithms has a similar flavor: in PageRank, a page has a high
score if many pages with high scores link to it. The intuitions are also formal-
ized similarly– by constructing an eigenvalue problem. Our actual algorithm is
quite distinct from PageRank: in our case the input is a pair of undirected,
weighted graphs and the output is an alignment; PageRank’s input is a directed,
unweighted graph (where the nodes indicate web-pages and directed edges, hy-
pertext links), and it outputs node rankings.

We have already extended IsoRank to perform global alignment of multi-
ple networks, but this is beyond the scope of this paper. In future work, we
plan to improve the algorithm, better characterize its theoretical behavior, and
identify other applications for it. Since PPI data is noisy, it might be useful to
generate multiple near-optimal alignments and rank them by their significance.
Also, the algorithm can be applied to other biological and non-biological data.
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It might also be possible to extend such an eigenvalue approach to perform local
network alignment; as noted before, the use of an eigenvalue approach removes
the restriction of being able to find subgraphs with only certain topologies– a
limitation of some of the existing local network alignment methods.
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Abstract. Recent advances in high-throughput experimental techniques have en-
abled the production of a wealth of protein interaction data, rich in both quantity
and variety. While the sheer quantity and variety of data present special difficul-
ties for modeling, they also present unique opportunities for gaining insight into
protein behavior by leveraging multiple perspectives. Recent work on the modu-
larity of protein interactions has revealed that reasoning about protein interactions
at the level of domain interactions can be quite useful. We present PROCTOR, a
learning algorithm for reconstructing the internal topology of protein complexes
by reasoning at the domain level about both direct protein interaction data (Y2H)
and protein co-complex data (AP-MS). While other methods have attempted to
use data from both these kinds of assays, they usually require that co-complex
data be transformed into pairwise interaction data under a spoke or clique model,
a transformation we do not require. We apply PROCTOR to data from eight high-
throughput datasets, encompassing 5,925 proteins, essentially all of the yeast pro-
teome. First we show that PROCTOR outperforms other algorithms for predicting
domain-domain and protein-protein interactions from Y2H and AP-MS data. Then
we show that our algorithm can reconstruct the internal topology of AP-MS pu-
rifications, revealing known complexes like Arp2/3 and RNA polymerase II, as
well as suggesting new complexes along with their corresponding topologies.

1 Introduction

Protein complexes serve as cellular building blocks, signal transducers, and machines.
Protein complexes are assembled and held together by the direct interactions of their
constituent proteins with one another. Direct interactions between pairs of proteins oc-
curs in a modular fashion when some domain of one protein comes into sufficiently
close proximity with some domain of the other such that the domains mediate an inter-
action between the two proteins.1

The structure of a macromolecular protein complex can be characterized at increas-
ing levels of refinement: 1) identify its constituent proteins, 2) reveal its topology in
terms of which proteins are directly interacting with which others, 3) determine the
domain-domain interactions (DDIs) that mediate the direct protein-protein interactions
(PPIs), and 4) specify the complete 3D atomic structure. While the fourth has become

� These authors contributed equally to this work.
1 This interaction can be mediated by domains, motifs, or other features of the surface of a

protein. Although not entirely precise, to simplify the presentation we make no distinction
between any of these terms, but rather use the term ‘domain’ to refer to them interchangeably.

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 32–46, 2007.
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easier for individual proteins, in the case of protein complexes, technical difficulties
have posed significant obstacles to accomplishing this task [1]. Approaches are there-
fore needed at all these levels to help elucidate the architecture of complexes and how
their individual subunits interact with each other [2].

1.1 Related Work

Recently, high-throughput PPI assays like yeast two-hybrid (Y2H) or affinity
purification-mass spectrometry (AP-MS) have been conducted to partially bridge this
gap. Y2H assays use a gene reporter construct to screen for direct interactions between
pairs of proteins. AP-MS assays, on the other hand, provide a list of ‘prey’ proteins
that are identified by mass-spectrometry to have been co-complexed with a given ‘bait’
protein during an affinity purification process.

Y2H and AP-MS assays have critically different semantics in terms of the kind of
evidence they provide about PPIs. In contrast to Y2H, AP-MS assays do not provide
direct evidence of PPIs but only indirect evidence. This means that correctly reasoning
about both kinds of data together is challenging. Most methods tend to use either one
kind of data or the other, in each case possibly supplementing the data with information
from small scale experiments made available by databases like MIPS [27], DIP [38],
and BIND [3]. Almost all existing methods for reasoning about both kinds of data do
so by simply transforming the list of co-complexed proteins in an AP-MS purification
into a list of direct protein interactions using either a ‘spoke’ or ‘clique’ model.

In the spoke model, a PPI is assumed to occur only between the bait and each prey
protein. In the clique model, a PPI is assumed to occur between each pair of proteins
(bait or prey). In general, a spoke model results in a lower false positive rate for PPIs
within a complex at the expense of a higher false negative rate. On the other hand, a
clique model results in a zero false negative rate for PPIs at the expense of a high false
positive rate. If, however, the topology of PPIs explaining the AP-MS purification could
be ascertained more accurately, then more accurate DDI estimates could be obtained as
well. To the best of our knowledge, our approach is the first attempt to integrate AP-
MS and Y2H assays by taking into account the different possible topologies of protein
complexes that might explain a given AP-MS purification.

While Y2H and AP-MS assays differ importantly in terms of their semantics, they
are similar in one distressing respect. For a range of published Y2H datasets and AP-MS
datasets transformed by a spoke or clique model, error rates have been estimated to be
significant: many true PPIs are not reported (70–98%) and many reported PPIs are not
true (46–90%). Numerous computational methods have been developed to improve our
knowledge of PPIs. Such methods have used a variety of techniques such as Bayesian
networks [22], probabilistic decision trees [39], or kernel methods [5, 26, 18]. All of
these improve prediction by incorporating multiple sources of additional information
such as gene expression, Gene Ontology (GO) annotations, or interacting homologues
of other species. Recent work has also examined the orthogonal problem of predicting
co-complexed proteins from noisy AP-MS data [31, 8].

An alternative approach models the interactions between proteins’ constituent do-
mains to improve predictions. Here, the intuition is to use overrepresentation of certain
DDIs among observed PPIs to more accurately predict both DDIs and PPIs. Such an
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approach was first outlined by Sprinzak and Margalit [32]. Deng and colleagues pre-
sented a probabilistic formulation in which an iterative EM algorithm was used to
(locally) maximize a likelihood function [10]. Wang and colleagues extended this max-
imum likelihood formulation by incorporating the notion of ‘active’ interacting mo-
tifs [36]. Other approaches have explored Markov chain Monte Carlo methods [19] as
well as the use of protein structure information [29, 30].

Here, we introduce a new statistical learning approach, PROCTOR (PROtein Complex
TOpology Reconstruction), to elucidate the architecture of protein complexes, enabling
effective use of the information available from both Y2H and AP-MS assays for rea-
soning about PPIs and DDIs. Our method provides a framework for determining the
underlying topology of a protein complex and understanding how constituent proteins
interact with each other to form a complex. Using available AP-MS datasets, includ-
ing two recently published landmark datasets [16, 24], we determine topologies for
macromolecular complexes containing essentially all of the yeast proteome. In addi-
tion, PROCTOR serves as a tool for predicting the DDIs that mediate PPIs. It accurately
estimates DDIs across almost the entire yeast proteome and is efficient, displaying rapid
convergence properties.

2 Motivation and Intuition

Our current knowledge of PPIs and DDIs is both very noisy and very incomplete, which
means that current estimates of the probability of a given PPI or DDI can often be wildly
inaccurate. As explained earlier, approaches have been developed to increase the accu-
racy of our estimates by modeling interactions between a proteins’ constituent domains.
In most of these cases, the data available for estimation comes from experimental assays
that provide direct evidence of PPIs, such as Y2H assays.

In contrast, AP-MS assays do not provide direct evidence of PPIs. First, each prey
protein appearing in a given AP-MS purification is either a true positive or a false posi-
tive in terms of whether it actually co-complexes with the bait protein in vivo. In addi-
tion, although each true positive prey must somehow co-complex with the bait, 1) not
all true positive preys must co-complex with one another (the bait may participate in
multiple complexes), and 2) not all true positive preys must interact directly with the
bait (many interactions may be indirect, via other intermediating preys).

Of course, we do not know which preys are true positives; nor do we know which
true positive preys interact directly with the bait; nor do we know, in the case of true
positive preys that interact only indirectly with the bait, which other preys intervene.
Another way of saying this is that although many possible ‘explanations’ of an AP-MS
purification are possible (as shown in Figure 1), we are not sure which explanation is
true. If we knew which explanation was true, we could use this information across many
AP-MS purifications to robustly estimate both the DDIs that mediate all the observed
PPIs, as well as the internal topology of protein complexes in vivo.

One way to approach this problem would be to assume in advance which one par-
ticular explanation is to be taken as true: many methods do this when they explain the
results of an AP-MS purification by stipulating the existence of direct PPIs among the
bait and preys via either a spoke or a clique model. In addition to the fact that these
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Fig. 1. Topologies of possible protein complexes when bait B is purified along with two other
proteins P2 and P3. Edges indicate PPIs. A spoke model assumes C3, whereas a clique model
assumes C6. In C7 and C8, P3 is a false positive. If multiple copies of proteins are permitted,
many additional topologies are possible (e.g., C8). In the absence of stoichiometric information,
it is impossible to distinguish the two-complex case C1, C2 from the one-complex case C3.

methods lead to poor estimates of the DDIs (because the stipulated PPIs are incorrect),
such methods are incapable of estimating the topology of protein complexes because
they assume the topology in advance.

A more sensible way to approach this problem is to estimate the probability of each
possible explanation of the data. If this is done, a model selection perspective can be
employed to choose the most likely explanation of the data, or alternatively, a more
Bayesian model averaging perspective can be employed to marginalize over possible
explanations of the data.

Here, we demonstrate how to compute the probability of each possible explanation
of an AP-MS purification. We adopt a model averaging perspective to marginalize over
possible explanations of the data in computing estimates for PPIs, and for the DDIs
that mediate them. We also use this framework to reveal a model-averaged view of
the internal topology of the protein complexes that give rise to the lists of proteins
that appear in AP-MS purifications. In what follows, we first formulate the estimation
problem for PPIs, DDIs, and unknown internal topologies, and then present a sampling
algorithm for approximating the solution.

3 Mathematical Formulation

Let θmn be the probability of domains m and n interacting and let Θ = {θmn} represent
the set of all DDI probabilities. Likewise, let wij denote the probability of proteins i
and j interacting. Since we assume that a direct interaction between two proteins i and
j is mediated by at least one interaction between some domain of i and some domain
of j, we can use a ‘noisy-or’ formulation to write:

wij = 1 −
∏

m,n

(1 − θmn)

where m and n index over the constituent domains of proteins i and j, respectively.
Define the false positive rate φp as the probability of observing a prey protein in an

AP-MS purification even though that prey does not actually co-complex with the bait
in vivo; define the false negative rate φn conversely: the probability of not observing
a prey protein that actually co-complexes with the bait in vivo.2 We allow different

2 Of course, complexes are dynamic and might exist only under certain conditions, so the con-
cept ‘actually co-complexes with’ is ambiguous, but this subtlety is generally ignored in the
literature—nor is the data available for addressing it—so we proceed to ignore it as well.
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AP-MS datasets to have different error rates, but assume within a single dataset that the
false positive rate φp is the same for all purifications, and also that the false negative
rate φn is the same for all purifications.

3.1 Model for an AP-MS Purification Observation

Denote the set of observed proteins in a single AP-MS purification as O (i.e., the bait
protein plus all prey proteins). Consider the simplest (non-trivial) case, wherein bait i
is purified with only a single prey j. In this case, only two explanations are possible—
either the two proteins interact via one of their domains to form a two-protein complex
or the proteins do not interact and the observed prey is a false positive. Given the DDI
values Θ and the appropriate error rates, the complete probability of the observation is:

Pr(O|Θ, φn, φp) = (1 − φn)wij + φp(1 − wij) (1)

Now consider the case when an AP-MS purification contains more than two proteins.
We first make the simplifying assumption that any complex topology for an AP-MS
purification can only be a tree c that spans over the complete graph induced over a subset
Ic of the proteins O. We require that the bait protein always be in Ic. The remaining
proteins O − Ic are then treated as false positives of the AP-MS purification. The set
of proteins Ic represent the true positives of the AP-MS purification and the edges EIc

that span over these true positives define an underlying topology for the complex(es)
represented by this purification. We permit self-edges to be considered for proteins in
Ic (true positives). For those concerned that self-edges violate the definition of a tree
simply imagine that every protein is duplicated and a self-edge connects a protein i to
its duplicate protein. We call the tree c, consisting of interaction edges EIc that span
over Ic and the remaining false positive proteins O − Ic, a ‘complex topology tree’.
Biologically, such a tree represents the underlying interaction backbone for the set of
complexes represented by this AP-MS purification. Note that throughout we use the
terminology ‘complex topology tree’ but strictly speaking this represents the topology
of multiple complexes represented by this purification. The probability of any complex
topology tree c is given by:

Pr(c) =
[
(1 − φn)|Ic|−1(φp)|O−Ic|

]
⎡

⎣
∏

eij∈EIc

wij

⎤

⎦

⎡

⎣
∏

eij /∈EIc

(1 − wij)

⎤

⎦ (2)

This has three terms—the first term models the true and false positives represented by
the tree, the second term models the interactions spanned by the tree, and the final
term ensures that this is the probability of c and only c (and not graphs for which c
is a sub-graph). The probability of observing an AP-MS purification is the sum of the
probabilities of all possible complex topology trees c ∈ C:

Pr(O|Θ, φn, φp) =
∑

c∈C
Pr(c) (3)
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3.2 Incorporating Negative Information into the Observation Model

The model for observing an AP-MS purification in (3) ignores the possibility of false
negative complexes or false negative errors due to mass spectrometry. It also fails to rec-
ognize that proteins which do not participate in a complex with a bait provide negative
evidence for DDIs. Let O be the set of proteins that are neither the bait nor observed as
prey proteins in some purification. Modeling false negative complexes would require
an expression for the probability of O analogous to that in (3), but this is not practical
since the size of O is many orders of magnitude larger than that of O. Instead, we only
incorporate negative evidence for pairs of proteins in the set O × O. This results in the
following negative observation model:

Pr(O|Θ, φn, φp) =
∏

i∈O

⎡

⎢
⎣(1 − φp)

∏

j∈O
(1 − wij) + φn

∑

j∈O
wij

∏

k∈O
k �=j

(1 − wik)

⎤

⎥
⎦ (4)

For each protein i ∈ O, the first term in the product models the possibility of i being a
true negative (and thus not interacting with any of the proteins in O), while the second
term models the possibility of i being a false negative (in this case, we make a further
simplification by assuming i interacts with only one protein j ∈ O).

4 Joint Learning Using Proteomic Data

In the preceding section, we developed a model for explaining an AP-MS purification.
We note this is easily extended to incorporate data from Y2H assays: we simply treat
every observed Y2H interaction as a two-protein complex whose probability of interac-
tion is thus given by (1). For Y2H datasets, we do not need to worry about incorporating
negative evidence as every unobserved interaction O is treated as a negative.

4.1 Joint Model for Y2H and AP-MS Data

Suppose we have K Y2H datasets Yk and L AP-MS datasets Al. Let us denote all
the Y2H datasets by Y = {Yk.O, Yk.O, Yk.φp, Yk.φn}K

k=1 and all the AP-MS datasets
by A = {{Al.O, Al.O}, Al.φp, Al.φn}L

l=1. In the definition of A, we have used set
notation (curly brackets) around the first two elements to remind the reader that each
AP-MS dataset consists of a (large) set of purifications. We can now construct a full
joint probability model of all these assays as shown:

Pr(Y, A|Θ, Φ) =
K∏

k=1

(∏
Pr(Yk.O|Θ, Φ)

∏
(1 − Pr(Yk.O|Θ, Φ))

)

×
L∏

l=1

(∏
Pr(Al.O|Θ, Φ) Pr(Al.O|Θ, Φ)

)
(5)

The first term represents the Y2H model and is fully specified by (1). Here, the inner
product terms are over all PPIs observed and unobserved in the Y2H dataset Yk, re-
spectively. The second term represents the AP-MS model and is fully specified by (3)
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and (4). Here, the inner product is over all the purifications of the AP-MS dataset Al. We
point out that in the absence of AP-MS information, this model is equivalent to a previ-
ously published method [10]. The assumption of independence is strictly not correct but
has been introduced to avoid the complicated dependency structure arising with AP-MS
data. The independence assumption can be relaxed for Y2H data and leads to a more
efficient algorithm. For lack of space, to simplify presentation, and since we observed
only a marginal improvement in results, we present these ideas in the Supplementary
Material.

4.2 Inference Using a Monte Carlo EM Algorithm

We generalize the EM algorithm of [10] to incorporate our AP-MS observation model.
As in [10], we assume the error rates Φ are given, so we only need to estimate the DDI
probabilities Θ. This is not a serious problem in practice, as estimates of error rates for
a number of Y2H and AP-MS datasets have been published [13, 35, 11, 17].

Exact computation of (3) requires the enumeration of all possible spanning trees in
a complete graph which is O(|O||O|−2) [25]. This is clearly not tractable. Instead, we
approximate (3) using a Monte Carlo approach by generating random trees from the
uniform distribution and then calculate (3) using these trees. This can be implemented
efficiently by performing a simple random walk over a complete graph with vertex set
O [7, 37, 25]. Thus development of an efficient sampling algorithm requires that com-
plex topologies only be trees. This is why we have made the simplifying assumption
that the space of possible complex topologies can only be trees. Note that this assump-
tion is not unduly restrictive as a complex topology that is a graph can be represented
as a combination of a set of trees. To model false positives, we randomly select a set
of vertices from O as false positives and then use the simple random walk on the re-
maining set of vertices. Care has to be taken that the selected set of trees are unique.
This can be done efficiently by maintaining a hashtable indexed by a hash function de-
pendent on the structure of the tree. The number of trees (samples) generated for an
AP-MS purification is initially selected as a function of Al.O to reflect the fact that the
number of possible trees is a function of the size of the purification. This number is then
uniformly increased at each iteration of the EM algorithm to increase the accuracy of
the approximation over time.

We now outline the extensions needed to the EM algorithm of [10]. The E-step re-
quires the calculation of the binomial sufficient statistics for the binary latent variables
Dij

mn representing the presence of an interaction between domains m and n in proteins
i and j. For an AP-MS purification, we need to consider two cases.

a. When (i, j) ∈ O × O, the E-step calculations are shown below, where I{eij∈EIc}
is an indicator variable which returns 1 if the edge eij is in the edge set EIc of tree
c and 0 otherwise.

E(Dij
mn|Θ(t−1), Φ) =

θ
(t−1)
mn Pr(O|Dij

mn, Θ(t−1), Φ)
Pr(O|Θ(t−1), Φ)

(6)

Pr(O|Dij
mn, Θ(t−1), Φ) =

∑

c∈C

Pr(c)I{eij∈EIc}
wij
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b. When (i, j) ∈ O × O, the E-step calculations are shown below.

E(Dij
mn|Θ(t−1), Φ) =

θ
(t−1)
mn Pr(O|Dij

mn, Θ(t−1), Φ)
Pr(O|Θ(t−1), Φ)

(7)

Pr(O|Dij
mn, Θ(t−1), Φ) = φn

∏

k∈O
k �=j

(1 − wik)

If the total number of possible interactions between domains m and n across all Y2H
and AP-MS datasets is Tmn, then the M-step involves a simple recursive formula for
θmn, where the summation is over all pairs of proteins i and j that contain domains m
and n, respectively.

θ(t)
mn =

1
Tmn

∑
E(Dij

mn|Θ(t−1), Φ) (8)

We now briefly examine the time and space requirements for each iteration of the EM
algorithm. Let P be the size of the proteome, D be the total number of unique domains
across all proteins, S be the maximum number of samples (trees) generated for a partic-
ular EM iteration, R be the total number of AP-MS purifications (this is the sum total of
all purifications across the L AP-MS datasets), H be the size of the AP-MS purification
with the maximum number of prey proteins, and T be the maximum number of protein-
protein pairs with the same domain-domain combination (terms summed over in (8)).
Y2H and AP-MS datasets require O(KP + RH) space (we assume that the number
of observed protein-protein interactions in any Y2H assay is orders of magnitude less
than the total number of possible interactions). Each EM iteration involves maintaining
O(P 2) and O(D2) matrices for updating the sufficient statistics. Selecting a unique set
of trees generated from the simple random walk requires O(SH) space. Thus, the total
space usage at each EM iteration is O(KP + RH + P 2 + D2 + SH). In practice, H
is usually orders of magnitude smaller than P and D. For the rare AP-MS purifications
with many prey proteins, we can set an upper bound on the value of SH without ad-
versely affecting the algorithm. Updating the sufficient statistics requires O(P 2+D2T )
time. Generating a sample of random trees requires O(SH2) time (checking whether
a tree is unique can be made O(1) with a good hash function, the simple random walk
requires O(H log H), and computing the cost of a tree requires O(H2)). Thus, the time
of each EM iteration is bounded by O(P 2 + D2T + RH + SH2). In practice, T is
not prohibitively large. Hence, both time and space requirements are dominated by the
number of samples S used in each iteration, the size of the proteome P , and the number
of unique domains D.

4.3 Recovering the Topology of a Protein Complex

Our Monte Carlo EM algorithm provides estimates for the DDI probabilities Θ. Given
Θ, we can compute the probabilities of different complex topologies. If we assume the
topology is tree, we can determine the most probable such tree using standard minimum
spanning tree (MST) algorithms over the complete graph with vertex set O. The MST is
essentially a maximum likelihood estimate of the complex topology, restricted to a tree.
One might also wish to determine the most probable DDIs that mediate the PPIs in the
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graph. In this case, one could construct an MST in an annotated graph over the set of
proteins O: instead of having a single edge between proteins i and j, the annotated graph
would have as many edges as the number of possible DDIs between i and j. A natural
extension to this would be to then determine a complex topology for the proteins in O
such that edges selected for the spanning tree never re-use any of a protein’s domains.
We call this the Domain Re-use Constraint problem and have proved that it is NP-Hard
(see Supplementary Material).

Using a maximum likelihood estimate as described above would prevent us from
noticing if a different tree were nearly equally probable. We overcome this by using
Bayesian model averaging instead, employing our sampling algorithm to generate a
huge number of random trees and then computing marginal probability estimates for
all the edges of the graph. Using this Bayesian model averaging approach, we are not
restricted to complex topology trees but can determine complex topology graphs (i.e.,
with cycles). Note also that such topology graphs can represent the topology of more
than one complex since proteins can participate in more than one complex.

5 Results

We applied our algorithm to publicly available high-throughput proteomic interaction
data for S. cerevisiae. We obtained a total of 6,864 purifications from five different
AP-MS datasets. Four datasets were tandem affinity purification (TAP) assays with 589
purifications [15], 294 purifications [23], 1,993 purifications [16], and 3,436 purifica-
tions [24], respectively. The fifth dataset was a high-throughput mass spectrometric
protein complex identification (HMS-PCI) assay with 552 purifications [20]. The aver-
age size of the number of prey proteins across all 6,864 AP-MS purifications was 13,
with a maximum size of 332.

We also used two Y2H datasets. The first included two Y2H screens, one where
all transformants were allowed to mate with each other (6,000 × 6,000) and another
where all transformants were allowed to mate with only 192 (6,000 × 192) [34]. Ide-
ally, we would treat these two screens as separate datasets, but the identities of the 192
transformants used in the second screen were not recorded (Peter Uetz, personal com-
munication) so we pooled the two screens into one dataset containing 957 interactions.
The second Y2H dataset included one high-throughput screen (6,000 × 6,000) produc-
ing a total of 4,549 interactions, 841 of which were detected more than three times and
labeled as ‘core’ interactions [21]. We treated the core and full sets as separate Y2H
datasets to reflect the difference in the confidence of their observations.

All the data taken together represent 5,925 yeast proteins, covering essentially the en-
tire yeast proteome. We used protein-domain information from two different sources—
Pfam [4] and InterPro [28]—and evaluated all our results with each of these sources in-
dependently. The average number of domains per protein was 2 for both Pfam
and InterPro, with the maximum number of domains in a protein being 30 and 18,
respectively.

For AP-MS assays, we used previously reported false positive and false negative
error estimates [17]. To estimate error rates for direct protein interaction assays like
Y2H (or AP-MS assays converted using spoke or clique models), we used a published
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method for simultaneously estimating the error rates of two datasets given a gold stan-
dard set of known interactions [11]. By comparing two independent datasets to a gold
standard, the error rates are more trustworthy than those obtained by comparing each
dataset to the gold standard by itself. To further increase our confidence in these values,
we paired each dataset with several others, ran the method for each pair, and averaged
all the results (see Supplementary Material for values).

Although the space and time complexity of our learning algorithm increases as the
number of samples increase with each EM iteration, in practice the algorithm converged
rapidly within 25–30 iterations, with each iteration taking an average of 30 minutes on
a machine with 4GB RAM. Convergence was assessed as change in log likelihood
being less than 0.01%. We compared four algorithms: 1) a previously published algo-
rithm [10] using Y2H datasets only (called Y2H-ONLY), 2) the same algorithm as 1 but
including AP-MS data transformed using a spoke model (called SPOKE), 3) the same
algorithm as 1 but including AP-MS data transformed using a clique model (called
CLIQUE) and 4) our algorithm using separate observation models for Y2H and AP-MS
datasets (called PROCTOR). We experimented with random initializations for θmn but
consistently observed the best results by initializing θmn to a constant less than 0.01.
None of these algorithms displayed significant differences for small variations in the
error rate estimates, as has been observed by others as well [10]. Also, the observed
results were virtually indistinguishable whether we used protein-domain information
from Pfam or Interpro, so we only show results using Pfam.

5.1 Evaluation of Domain-Domain Interaction Predictions

We used structural information from 3DID [33] and iPfam [14] to define positive DDIs
for our evaluation set. As suggested previously [30], we pruned out those DDIs having
no evidence in the training data because none of the algorithms will be able to do better
than random for these, leaving us with a total of 1,501 positive DDIs for evaluation.
We selected 40 times as many negative DDIs by randomly sampling from DDIs not in
our positive set. Figure 2 shows the resulting precision-recall curves; we use precision-
recall curves instead of ROC curves since they are more informative when using highly
skewed evaluation sets [9]. The SPOKE approach does a little better than the CLIQUE

approach, while Y2H-ONLY fares the worst. This is presumably due to the fact that it has
the least available training data. Overall, the area under the DDI precision-recall curve
increases at least 0.36 with PROCTOR. On examining the curve for the CLIQUE approach
more closely, we discovered its poor performance was partly due to its inability to
predict self-interacting domains. We then modified CLIQUE to include self-interacting
proteins (a protein interacts not only with all other proteins but also with itself). This
modification improved the precision-recall curve for CLIQUE to slightly better than that
of SPOKE and Y2H-ONLY (results not shown).

5.2 Evaluation of Protein-Protein Interaction Predictions

We obtained positive PPIs for our evaluation set from the small scale experiments con-
tained in DIP [38]. We again pruned out PPIs having no evidence in the training data,
leaving us with a total of 3,144 positive PPIs for evaluation. We selected 40 times as
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Fig. 2. DDI: precision vs. recall Fig. 3. PPI: precision vs. recall

many negative PPIs by randomly sampling from PPIs not in our positive set. As an alter-
native negative evaluation set, we also obtained the localization of 1,119 proteins [12]
and randomly sampled from pairs of proteins with different localizations. These two
negative evaluation sets showed no discernible difference (results not shown), so we
only present results using the former (without localization). Somewhat surprisingly, the
PPI precision-recall curves, shown in Figure 3, are not as dramatically different as the
DDI precision-recall curves. Although PROCTOR still performs the best, the area under
the PPI precision-recall curve increases only 0.08 compared to the next best algorithm
(SPOKE). Upon close examination, we determined that this difference between DDI and
PPI precision-recall curves is due to a combination of the inherently non-uniform con-
tributions of different DDIs to the PPI network, the low prevalence of PPIs (the ratio of
non-PPIs to PPIs in the proteome is estimated to be at least 1,200), and differences in
the evaluation sets. Both SPOKE and CLIQUE predict many more DDIs than PROCTOR.
However, these DDIs are distributed across a relatively small fraction of the PPIs. Both
SPOKE and CLIQUE also predict many more PPIs than PROCTOR, but these additional
PPIs are extremely small in number when compared to the total number of possible
PPIs. As a result of all these factors, the improvement observed in Figure 3 is not as
visually dramatic as that seen in Figure 2.

5.3 Prediction of Protein Complex Topologies

Finally, we examine PROCTOR’s ability to reconstruct the topology of protein com-
plexes in an AP-MS purification. To construct a complex topology graph explaining
a purification, we used our sampling algorithm to compute an average confidence for
each edge in the graph. For two well-studied complexes, we compared the known crys-
tal structure in PDB [6] with the topology predicted by PROCTOR. The first complex we
studied is part of the core component of RNA polymerase II (PDBid: 1sfo) and the
reconstructed complex topology is shown in Figure 4. Tfg1 was used as the bait in this
purification and is involved in both transcription initiation and elongation of RNA poly-
merase II. Besides the five members of the core component (Rpb1, Rpb2, Rpb3, Rpb6,
Rpb8), the Tfg1 purification pulled down two unrelated proteins, Hst4 and Msy1, both
of which were correctly identified as false positives. The second complex we studied
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Fig. 4. Predicted complex topology of Arp2/3 complex and a portion of RNA polymerase II.
The width of each edge reflects our relative confidence in the corresponding PPI. Dashed red
nodes indicate nodes wrongly labeled as a false positive. Dashed red edges indicate PPIs wrongly
labeled as interactions. Dotted black edges indicate PPIs wrongly labeled as non-interactions. All
solid green nodes and solid green edges are correct.

is the Arp2/3 complex (PDBid: 1k8k) which is a highly conserved actin nucleation
center consisting of seven proteins. We had AP-MS purifications with both Arp2 and
Arp3 as bait. We reconstructed the same topology from both purifications, one of which
is shown in Figure 4. Only Arc40 was not selected as part of the complex (incorrectly).
We suspect this is because Arc40 appeared in the Arp2 purification, but not in the Arp3
purification. On the other hand, Nog2 was correctly identified as a false positive. Ob-
serve that the topology of neither complex can be accurately characterized by the spoke
or clique models. In addition to reconstructing protein complex topologies, PROCTOR

also provides an estimate of the DDIs that mediate the PPIs in these topologies, but this
has been left out of the figure to reduce clutter.

6 Discussion

We demonstrate the accuracy of our learning algorithm PROCTOR for predicting both
PPIs and the DDIs that mediate them, and more importantly, in reconstructing the
topologies of protein complexes. These topologies are useful in providing a better un-
derstanding of the architecture of cellular protein complexes. This has been achieved
by careful modeling of the different semantics of Y2H assays (direct protein interaction
evidence) and AP-MS assays (protein co-complex evidence). Our implementation of
PROCTOR also permits variations within one kind of assay to be modeled with differ-
ent error rates: e.g., TAP vs. HMS-PCI protocols used for AP-MS, or core vs. full for
Y2H. Our results demonstrate that sizable improvements in accuracy can be obtained
by careful modeling of the semantics of AP-MS data; if the distinct semantics of AP-
MS data are ignored, algorithm performance degenerates rapidly. Our implementation
of PROCTOR is also the first domain-domain model for protein-protein interactions to
cover essentially all of the yeast proteome. Previously reported results [10, 36, 30] have
less than half this coverage, and in no case cover more than 42% of the proteome.

The most important feature of PROCTOR is its ability to further our understanding
of the architecture of cellular macromolecules through the reconstruction of complex
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topology graphs (along with the corresponding DDIs that mediate them). We plan to set
up a database of PROCTOR’s protein complex topology reconstructions as a useful tool
for others in the community.

Currently, PROCTOR reports a topology for explaining each individual purification,
ignoring potential overlap between purifications either due to repeated experiments or
the use of different members of a complex as bait proteins. It would be useful to extend
our algorithm to use such information for partitioning AP-MS purifications into their
constituent complexes. We might be able to use ideas developed by others for predicting
co-complex membership [31, 8] to assist in this. In addition, some of the available
AP-MS datasets may soon be enhanced to include stoichiometric information for their
purifications (Anne-Claude Gavin, personal communication). We would like to explore
the use of such information in further elucidating the topology of protein complexes.
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Abstract. Publicly-available data sets provide detailed and large-scale
information on multiple types of molecular interaction networks in a num-
ber of model organisms. These multi-modal universal networks capture a
static view of cellular state. An important challenge in systems biology is
obtaining a dynamic perspective on these networks by integrating them
with gene expression measurements taken under multiple conditions.

We present a top-down computational approach to identify building
blocks of molecular interaction networks by

(i) integrating gene expression measurements for a particular disease
state (e.g., leukaemia) or experimental condition (e.g., treatment
with growth serum) with molecular interactions to reveal an active
network, which is the network of interactions active in the cell in
that disease state or condition and

(ii) systematically combining active networks computed for different
experimental conditions using set-theoretic formulae to reveal net-
work legos, which are modules of coherently interacting genes and
gene products in the wiring diagram.

We propose efficient methods to compute active networks, system-
atically mine candidate legos, assess the statistical significance of these
candidates, arrange them in a directed acyclic graph (DAG), and exploit
the structure of the DAG to identify true network legos. We describe
methods to assess the stability of our computations to changes in the
input and to recover active networks by composing network legos.

We analyse two human datasets using our method. A comparison
of three leukaemias demonstrates how a biologist can use our system to
identify specific differences between these diseases. A larger-scale analysis
of 13 distinct stresses illustrates our ability to compute the building
blocks of the interaction networks activated in response to these stresses.

1 Introduction

Rapid advances in high-throughput and large-scale biological experiments are in-
spiring the study of properties of sets of molecules that act in concert [13], how
these sets interact with each other, and how these interactions change dynami-
cally in response to perturbations. Such groups of molecules have been dubbed
various names such as gene modules [5,30,34], module networks [31] and gene

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 47–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



48 T.M. Murali and C.G. Rivera

sets [35]. One of the fundamental challenges of systems biology is to automati-
cally compute such modules and the relationships between them by integrating
multiple types of data and discovering patterns of coordinated activity contained
in these data sets.

In this paper, we present a top-down computational approach that identifies
building blocks of cellular networks by

(i) integrating gene expression measurements for a particular disease state
(e.g., leukaemia) or experimental condition (e.g., treatment with growth
serum) with molecular interactions to reveal an active network, which is the
network of interactions active in the cell in that disease state or condition
and

(ii) systematically combining active networks computed for different exper-
imental conditions using set-theoretic formulae to reveal network legos,
which are modules of coherently interacting genes and gene products in
the wiring diagram. These network legos are potential building blocks of
the wiring diagram, since we can express each active network as a compo-
sition of network legos.

We illustrate the essence of our method using an example. Armstrong et al. [2]
demonstrated that lymphoblastic leukaemias involving translocations in the
MLL gene constitute a disease different from conventional acute lymphoblas-
tic (ALL) and acute myelogenous leukaemia (AML). The authors based their
analysis on the comparison of gene expression profiles from individuals diag-
nosed with ALL, AML, and MLL. We reasoned that the networks of molecular
interactions activated in these diseases may also show distinct differences. First,
we computed networks of molecular interactions activated in each leukaemia,
as described in Section 3.2. Next, we systematically combined these active net-
works in multiple ways into network legos using graph intersections and graph
differences, using the method presented in Section 3.3. Our system generated all
the possible 19 (33 − 23) combinations involving the ALL, AML, and MLL ac-
tive networks and their complements and connected them in the directed acyclic
graph (DAG) displayed in Figure 1. In this DAG, each node represents a single
combination, e.g., the leftmost node on the top row represents the MLL active
network while the leftmost node in the middle row represents the interactions ac-
tivated in AML but not in MLL (the “formula” AML∩ !MLL). A solid blue edge
directed from a child to a parent indicates that the formula for the child (e. g.,
MLL) appears as a part of the formula for the parent (e.g., MLL∩ !AML), while
a green edge indicates that the child’s formula (e.g., MLL) appears negated in
the parent’s formula (e.g., AML∩ !MLL). The DAG is a concise representation of
all the formulae we compute and the subset relationships between the formulae.
We did not consider complementation-only formulae such as !ALL∩ !AML since
the resulting networks are unlikely to be biologically useful. In Section 4.1, we
describe how function and pathway enrichment of these networks suggests dif-
ferences and similarities between ALL, AML, and MLL. For instance, Figure 1
displays an example of the enrichment of the interactions in the KIT pathway
in the computed network legos. Interactions in this pathway are significantly
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!ALL
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12: 3 c, 54 i
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Fig. 1. The lattice connecting combinations of ALL, AML, and MLL active networks.
Each node contains an index, the number of ‘c’onditions, the number of ‘i’nteractions
and the active networks participating in the formula, with ‘!’ indicating complementa-
tion. Colours indicate differential enrichment of the interactions in the KIT pathway in
the computed combinations. Darker colours denote more significant enrichment values.

enriched only in formulae that involve the AML active network; the most signif-
icant enrichment (3.5 × 10−7) occurs in the formula AML ∩ !ALL ∩ !MLL.

Given a wiring diagram and the transcriptional measurements for a particular
condition, we use the gene expression data to induce edge weights in the wiring
diagram. We find dense subgraphs [8] in this weighted graph to compute the
active network for that condition. Given the active networks for a number of
different conditions, we first represent the active networks in an appropriately-
defined binary matrix and compute closed itemsets [1,40] in the matrix. Each
itemset simultaneously represents a set-theoretic combination of particular active
networks and a subgraph of the wiring diagram; we call such a subgraph a
“network block”. We exploit the subset structure between blocks to arrange
them in a DAG. When the number of active networks is large, we may compute
a very large number of highly-similar blocks. Not all these blocks are likely to be
network legos. We assess the statistical significance of each block by simulation
and identify those that are maximally significant, i.e., more significant than any
descendant or an ancestor in the DAG. We deem these blocks to be network legos.

We develop two measures to assess the quality of the network legos we com-
pute. Stability measures to what degree we can recompute the same legos when
we remove each active network in turn from the input. Recoverability measures
to what extent we recoup the original active networks when we combine network
legos. These two notions test two different aspects of network lego computa-
tion. Considering active networks to be the inputs and network legos to be the
outputs, stability measures how much the outputs change when we perturb the
inputs by removing one of the inputs at a time. In contrast, recoverability asks
whether we can reclaim the inputs by combining the outputs; thus recoverability
is a measure of how well the network legos serve as building blocks. To assess
the biological content of network legos, we measure the functional enrichment
of the genes and interactions that belong to a network lego. For each function,
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we track its degree of enrichment in the DAG to visually highlight differences
among the active networks, as displayed in Figure 1.

In addition to the ALL-AML-MLL analysis, we apply our approach to a col-
lection of 178 arrays measuring the gene expression responses of HeLa cells and
primary human lung fibroblasts to cell cycle arrest, heat shock, endoplasmic
reticulum stress, oxidative stress, and crowding [21]. Overall, the dataset con-
tains 13 distinct stresses over the two cell types. Our method computes 143
network legos. In this paper, we focus on a structural analysis of the network
legos. We carefully examine the compositions of these network legos to demon-
strate that they are true building blocks of the active networks for these 13
stresses. We demonstrate that our algorithm to construct network legos is sta-
ble: when we remove each active network and recompute network legos, we are
able to recompute most network legos at least 95% fidelity. We also demonstrate
that we can recover active networks with almost perfect accuracy by compos-
ing network legos. Further analysis of the network legos reveals that the active
networks corresponding to cell cycle arrest contain interactions that are quite
distinct from the network of interactions activated by the other stresses. When
we remove the two cell cycle arrest data sets, we compute only 15 network legos.
Of the 11 remaining active networks, we recover five with complete accuracy and
one with 99.9% accuracy. We recover the other five active networks with accura-
cies ranging from 71% to 92%. Taken together, these statistics indicate that the
network legos we detect are indeed building blocks of the networks activated in
response to the stresses studied by Murray et al. [21].

There are two ways in which a biologist can use our system. In the first,
our system allows the systematic comparison of responses to a small number of
different conditions, diseases, or perturbations tested in the same lab. The ALL-
AML-MLL comparison we presented earlier and discuss further in Section 4.1 is
such an application. In the second, a biologist can analyse a specific condition
of interest in the context of a large compendium of other conditions, compute
the building blocks of the networks activated in these conditions, and ask how
the building blocks compose the active network for the specific condition of
interest to the biologist. In Section 4.2, we analyse 13 distinct stresses imparted
to human cells to illustrate this application. In this respect, our work is similar to
the approach developed by Tanay et al. [38]. They integrate a diverse collection
of datasets into a bipartite graph representing connections between genes and
gene properties. Their modules are statistically-significant biclusters [37] in this
graph. They represent a target gene expression dataset as a bipartite graph
and compute which already-computed modules respond in the target data set.
Our approach differs from theirs in two respects. First, we represent differences
and similarities between multiple conditions explicitly as a set theoretic formula
involving the interaction network activated in each condition. Two, when we
analyse a large compendium of gene expression data sets, we exploit the subset
structure between these formulae to detect network legos, statistically-significant
building blocks of these active networks.
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The success of our approach stems from a number of factors. First, unlike
other approaches that simultaneously integrate multiple gene expression data
sets in the context of the network scaffold [5,22], we compute individual active
networks for each data set and associate the active network with the correspond-
ing disease or perturbation. This approach allows us to explicitly compare and
contrast different conditions. Second, we treat interactions (rather than genes or
proteins) as the elementary objects of our analysis. Therefore, different network
legos may share genes, allowing for the situation when a gene participates in
multiple biological processes and is activated differently in these processes. Fi-
nally, we develop a simple but effective recursive method to assess the statistical
significance of a network lego and to weed out sub-networks that masquerade
as building blocks but contain true network legos. Taken together, formulae and
network legos provide a dynamic and multi-dimensional view of cell circuitry
obtained by integrating molecular interaction networks, gene expression data,
and descriptions of experimental conditions.

2 Previous Work

A number of approaches, recently surveyed by Joyce and Palsson [17], have been
developed to integrate diverse types of biological data and “mine” these datasets
to find groups of molecules (usually genes and/or proteins) that act in concert
to perform a specific biological task. Integrating information on available molec-
ular interactions such as protein-protein, protein-DNA, protein-metabolite, and
genetic interactions yields a multi-modal wiring diagram [32]. However, such a
network typically provides a static view of the underlying cellular circuitry. A
number of techniques attempt to obtain a dynamic view of cell state by overlay-
ing measurements of molecular profiles (usually in the form of gene expression
data) obtained under multiple conditions on the wiring diagram [10,12,15,17,20].
For instance, Han et al. [12] categorised hubs in S. cerevisiae protein interac-
tion networks into “party” hubs, which interact with most of their partners
simultaneously, and “date” hubs, which bind their different partners at different
times or locations. Luscombe et al. [20] characterise topological changes in the
structure of the S. cerevisiae transcriptional regulatory network under different
conditions. The SAMBA algorithm [36] integrates a wide variety of data types
in S. cerevisiae to identify gene modules with statistically significant correlated
behaviour across diverse data sources. The bioPIXIE system [22] probabilisti-
cally integrates diverse genome-wide datasets and computes pathway-specific
networks that include query genes input by a biologist.

Other methods have computed gene modules by focusing solely on gene ex-
pression data collected across multiple cellular conditions; they analyse large
compendia of such data to reveal similarities and differences between multiple
cellular conditions [30] or between organisms [7,34], predict functional anno-
tations [14,18], reconstruct regulatory networks [41] and networks activated in
diseases [6], zero in on biomarkers for diseases [25,26], and identify the gene
products and associated pathways that a drug compound targets [10].
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3 Algorithms

We describe the main computational ingredients of our approach in stages. We
first define some useful terminology. Next, we present our method to integrate a
cellular wiring diagram with the gene expression data for a single condition to
compute the active network for that condition. Third, we describe how we com-
bine active networks for different conditions to form blocks. Fourth, we discuss
how we compute the statistical significance of blocks, arrange them in a DAG,
and exploit the DAG to identify network legos, which are the most statistically-
significant blocks in the DAG. Finally, we present our methods to measure the
stability of network legos and assess how well we can recover active networks
from the network legos.

3.1 Definitions

Our method takes as input (i) a cellular wiring diagram W representing known
physical and/or genetic interactions between genes or gene products in an or-
ganism and (ii) a compendium of transcriptional measurements in the same or-
ganism obtained under various conditions such as diseases (e.g., breast cancer),
stimuli (e.g., heat shock), or other perturbations (e.g., gene knock-out or over-
expression). We assume that each gene expression dataset in the compendium
contains measurements for multiple gene chips. For instance, a breast cancer
dataset might include data from multiple patients while a heat shock dataset
may measure gene expression at different time points.

Given a gene expression data set Dc for a condition c, we say that a gene
responds in c if the expression values of the gene in Dc vary by more than an
input threshold. Let g and h be two genes that respond in c and let e = (g, h)
be an interaction in W . We say that e is active in c if the expression profiles
of g and h in Dc are correlated to a statistically-significant extent. The active
network Ac in c is the sub-network of interactions in W that are active in c. We
describe the details of how we detect responding genes, active interactions, and
active networks in Section 3.2.

Let A denote the set of active networks for each of the conditions in the input
compendium. We define a block to be a triple (G, P , N ), where G is a subgraph
of W ; P and N are subsets of A; P �= ∅; and P ∩ N = ∅ such that

1. for each positive active network P ∈ P , G ⊆ P ,
2. for each negative active network N ∈ N , G ∩ N = ∅,
3. G is maximal, i.e., adding an edge to G violates at least one of the first two

properties,
4. P is maximal, i.e., there is no P ∈ A − P such that G ⊆ P , and
5. N is maximal, i.e., there is no N ∈ A − N such that G ∩ N = ∅.

Intuitively, we can form G by taking the intersection of all the active networks
in P and removing any edge that appears in any of the active networks in N .
In other words,

G =
(

⋂

P∈P
P

)
⋂

(
⋂

N∈N
!N

)

=
(

⋂

P∈P
P

)

−
(

⋃

N∈N
N

)

,
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where “∩” (respectively, “∪”) denotes the intersection (respectively, union) of the
edge sets of two graphs and “!” denotes the complementation (with respect to W )
of the edge set of a graph. We require that P contain at least one active network
so that G is not formed solely by the intersection of the networks in N ; such a
block is unlikely to be biologically interesting. We also require that P and N be
disjoint so that G is not the empty graph. Requiring P and N to be maximal
ensures that we include all the relevant active networks in the construction of G.
These criteria imply that it is enough to specify P and N to compute G uniquely;
we include G in the notation for a block for convenience and drop P and N when
they are understood from the context. We refer to

( ⋂
P∈P P

)
−

( ⋃
N∈N N

)
as

the formula for the block.
Let B be a set of blocks. Given two blocks (G1, P1, N1) and (G2, P2, N2) in B,

we say that G1 ≺ G2 if

(i) P1 ⊆ P2 and N1 ⊆ N2 or
(ii) P1 ⊆ N2 and N1 ⊆ P2.

We say that G1 < G2 if there is no block G3 ∈ B such that G1 ≺ G3 ≺ G2.
The operators < and ≺ represent partial orders between blocks, with ≺ being
the transitive closure of <. Given a set B of blocks, let DB denote the directed
acyclic graph representing the partial order <: each node in DB is a block in
B and an edge connects two blocks related by <. For a block G, let σG ∈ [0, 1]
denote the statistical significance of G. We describe a method to compute this
value in Section 3.4. We define a network lego to be a block (G, P , N ) ∈ B
such that σG < σH , for every H ∈ B where G ≺ H or H ≺ G. In other
words, (G, P , N ) is a network lego if it is more statistically significant that blocks
formed by combining any subset of P and N or by combining any superset of P
and N . In this sense, we claim that G is a building block of the active networks
in A.

3.2 Computing Active Networks

Given a gene expression dataset for a disease state or an experimental condi-
tion c, we use a variational filter to remove all genes whose expression profile
has a small dynamic range from the wiring diagram W . More specifically, we
log-transform and zero centre each gene’s expression values. We discard a gene
and all its interactions in the wiring diagram W if all the transformed expres-
sion values of the gene lie between −1 and 1 [30]. We deem the remaining genes
to have responded in the condition. To each interaction e = (g, h) remaining
in W , we assign a weight equal to the absolute value of the Pearson’s correla-
tion coefficient of the expression profiles of the genes g and h, reasoning that
this weight indicates how “active” the interaction is in the experimental condi-
tion. We discard edges whose weights are not statistically significant (based on
a permutation test) at the 0.01 level. Let Wc be the resulting weighted inter-
action network. To mitigate the effect of isolated interactions in Wc, we search
for pockets of concerted activity in Wc as follows. We define the density of a
graph to be the total weight of the edges in the graph divided by the number of
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nodes in the graph. It is possible to find the subgraph of largest density using
linear programming or parametric network flows [8]. We use a simpler greedy
algorithm that finds a subgraph whose density is at least half the maximum den-
sity [8]. We repeatedly apply this approximation algorithm, remove the edges of
the subgraph it computes, and re-invoke the algorithm on the remaining graph
until the density of the remaining graph is less than the density of Wc. We deem
the union of the computed dense subgraphs to be the active network Ac for the
condition.

3.3 Computing Blocks

We reduce the problem of computing blocks to the problem of computing closed
itemsets in a binary matrix [1,40]. We construct a binary matrix M where each
column corresponds to an interaction in the wiring diagram W . The matrix M
contains two rows for each active network A ∈ A: the positive row corresponds
to the interactions in A and the negative row to the interactions in W − A. In
the positive row corresponding to A, we set a cell to be one if and only if the
corresponding interaction belongs to A; this cell is zero in the negative row for A.
Thus, M is a qualitative representation of which interactions are present in each
active network and which are present in its complement.

In a binary matrix such as B, an itemset (R, C) is a subset R of rows and
a subset C of columns such that the sub-matrix spanned by these rows and
columns only contains ones [1]. A closed itemset [40] is an itemset with the
property that each row (respectively, column) not in the itemset contains a zero
in at least one column (respectively, row) in the itemset. Therefore, it is not
possible to add a row or a column to the itemset without introducing a zero
into the corresponding sub-matrix. We can partition R into two subsets RP

and RN where RP (respectively, RN ) consists of all the positive (respectively,
negative) rows in R. There is a natural mapping from a closed itemset (R, C) to
a block (G, P , N ):

1. G is the subgraph of W induced by the interactions corresponding to the
columns in C;

2. P is the set of active networks corresponding to the rows in RP ; and
3. N is the set of active networks corresponding to the rows in RN .

We compute closed itemsets in B to satisfy the maximality requirements in the
definition of a block. We do not compute any itemsets where all rows correspond
to complements of active networks, since such itemsets are unlikely to be bio-
logically relevant (they correspond to blocks where P = ∅). To construct closed
itemsets, we use our implementation of the Apriori algorithm [1]. We have mod-
ified the original Apriori algorithm to construct closed itemsets. We convert
each itemset to the corresponding block and formula. Finally, we connect the
resulting set of blocks B in the DAG DB as per the partial order <.
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3.4 Statistical Significance of a Block

To measure the statistical significance of a block, we construct an empirical
distribution of block sizes. We repeatedly select a subset of rows uniformly at
random from the binary matrix M , compute the columns common to these rows,
and convert the resulting itemset into a block. We ensure that the random subset
of rows does not contain an active network and its complement, since such a sub-
set will trivially result in an itemset with zero columns. Given a block (G, P , N )
computed in the real dataset, let m be the number of interactions in G. To
estimate the statistical significance σG of (G, P , N ), we only consider the distri-
bution formed by random blocks (H, P ′, N ′) where |P| = |P ′| and |N | = |N ′|.
We set σG to be the fraction of such blocks that have more than m interactions.
Since the number of interactions in a block will decrease with an increase in |P|
or in |N |, these constraints ensure that we compare G with appropriate random
blocks in order to estimate σG. We only retain blocks that are significant at the
0.01 level. We compute the DAG defined by these blocks. We perform two topo-
logical traversals of this DAG, one from the roots to the leaves and the other
from the leaves to the roots, to identify the maximally-significant blocks. The
resulting set of blocks are the network legos we desire to compute. Let L denote
the set of network legos.

3.5 Stability and Recoverability Analysis

It is clear that the set L of network legos we compute depend on the active
networks in A. To assess this dependence, we modify a method for suggested by
Segal et al. [30]. We remove each network N ∈ A in turn and recompute network
legos from the set A − {N}. Let LN denote the resulting set of network legos.
For each network lego L in L, we compute the most similar network lego L′

in LN using the set-similarity measure (|L∩L′|/|L∪L′|) and store this measure
as sL,N . Given a similarity threshold t, for each network lego L in L, we compute
the fraction of networks in A such that sL,N ≥ t. The higher this fraction is, the
more resilient L is to perturbations in the input.

If the network legos in L are true building blocks of the active networks in A
that they spring from, it should be possible to recover each active network in A
from the network legos in L. For each active network A, we define

LA = {(G, P , N ) ∈ L|A ∈ P},

the set of network legos in L where A does not appear negated in the network
lego. We compute the union of the network legos in LA and the fraction of A’s
edge set that appears in the union. The larger this fraction is, the more “recov-
erable” A is from the computed network legos.

4 Results

We applied the algorithm described in the previous section to human data sets.
We obtained a network of 31108 molecular interactions between 9243 human
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gene products by integrating the interactions in the IDSERVE database [24], the
results of large scale yeast two-hybrid experiments [27,33], and 20 immune and
cancer signalling pathways in the Netpath database (http://www.netpath.org).
The IDSERVE database includes human curated interactions from BIND [4],
HPRD [23], and Reactome [16], interactions predicted based on co-citations in
article abstracts, and interactions that transferred from lower eukaryotes based
on sequence similarity [19]. We derived functional annotations for the genes
in our network from the Gene Ontology (GO) [3] and from MSigDB [35]. In
addition, we annotated each Netpath interaction in our network with the name of
the pathway it belonged to. We used these annotations to compute the functional
enrichment of the nodes and edges in the network legos using the hypergeometric
distribution with FDR correction.

4.1 ALL, AML, and MLL

We continue the analysis of ALL, AML, and MLL that we started in Section 1.
Since the three leukaemias induce only 19 blocks, we did not compute the statis-
tical significance of the blocks. Instead, we treated every block as a network lego.
To assess the biological content of the results and to illustrate one type of anal-
ysis our approach facilitates, we computed functions enriched in the genes and
interactions in the networks corresponding to the 19 formulae. Figure 1 demon-
strates that the interactions in the KIT pathway are differentially enriched in the
19 networks. The darker the colour of a node, the more statistically significant is
the enrichment of this pathway in the corresponding network. We first note that
the only formulae enriched in this pathway are the ones that involve AML (and
not the complement of AML). The statistical significance is the lowest (FDR-
corrected p-value 3.5 × 10−7) for the formula AML ∩ !ALL ∩ !MLL, indicating
that this pathway may be activated in AML and not in ALL or in MLL. Evidence
in the literature supports this conclusion. The c-KIT receptor is activated in al-
most all subtypes of AML [29]. Similarly, Schnittger et al. [28] report that “mu-
tations in codon D816 of the KIT gene represent a recurrent genetic alteration in
AML”. We note that gain-of-function mutations in c-Kit have been observed in
many human cancers [9]. Our analysis only suggests that in the context of ALL,
AML, and MLL, the KIT pathway may be activated only in AML.

4.2 Human Stresses

We computed network legos by applying our methods to the human interaction
network and the gene expression responses of HeLa cells and primary human
lung fibroblasts to heat shock, endoplasmic reticulum stress, oxidative stress,
and crowding [21]. The dataset we analysed includes transcriptional measure-
ments obtained by Whitfield et al. [39] for studying cell cycle arrest by using
a double thymidine block or with a thymidine-nocodazole block. Overall, the
dataset contains 13 distinct stresses over the two cell types. The authors note
that each type of stress resulted in a distinct response and that there was no gen-
eral stress response unlike in the case of S. cerevisiae [11]. Therefore, this dataset
poses a challenge to our system. Can we find network legos that combine active
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networks for multiple stresses? In this paper, we focus on the topological and
quantitative aspects of our results.

The number of genes in the 13 active networks we computed ranged from 165
(for crowding of WI38 cells) to 1148 (for the thymidine-nocodazole block) with
an average of 684 genes per active network. The number of interactions ranged
from 257 to 3667 with an average of 1874 interactions per active network. Theo-
retically, we can compute 1586131 (313 − 213) blocks involving 13 distinct active
networks. Our method computed 444201 blocks, indicating that the remaining
combinations of active networks are not closed or yield blocks without any inter-
actions. We computed a null distribution of block sizes using a million random
samples. Of the 444201 blocks, 12386 blocks were statistically significant at the
0.01 level. We identified 143 network legos in the DAG induced by the relation <
on these blocks. We observed that all but one of the 143 network legos involved
at least six distinct active networks, indicating that these network legos are not
the result of combining a small number of active networks. The following table
displays the distribution of the number of legos involving k conditions, where
5 ≤ k ≤ 12. Interestingly, no network lego involved all 13 active networks.

#conditions 5 6 7 8 9 10 11 12
#legos 1 6 10 36 34 20 28 8

In light of the statement by Murray et al. [21] that each type of stress re-
sulted in a distinct response, it is important to ask whether most of our net-
work legos primarily involve complemented active networks. Over all network
legos (G, P , N ), we counted the total size of the positive active networks (those
in the sets P) and the total size of the negative active networks (those in the
sets N ). Interestingly, more than 40% of the active networks appeared in the
positive sets, indicating that the network legos we found were not primarily fo-
cussed on what made the stresses unique. Rather, a large fraction of the network
legos represented features common to multiple stresses. The active networks that
appeared most often in the positive form were the two treatments that resulted
in cell cycle arrest. Each participated in as many as 119 network legos. In most
of these network legos, almost all the other active networks appeared in comple-
mented form. The complements of the cell cycle arrest active networks did not
participate in any network legos. This observation indicates that the interactions
activated by cell cycle arrest are quite distinct from the network of interactions
activated by the other stresses.

We obtained very good stability and recovery results. Upon the removal of
each active network, we were able to recompute each network lego with at least
95% fidelity. We were also able to recover 11 active networks with 100% accuracy
by composing network legos. The two active networks we could not recover com-
pletely were the double thymidine network (97% recovery) and the thymidine-
nocodazole network (86% recovery). When we tested the recoverability of active
networks using the blocks at the roots of the DAG connecting statistically-
significant blocks, the recovery for these two active networks dropped to 85%
and 75% respectively. This result underscores the fact that identifying network
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legos as those that are maximally statistically-significant in the DAG of blocks
is a useful concept.

Since the cell-cycle treatments resulted in active networks that were quite dis-
tinct from those for the other stresses, we repeated the analysis after removing
the double thymidine and thymidine-nocodazole active networks. The 11 remain-
ing active networks yielded only 77117 blocks (out of the 175099 possible). Of
these, 1629 blocks were statistically significant. These blocks yielded 15 network
legos. This much smaller set of network legos suggests that a number of the 143
network legos in the complete analysis were needed to capture unique aspects of
the cell cycle active networks. Each network lego involved at least seven active
networks. No network lego involved all 11 stresses. The ratio of total size of the
positive active networks and the negative active networks in the 15 network legos
was 1:2. As many as eight network legos had only one active network in P—the
fibroblast active network upon treatment with menadione—indicating that this
stress results in an active network that is quite unique compared to the other
10 active networks. Of the 11 active networks, we recovered five with complete
accuracy and one with 99.9% accuracy. We recovered the remaining with accu-
racies ranging from 71% to 92%. Taken together, these statistics indicate that
the network legos we detect are indeed building blocks of the networks activated
in response to the stresses studied by Murray et al. [21].

5 Discussion

We have presented a novel approach for combining gene expression data sets
with multi-modal interaction networks. This combination provides a dynamic
view of the interactions that are activated in the wiring diagram under differ-
ent conditions. We represent similarities and differences between the network
of interactions activated in response to different cell states both as a set theo-
retic formula involving cell states and as a network lego, a functional module
of co-expressed molecular interactions. A novel contribution of our work is the
DAG that relates all cell states (and the active networks corresponding to the
cell states). This DAG provides a high-level abstract view of the similarities and
differences between cell states.
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Abstract. With the increasing availability of experimental data on
gene-gene and protein-protein interactions, modeling of gene regulatory
networks has gained a special attention lately.Tohave abetter understand-
ing of these networks it is necessary to capture their dynamical proper-
ties, by computing its steady states. Various methods have been proposed
to compute steady states but almost all of them suffer from the state space
explosion problem with the increasing size of the networks. Hence it be-
comes difficult to model even moderate sized networks using these tech-
niques. In this paper, we present a new representation of gene regulatory
networks, which facilitates the steady state computation of networks as
large as 1200 nodes and 5000 edges. We benchmarked and validated our
algorithm on the T helper model from [8] and performed in silico knock
out experiments: showing both a reduction in computation time and cor-
rect steady state identification.

1 Introduction

The face of biological research has evolved at an alarming rate over the last two
decades. From a one-gene/one-protein analysis it has borne witness to a multi-
tude of technologies that allows us to capture and integrate a vast amount of
information generated by high throughput methods such as DNA microarrays,
siRNA knock-down and protein-protein interactions. While a wealth of informa-
tion is present on the interaction of the genes and proteins, the exact stoichiom-
etry and precise kinetics still evades our technologies and understanding. In such
situation, one could either wait to gather the crucial information on the precise
biochemical processes or choose to model the flow of information in genetic regu-
latory networks. We chose the latter as we think that the information is sufficient
already to identify qualitative behavior of the studied biological system. We also
claim that enabling such kind of approaches should further the understanding
of the design and identifications of keys elements that dictate cell fate.

The methodology presented here is an improvement of the methods described
by [8] to model dicrete regulatory networks and proposes to use a data structure
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called binary decision diagram (BDD) to represent and manipulate Boolean net-
works. This data transformation enables the compact representation of the state
space of the network and their efficient dynamic analysis. BDDs have primarily
been used in several other applications like logic synthesis and testing in the
field of Electronic Design Automation [21,22] and model checking [23,24]. In this
paper, we show their application on biological regulatory networks. Some work
on modelling the gene regulatory networks using the formal methods have been
introduced in [27,28,29].

We use the already published T helper cell regulatory network [8,7] as a frame-
work to validate our approach and show that our software, GenYsis finds all
steady states and correctly identifies the outcome of gene perturbation experi-
ments. We show that GenYsis scales well with the size of the network and can
compute cell states in the network with size over 1000 nodes in reasonable time
using modest computing resources.

2 Binary Decision Diagrams

2.1 Introduction

A Binary Decision Diagram(BDD) is a directed acyclic graph consisting of a root
node, intermediate decision nodes and two terminal nodes, namely 0-terminal
and 1-terminal. BDDs can be used for representing Boolean functions. Each
variable of the function is represented as a decison node of the graph. Each
decision node has two outgoing edges to represent evaluation of variable to 1
and 0. All paths from root node to 1-terminal gives the variable evaluations for
which the function is true. There might be some variables missing in some of the
paths. These variables have a “Don’t Care” evaluation, i.e. they can take either
0 or 1 value.

A simple BDD that represents the Boolean function f = (a AND b) OR c
is shown in Figure 1.

It has three paths from root node (node f) to 1-terminal node. For the path,
a

0−→ c
1−→ 1, two possible assignments (a = 0, b = 1, c = 1) and (a = 0, b = 0,

c = 1) leads to 1-terminal from root node f . Similarly, the path a
1−→ b

1−→ 1,

  f  

a

b

1

c

0

1

1

0

1

0

0

Fig. 1. BDD for the function f = (a ∧ b) ∨ c
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represents the assignments (a = 1, b = 1, c = 1) and (a = 1, b = 1, c = 0). Finally
the last path a

1−→ b
0−→ c

1−→ 1 representing (a = 1, b = 0, c = 1) complete the
five possible TRUE evaluations for the Boolean formula f .

Here, we use Reduced Ordered BDDs (ROBDDs), which are the compact
reduced form of BDDs. For the sake of brevity whenever we say BDD in this
paper, we are referring to ROBDDs.

The representation of Boolean functions as BDDs is memory efficient as iso-
morphic subgraphs can be shared by multiple nodes. The size of the BDD scales
well in most cases with the size of the Boolean function and all the logic op-
erations like AND, OR, Existential quantification, Universal quantification, etc.
can be performed in polynomial (with the size of the BDD) time on this data
structure [1]. This implicit representation does not require the explicit construc-
tion of a truth table and can be directly constructed from the Boolean function.
Further details on BDD construction and logic operations on them is outside the
scope of this paper, interested readers can find details in [1,2,3].

There are many existing packages that can be used for working with BDDs
like CUDD, CMUBDD, etc. In this paper we use the CUDD package [20], which
is the most efficient package for BDD representation and evaluation.

2.2 Representation of Gene Regulatory Networks

In this section we show how gene regulatory networks can be mapped to BDDs.
We start with the representation of regulatory networks as Boolean functions and
then we use these functions to construct corresponding BDD representation.

Given a gene regulatory network, the state of a node (or gene) i at time t is
represented with the Boolean variable xi(t). To evaluate the evolution in time
of each node, it is necessary to describe the state of each node at time t + 1 as
a function of state of those nodes acting as input at time t [8]:

xi(t + 1) =

⎛

⎝
m∨

j=1

xa
j (t)

⎞

⎠ ∧ ¬

⎛

⎝
n∨

j=1

xin
j (t)

⎞

⎠ (1)

xi(t + 1) =

⎛

⎝
m∨

j=1

xa
j (t)

⎞

⎠ (2)

xi(t + 1) = ¬

⎛

⎝
n∨

j=1

xin
j (t)

⎞

⎠ (3)

xj ∈ {0, 1}
xa

m and xin
n are the set of activators and inhibitors of xi

∧ and ∨ represent logical AND and OR

Equation 1 is used if the gene i has both activators and inhibitors. Equation 2 is
used if the gene i has only activators and equation 3, if there are only inhibitors.
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In equation 1, inhibitors are strong enough to change the state of a gene from 1
to 0, while activators can change the state from 0 to 1 if and only if there are
no inhibitors acting on that gene.

A snapshot of the activity level of all the genes in the network at a time t
is called the state of the network. The state of the network is represented by
a Boolean vector of size N (number of genes in the network). Each bit of this
vector represents whether the gene is active or inactive. Another Boolean vector
of size N is used to represent the status of the genes at next step. We call the
previous vector as present state(Vt) and latter one as next state (Vt+1).

The transition between states of the network can be either synchronous and
asynchronous. If the transitions are synchronous, all the genes change their state
at the same time point. If the transition is asynchronous, atmost one gene can
change its state between two consecutive states. Biologically, it is more realistic
to assume that genes have different response times, and hence an asynchronous
network might seem more realistic. In this paper, we use the asynchronous model
to represent state transition of the regulatory network and assume that time points
are close enough, so that only one gene can make a transition at each time point.

Now we shall see how the Boolean functions in equations 1-3 can be used
to construct a BDD representation. Let Ti(Vt, Vt+1) be the BDD representing
transition of gene i from Vt to Vt+1 and T (Vt, Vt+1) be the BDD representing
the transition from state of the network at time t to state at time t + 1. The
relation between Ti(Vt, Vt+1) and T (Vt, Vt+1) is given by equation 4. Equation
4 says that all genes make asynchronous transitions and state of the network at
time t can have multiple successor states.

T (Vt, Vt+1) = T0(Vt, Vt+1) ∨ T1(Vt, Vt+1) ∨ ... ∨ TN (Vt, Vt+1) (4)

To impose the constraint that two consecutive states differ in atmost one gene
evaluation, we define Ti(Vt, Vt+1) in equation 5, which states that for gene i, its
evaluation at the next time step v′i(∈ Vt+1) and function fi(Vt)(= xi(t+1)) have
the same value, and all the other genes remain at their activation level from the
previous time step.

Ti(Vt, Vt+1) = (v′i ↔ fi(Vt)) ∧
∧

j �=i

(
v′j ↔ vj

)
(5)

Let us go through a small example to have a better understanding of the
process.

Example 1. In figure 2, gene ‘A’ has an auto-activation and is inhibited by the
presence of gene ‘C’. Gene ‘B’ is activated by the presence of gene ‘A’ and
presence of gene ‘B’ inhibits gene ‘C’. The present state and next state vectors
are given by Vt = {a, b, c} and Vt+1 = {a′, b′, c′} respectively. Boolean functions
describing this small network are given by:

a′ = a ∧ ¬c (6)
b′ = a (7)
c′ = ¬b (8)
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Fig. 2. An example of Gene Regulatory Network

f

a

b b

c c c

a’a’a’ a’ a’ a’a’

b’b’ b’ b’ b’

c’c’

1

Fig. 3. BDD representing the state space of example in figure 2. The dashed edges
represent 0 evaluation of the variables and the solid edges represent the 1 evaluation.
For clarity, edges going to 0-terminal are not shown in this figure.

Corresponding transition relations for each gene is then given by:

T0(Vt, Vt+1) = a′ ↔ (a ∧ ¬c) ∧ b′ ↔ (b) ∧ c′ ↔ (c) (9)
T1(Vt, Vt+1) = b′ ↔ (a) ∧ a′ ↔ (a) ∧ c′ ↔ (c) (10)
T2(Vt, Vt+1) = c′ ↔ (¬b) ∧ a′ ↔ (a) ∧ b′ ↔ (b) (11)

The BDD representation for T (Vt, Vt+1) by using equations 9-11 in equation
4 is shown in figure 3. For clarity in figure 3, edges pointing to 0-terminal are
removed. This BDD represents all the possible state transitions of the network.
To find the immediate successor states of a given state of the network(say for
example a = 1, b = 0, c = 1), the following steps can be performed on BDD
T (Vt, Vt+1):

1. Assign initial activity levels to the genes a, b,and c (i.e. vi ∈ Vt).
2. Remove all outgoing edges which do not satisfy the evaluations in step 1.
3. Find all the paths from root node to 1-terminal and for each path only print

variables in set Vt+1.
4. Swap variable names from the set Vt+1 with the corresponding variable

names in the set Vt, on all the printed paths. ��
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The steps given in above example can be implemented by using efficient logic
functions such as “AND” and “Existential Quantify” along with the expressive
power of BDDs [1,2], as follows:

1. Construct a BDD ‘X’ which represents the initial state.
2. Take logical ‘AND’ of BDD ‘X’ with the BDD T (Vt, Vt+1).
3. Existentially quantify out variables in Vt from the resulting BDD.
4. Swap variables v′i ∈ Vt+1 with vi ∈ Vt in the BDD got from the last step.

The BDD formed after executing step 4 represents all the immediate successor
states from a given initial state.

3 Computing the Steady States

In this section, we will see how to efficiently compute steady states on the BDD
representation of the gene regulatory networks. But first we shall give some
definitions that we are going to use in the rest of the section. Let, f be the state
transition function.

Definition 1. Forward image, If (S(Vt)) is the set of immediate successors of
the states in S(Vt) on the state transition graph.

Definition 2. Backward image, Ib(S(Vt)) is the set of immediate predecessors
of the states in S(Vt) on the state transition graph.

Definition 3. Forward reachable states FR(S0) from the states S0 are all the
states that can be reached from S0 by iteratively computing forward image in the
transition relation T (Vt, Vt+1) until no new states are reachable.

Definition 4. Backward reachable states, BR(S0), are all the states in T (Vt,
Vt+1) whose forward reachable states contain S0.

Definition 5. Steady State is the set of states SS(Vt) having the following two
properties:

1. Forward image If (SS(Vt)) is same as SS(Vt).
2. For all the states in SS(Vt), if that state is reached once, then the probability

of revisiting that state is one. [19]

The first property of a steady state implies that there are only three possible
variants of steady states as shown in figure 4. The second property of steady
state ensures that there are only simple cycles(figure 4(a) and 4(b)) in the set
SS(Vps) and invalidates the third kind of steady state(figure 4(c)) with complex
loops as some of the states in this loop might not be revisited. The first property
is contained in the second property of steady states. An efficient algorithm can
be designed for finding steady states that satisfy the first property, though any
efficient algorithm satisfying property 2 is not known yet. Here we use the mod-
ified algorithm by [18] for computing the set of steady states satisfying property
1 and then remove the false steady states of type III (in figure 4) from that set.
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(a) Self Loop (b) Simple Loop (c) Complex Loop(false steady state)

Fig. 4. Different types of steady states

Algorithm [18] for computing steady states is based on two main theorems. For
the sake of completeness of the paper, we present these theorems and algorithms
here again. Proof of these theorems can be found in [18].

Theorem 1. A state i ∈ S is a steady state if and only if FR(i) ⊆ BR(i). State
i is transient otherwise.

Theorem 2. If state i ∈ S is transient, then states in BR(i) are all transient.
If state i is steady, then all the states in FR(i) are steady states. In the latter
case set {BR(i) − FR(i)} are all transient.

Based on these two theorems, the algorithm for steady state computation is
given in Algorithm 2. Algorithm 2 uses the functions forward set() and back-
ward set() for computing forward reachable (FR(S)) and backward reachable
(BR(S)) states respectively. These functions are given in Algorithm 1. In Algo-
rithm 1, FSk and RSk, are the frontier set and reachable set respectively in the
kth iteration of the while loop. Frontier set (Backward set) in iteration k + 1,
is computed by taking the forward (backward) image of the frontier (backward)
set in the kth iteration and removing from this image set the states that have
already been explored in previous iterations (which are stored in Reached Set).
Reached Set is updated by adding the new states from frontier(backward) set.
This process is iterated until no new states can be added to Reached Set. The
final Reached Set represents the forward (backward) reachable set from the set
of initial states S0.

The Algorithm 2 uses Theorems 1 and 2. In line 5 of Algorithm 2, a prospec-
tive steady state is selected from the state space T ′ and forward and backward
reachable sets from this seed state are computed in lines 6 and 7. Then Theorem
1 as implemented in line 8, checks if the seed state is a steady state. If the seed
state is indeed a steady state then using Theorem 2 (as implemented in lines
9-12), all the states in forward reachable set are declared steady states in line 9
and rest of the states in backward reachable set are declared transient states in
line 10. Otherwise, the seed state and all the other states in backward reachable
set are declared transient in line 12. In line 13, state space is reduced by remov-
ing the states that have already been tested for reachability and the process is
repeated to find another steady state on the reduced state space. This process is
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Algorithm 1. Computing Forward and Backward reachable sets
forward set(S0, T )1

/∗ backward set(S0, T ) ∗/2

begin3

RS(0) ←− ∅, FS(0) ←− {S0}4

k ←− 05

while FS(k) �= ∅ do6

FS(k+1) = If (FS(k))(Vt+1 ← Vt) ∧ RS(k)7

/∗ FS(k+1) = Ib(FS(k))(Vt ← Vt+1) ∧ RS(k) ∗/8

RS(k+1) = RS(k) ∨ FS(k+1)9

k ←− k + 110

return (FR(S0) ←− RS(k))11

/∗ return (BR(S0) ←− RS(k)(Vt+1 ← Vt)) ∗/12

end13

iterated until the whole state space is explored (i.e. until T 
= ∅). Since in each
iteration, states in backward reachable set are removed from the state space, the
size of the state space reduces in each iteration. The number of iterations also
depends upon how the seed state is selected.

Function initial state() in Algorithm 2 selects a prospective steady state from
the given state space T ′. In this function (implemented in lines 17-25), a BDD
representing a random path from the root node to 1-terminal, is selected in
line 17. The variables vi ∈ Vt+1 on this path P are removed (line 18) and
the resulting BDD is called the intial state,s. Forward reachable set from this
random initial state is then computed in lines 19-24. During the forward set
computation, when the frontier set evaluates to ∅ in iteration k, a random state
is taken from the frontier set in iteration k − 1 and returned as the seed state.
The motivation behind this function is that a state in the last frontier set is
more likely to be a steady state then a random state in the state space T . This
function differs from the one given in [18], in which the authors propose to do
forward reachability until a user-defined depth (i.e. k is taken as input). But
in our experience the number of iterations of while loop in line 4 of Algorithm
2 can be reduced by a large factor if we do complete forward reachability and
select a state from the frontier set in the last iteration as compared to selecting
from one of the intermediate iterations. This is because any state from frontier
set of kth iteration should have a larger backward reachable set then any other
state in previous k − 1 iterations. And larger the size of backward reachable set,
smaller the number of iterations required to exhaust the state space.

The Algorithm 2 gives the set of steady states satisfying property 1 as men-
tioned in the definition of steady states. Pseudocode for doing the complete
dynamic analysis is given in Algorithm 3, which uses the function isFalseLoop()
to check for false steady states. In the function isFalseLoop(), given a steady
state S, a random state s0 is selected from this set S and the image of s0 is
computed in line 14. In lines 15-19, we test if the immediate successor state of
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Algorithm 2. Steady State Algorithm
all Steady States(T )1

begin2

T ′ ←− T3

while T ′ �= ∅ do4

s ←− initial state(T ′)5

FR(s) ←− forward set(s, T ′)6

BR(s) ←− backward set(s, T ′)7

if FR(s) ∧ BR(s) = ∅ then8

report FR(s) as a steady state9

report BR(s) ∧ FR(s) as all transient states10

else11

report s ∨ BR(s) as all transient states12

T ′ ←− T ′ ∧ s ∨ BR(s)13

end14

initial state(T )15

begin16

P = random path to 1 node(T )17

s(Vt) = ∃v∈VtP18

RS(0) ←− ∅, FS(0) ←− {s}19

k ←− 020

while FS(k) �= ∅ do21

FS(k+1) = If (FS(k))(Vt+1 ← Vt) ∧ RS(k)22

RS(k+1) = RS(k) ∨ FS(k+1)23

k ←− k + 124

s ←− random path to 1 node(FS(k−1))25

return s26

end27

this initial state is a single state or a set of state. To do this, a random path(or
the state) from the image set is computed(line 15) and removed from this set in
line 16. If the resulting set is not empty (line 17), then the given steady state is
declared false. Otherwise the lines 13-21 are iterated with the frontier set and the
reached set being updated as in line 20 and 21. Function isFalseLoop() removes
all the type III steady states, because these steady states will always contain
one or more states with two possible immediate successors. All the other steady
states are simple loops and are reported genuine by this function.

3.1 Results

We have implemented our software, GenYsis in C++ using the CUDD soft-
ware package for BDD manipulation. To analyse the computational efficiency of
our methodology, we have tested GenYsis on a range of biological networks of
varying complexity. In Table 1 we report the time taken by GenYsis on these
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Algorithm 3. Computing all genuine Steady States

Input : Transition function T
Output: Steady state array SS[]

comp steady states()1

begin2

SS[] = all Steady States(T )3

for i = 0 to SS[].size() do4

if isFalseLoop(SS[i], T ) == false then5

report SS[i] as a genuine steady state6

end7

isFalseLoop(S,T )8

begin9

s0 = random path to 1 node(S)10

RS(0) ←− ∅, FS(0) ←− {s0}11

k ←− 012

while FS(k) �= ∅ do13

FS(k+1) = If (FS(k))(Vt+1 ← Vt)14

s′ = random path to 1 node(FS(k+1))15

FStemp = FS(k+1) ∧ s′16

if FStemp �= ∅ then17

/* false steady state */18

return true19

FS(k+1) = FS(k+1) ∧ RS(k)20

RS(k+1) = RS(k) ∨ FS(k+1)21

k ←− k + 122

/* genuine steady state */23

return false24

end25

Table 1. Computational results on some gene regulatory networks

Network Nodes Edges
Steady Number of

Memory
Time taken (in sec)

States Iterations Usage BDD const. Steady State Total

Th network 23 34 3 3 < 15 MB 0.001 0.04 0.041

network2 114 129 1 1 < 15 MB 0.03 0.001 0.031

network3 669 2710 4 10 < 17 MB 0.07 3.15 3.22

network4 1263 5031 1 1 < 57 MB 0.95 314.55 315.55

sample networks. The run time is divided into two parts: time taken to construct
BDD and time taken to compute steady states. We also measure the memory
requirements for each sample network when analysed by GenYsis. All the results
are reported on a 1.6 GHz machine running on linux operating system.
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In Table 1, we see that the networks with a size as big as 1263 nodes and
5235 edges can be analysed in less then 6 minutes by using GenYsis. Finding
all possible steady states for large network was not feasible with the previous
methodologies based on finding the characteristic state of all the feedback loops
in the network. Also, GenYsis follows a very intutive way to explore the state
space of the network rather then an indirect and difficult to comprehend way of
computing the characteristic state.

4 T Helper Cell Differentiation

The vertebrate immune system is constituted by diverse cell populations. Here,
we will focus in the CD4+ T lymphocytes known as T helper (Th) cells. These
cells conform a particularly suitable differentiation model, because there is a type
of precursors cells (Th0), which upon receiving an appropriate antigenic stimulus
in vitro, can be further differentiated into cytokine-secreting effector cells, either
Th1 or Th2 cells. At the molecular level, Th1 and Th2 cells can be distinguished
by their pattern of cytokine secretion, which are responsible for their central role
in cell mediated immunity (Th1 cells) and humoral responses (Th2 cells). Under-
standing the molecular mechanisms that regulate the differentiation process from
Th0 towards either Th1 or Th2 is very important, since an immune response bi-
ased towards the Th1 phenotype result in the appearance of autoimmune diseases,
and an enhanced Th2 response can originate allergic reactions [4,10].

There are several factors at the cellular and molecular levels that determine
the differentiation of T helper cells. Importantly, the cytokines present in the
cellular milieu play a key role in directing Th cell polarization. On the one hand,
IFN-γ, IL-12, IL-18 and IL-27 are the major cytokines that promote Th1 devel-
opment [11].And on the other hand, IL-4 is the major cytokine responsible for
driving Th2 responses. Besides this positive roles of cytokines in the differentia-
tion process, there exist also a mutual inhibitory mechanism. Specifically, IFN-γ
play a role in inhibiting the development of Th2 cells, whereas IL-4 inhibits the
appearance of Th1 cells. This interplay of positive and negative signals, at both
the cellular and molecular levels, creates a complexity that is very suitable for
analysis by the modeling approach.

Due to its physiological relevance, there are various mathematical models that
have been proposed for describing the differentiation, activation and proliferation
of T helper lymphocytes. Most of these models, however, focus on interactions
established among the diverse cell populations that somehow modify the dif-
ferentiation of Th cells [5,17]. Also, other modeling efforts have been aimed at
understanding the mechanism of the generation of antibody and T-cell recep-
tor diversity, as well as the molecular networks of cytokine or immunoglobulin
interactions [6,16].

Recently we published the first analyses on the gene regulatory network that
controls the differentiation process from Th0 to either Th1 or Th2 cells [8,7]. The
network (Fig 5) is made of 23 nodes, 26 positive and 8 negative interactions.
Importantly, the model does not need to be seen as metabolic pathway, or a
reaction network, but rather as an information processing network.
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Fig. 5. Th network. The regulatory network that controls the differentiation process
of t helper cells. Positive regulatory interactions are with pointed arrow head and
negetive interactions with round arrow head.

We already studied the dynamical behavior of the Th network using both
discrete and continuous approaches. Such studies permitted the identification of
all the stable states of the system. Specifically, the dynamical system obtained
from the network has three stable fixed points, which correspond to the patterns
of activation observed in normal Th0, Th1 and Th2 cells. Moreover, we were
able to modify the model so as to describe the patterns of expression of null
mutants, as well as constitutive-expression variants.

Central to our previous analyses is the use of the generalized logical analysis
[14,15] for the qualitative analysis of the dynamical properties of the system by
focusing on the feedback loops present in the network. Besides helping to under-
stand the Th network, the generalized logical analysis has been applied to other
regulatory networks, including those involved in organ differentiation control in
the flowers of Arabidopsis thaliana [9], and in the initiation of segmentation dur-
ing Drosophila melanogaster embryogenesis [12,13]. Despite its usefulness, the
generalized logical analysis has two main drawbacks. First, the computational
time needed to analyze all possible feedback loops in a network grows very fast,
so that it is not feasible to study large networks. And second, to study the
behavior of mutants, it is necessary to create alternative models where the pa-
rameters reflect the intended mutation, so that the number of models multiplies
by the number of intended mutants. Hence, an alternative, faster and more easily
scalable methodology is required for the study of the dynamical properties of bi-
ological networks. Our new approach of BDD representation for gene regulatory
networks, can provide an alternate way for efficiently analyzing feedback loops
in the network and perform in silico gene perturbation experiments. When we
apply GenYsis on the T helper cell network of Figure 5, we get the three wild
type steady states as listed in Table 2.
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Table 2. Steady state of the wild type and virtual knock-out of IFN-γ and IFN-γR

Knocked Genes Active genes in steady states

wild type
IFN-γ Tbet SOCS-1 IFN-γR

All the genes are inactive
GATA-3 IL-10 IL-10R IL-4 IL-4R STAT3 STAT6

IFN-γ−
Tbet SOCS-1

All the genes are inactive
GATA-3 IL-10 IL-10R IL-4 IL-4R STAT3 STAT6

IFN-γR−
IFN-γ Tbet SOCS-1

All the genes are inactive
GATA-3 IL-10 IL-10R IL-4 IL-4R STAT3 STAT6

These steady states correspond to the molecular profiles observed in Th0, Th1
and Th2 cells respectively. The first steady state reflects the pattern of Th0 cells,
which are precursor cells that do not produce any of the cytokines included in
the model (IFN-β, IFN-γ, IL-10, IL-12, IL-18 and IL-4). The second steady state
represents Th1 cells with high activation of IFN-γ, IFN-γR, T-bet and SOCS1.
Finally the third steady state corresponds to the activation observed in th2 cells,
with high level of activation of GATA-3, IL-10, IL-10R, IL-4, IL-4R, STAT3 and
STAT6. These results also match those published in [8]. GenYsis took only 0.04
seconds to compute these steady states.

In the literature, modeling of Th cell differentiation at the molecular level has
been shown to be very useful to bring insight into the origin of the unexpected
phenotypes. Previously [7], we made an explanation for the unexpected pheno-
typic similarity between IFN-γ and IFN-γR loss-of-function mutants (figure 5)
[26] [25]. Similarly, using our new BDD based methods we performed virtual
knock-out on both IFN-γ and IFN-γR (see Table 2) and compared it to the
unperturbed system (wild type). In the case of the IFN-γ knock-out, both the
IFN-γ and its receptor are removed from the identified steady state. However
when IFN-γR is knocked out, the steady state observed still contains the pro-
duction of IFN-γ. This is similar to what was obtained with the standard GLA
approach from [7], but GenYsis is 100x faster then latter.

5 Conclusion

This paper gives an efficient way for modeling the gene regulatory networks and
perform dynamic analysis on them. This new approach can model very efficiently
even the biggest regulatory networks available to the modeling community and
provide means to perform in silico experiments on them. The proposed method
has been applied on a T helper cell regulatory network. From the whole range of
experiments that were tested with GenYsis, we have reported in this paper, two
very interesting knock-outs which have been studied extensively by the mod-
elling community for a long time. In future, we will be extending GenYsis to
perform whole suite of in silico gene perturbation experiments including gene
over-expression and multiple perturbations.
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Abstract. Transcription factor (TF) binding to its DNA target site is
a fundamental regulatory interaction. The most common model used
to represent TF binding specificities is a position specific scoring ma-
trix (PSSM), which assumes independence between binding positions. In
many cases this simplifying assumption does not hold. Here, we present
feature motif models (FMMs), a novel probabilistic method for modeling
TF-DNA interactions, based on Markov networks. Our approach uses se-
quence features to represent TF binding specificities, where each feature
may span multiple positions. We develop the mathematical formulation
of our models, and devise an algorithm for learning their structural fea-
tures from binding site data. We evaluate our approach on synthetic
data, and then apply it to binding site and ChIP-chip data from yeast.
We reveal sequence features that are present in the binding specificities
of yeast TFs, and show that FMMs explain the binding data significantly
better than PSSMs.

Keywords: transcription factor binding sites, DNA sequence motifs,
probabilistic graphical models, Markov networks, motif finder.

1 Introduction

Precise control of gene expression lies at the heart of nearly all biological pro-
cesses. An important layer in such control is the regulation of transcription.
This regulation is preformed by a network of interactions between transcription
factor proteins (TFs) and the DNA of the genes they regulate. To understand
the workings of this network, it is thus crucial to understand the most basic
interaction between a TF and its target site on the DNA. Indeed, much effort
has been devoted to detecting the TF-DNA binding location and specificities.

Experimentally, much of the binding specificity information has been
determined using traditional methodologies such as footprinting, gel-shift anal-
ysis, Southwestern blotting, or reporter constructs. Recently, a number of high-
throughput technologies for identifying TF binding specificities have been
developed. These methods can be classified to two major classes, in vitro and
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in vivo methods. In vitro methods can further be classified to methods that se-
lect high-affinity binding sequences for a protein of interest (review in Elnitski
et al.[1]), and high-throughput methods that measure the affinities of specific
proteins to multiple DNA sequences. Examples of the latter class of methods
include protein binding microarrays [2] and microfluidic platforms [3], which
claim to achieve better measurement of transient low affinity interactions. The
in vivo methods are mainly based on microarray readout of either DNA adenine
methyltransferase fusion proteins (DamID) or of chromatin immunoprecipita-
tion DNA-bound proteins (ChIP-chip) [2]. However, despite these technological
advances, distilling the TF binding specificity from these assays remains a great
challenge, since in many cases the in vivo measured targets of a TF do not have
common binding sites, and in other cases genes that have the known and exper-
imentally determined site for a TF are not measured as its targets. For these
reasons, the problem of identifying transcription factor binding sites (TFBSs)
has also been the subject of much computational work [1].

The experimental and computational approaches above revealed TFBSs are
short, typically 6-20 base pairs, and that some degree of variability in the TFBSs
is allowed. For these reasons, the binding site specificities of TFs are described by
a sequence motif, which should represent the set of multiple allowed TFBSs for
a given TF. The most common representation for sequence motifs is the position
specific scoring matrix (PSSM), which specifies a separate probability distribu-
tion over nucleotides at each position of the TFBS. The goal of computational
approaches is then to identify the PSSM associated with each TF.

Despite its successes, the PSSM representation makes the very strong assump-
tion that the binding specificities of TFs are position-independent. That is, the
PSSM assumes that for any given TF and TFBS, the contribution of a nucleotide
at one position of the site to the overall binding affinity of the TF to the site
does not depend on the nucleotides that appear in other positions of the site. In
theory, it is easy to see where this assumption fails. Consider for example the
models described in Figure 1, if instead of the PSSM representation, we allowed
ourselves to assign probabilities to multiple nucleotides at multiple positions,
then we could use the same number of parameters to specify the desired TF
binding specificities. This observation lies at the heart of our approach.

From the above discussion, it should be clear that the position-independent
assumption of PSSMs is rather strong, and that relaxing this assumption may
lead to a qualitatively better characterization of TF motifs. Indeed, recent stud-
ies revealed specific cases in which dependencies between positions may exist,
[3]. In a more comprehensive study, Barash et al.[4] developed a Bayesian net-
work approach to represent higher order dependencies between motif positions,
and showed that these models predict putative TFBSs in ChIP-chip data with
higher accuracy than PSSMs. However, the Bayesian network representation,
due to its acyclicity constraints, imposes unnecessary restrictions on the mo-
tif structure, and its conditional probability distributions limit the number of
dependencies that can be introduced between positions in practice, due to the ex-
ponential increase in the number of parameters introduced with each additional
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Fig. 1. Comparison between FMMs and PSSMs in a toy example of a TFBS with 4
positions. (a) Eight input TFBSs that the TF recognizes. (b) A PSSM for the input
data in (a), showing its Markov network representation, probability distributions over
each position, and sequence logo. Note that the PSSM assigns a high probability to
CG and GC in positions 2 and 3 as expected by the input data, but it also undesirably
assigns the same high probability to CC and GG in these positions. (c) An FMM for
the input data in (a), showing the associated Markov network, with 3 features, and
sequence logo. Note that features f1 and f2 assign a high probability to CG and GC
in positions 2 and 3 but not to CC and GG in these positions, as desired.

dependency. While some of these issues may be addressed, e.g., using sparse
conditional probability distribution representations, Bayesian networks are not
the ideal and most intuitive tool for the task.

Here, we propose a novel approach to modeling TFBS motifs, termed feature
motif models (FMMs). Our approach is based on describing the set of sequence
properties, or features, that are relevant to the TF-DNA interactions. Intuitively,
the binding affinity of a given site to the TF increases as it contains more of the
features that are important for the TF in recognizing its target site. In our
framework, features may be binary (e.g., “C at position 2, and G at position
3”) or multi-valued (e.g., “the number of G or C nucleotides at positions 1-4”),
and global features are also allowed (e.g., “the sequence is palindromic”). Each
feature is assigned a statistical weight, representing the degree of its importance
to the TF-DNA interaction, and the overall strength of a TFBS can then be
computed by summing the contribution of all of its constituent features. We
argue that this formulation captures the essence of the TF-DNA interaction
more explicitly than PSSMs and other previous approaches. It is easy to see that
our FMMs contains in it the PSSM description, since a PSSM can be described
within our framework using four single nucleotide features per position.

In what follows, we provide the mathematical formulation of FMMs, and
devise an algorithm for learning FMMs from TFBSs data. This problem is quite
difficult, as it reduces to learning structure in Markov networks, a paradigm that
is still poorly developed. We evaluate our approach in a controlled synthetic
data setting, and demonstrate that we can learn the correct features even from
a relatively small number of positive examples. Finally, we apply our method
to real TFBSs for yeast TFs [5,6], and show several cases where our method
better explains the observed TFBS data and identifies motif sequence features
that span multiple positions. We identify global properties that are common to
the DNA sequence specificities of most TFs: TFBSs have strong dependencies
between positions; these dependencies mostly occur in the center of the site; and
dependencies typically exist between nearby positions in the site.
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2 The Feature Motif Model

We now present our approach for representing TF binding specificities. Much like
in the PSSM representation, our goal is to represent commonalities among the
different TFBSs that a given TF can recognize, and assign a different strength to
each potential site, corresponding to the affinity that the TF has for it. The key
difference between our approach and a PSSM is that we want to represent more
expressive types of motif commonalities compared to the PSSM representation,
in which motif commonalities can only be represented separately for each posi-
tion of the motif. Intuitively, we think of a TF-DNA interaction as one that can
be described by a set of sequence features, such as pairs or triplets of nucleotides
at key positions, that are important for the interaction to take place: the more
important features a specific site has, the higher affinity it will have for the TF.

One way to achieve the above task is to represent a probability distribution
over the set of all sequences of the length recognized by the given TF. That is, for
a motif of length L, we represent a probability distribution over all 4L possible
L-mer sequences. Formally, we wish to represent a joint probability distribution
P (X1, . . . , XL), where Xi is a random variable with domain {A, C, G, T } corre-
sponding to the nucleotide at the i-th position of the sequence. However, rather
than representing this distribution using the prohibitively large number of 4L−1
independent parameters, our goal is to represent this joint distribution more
compactly in a way that requires many fewer parameters but still captures the
essence of TF-DNA interactions. The PSSM does exactly this, but it forces the
form of the joint distribution to be decomposable by positions. Barash et al.[4]
presented alternative representations to the PSSM, using Bayesian networks,
that allow for dependencies to exist across the motif positions. However, as dis-
cussed above, the use of Bayesian networks imposes unnecessary restrictions and
is not natural in this context.

A more natural approach that can easily capture our above desiderata is
the framework of undirected graphical models, such as Markov networks or log-
linear models, which have been used successfully in an increasingly large number
of settings. As it is more intuitive for our setting, we focus our presentation on
log-linear models. Let X = {X1, . . . , XL} be a set of discrete-valued random
variables. A log-linear model is a compact representation of a probability distri-
bution over assignments to X . The model is defined in terms of a set of feature
functions fk(Xk), each of which is a function that defines a numerical value for
each assignment xk to some subset Xk ⊂ X . Given a set of feature functions
F = {fk}, the parameters of the log-linear model are weights θ = {θk : fk ∈ F}.
The overall joint distribution is then defined as:

P (x) =
1
Z

exp

⎛

⎝
∑

fk∈F

θkfk(xk)

⎞

⎠ , where Z =
∑

x∈X

exp

⎛

⎝
∑

fk∈F

θkfk(xk)

⎞

⎠ (1)

is the partition function that ensures that the distribution P is properly nor-
malized (i.e.,

∑
x∈X P (x) = 1), and xk is the assignment to Xk in x. Although
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we chose the log-linear model representation, we note that it is in fact equiva-
lent to the Markov network representation, and the mapping between the two is
straightforward. We now demonstrate how we can use this log-linear model rep-
resentation in our setting, to represent feature-based motifs. We start by showing
how PSSMs can be represented within this framework.

Representing PSSMs. Recall that a PSSM defines independent probability
distributions over each of the L positions of the motif. To represent PSSMs in
our model, we define 4 features fiJ for each position that indicate whether a
specific nucleotide J ∈ {A, C, G, T } exists at a specific position 1 ≤ i ≤ L of the
TFBS. We associate each feature with a weight θiJ that is equal to its marginal
log probability over all possible TFBSs. It is easy to show that putting this into
Equation 1 defines the exact same probability distribution as of the PSSM, and
that the partition function as defined in Equation 1 is equal to 1 in this case.

Representing Feature Motifs. Given a TF that recognizes TFBSs of length
L, our feature-based model represents its motif using the log-linear model of
Equation 1, where each feature fk corresponds to a sequence property that may
be defined over multiple positions. As an example for a feature, consider the
indicator function: ‘C’ at position 2 and ‘G’ at position 3, as in Figure 1c. This
feature illustrates our ability to define features over multiple positions. Although
our results focus on indicators of single or pair of nucleotide features, we note that
continuous and even global features (such as G/C content) can easily be defined
within our model. We then associate each feature with a weight, θk, that defines
its importance to the TF-DNA binding affinity. Given a sequence, we can now
compute its probability using Equation 1, which boils down to summing the value
of all the features present in the sequence, each multiplied by its respective weight
parameter, and exponentiating and normalizing this resulting sum. Intuitively,
this model corresponds to identifying which of the features that are important
for the TF-DNA interaction are present in the sequence, and summing their
contributions to obtain the overall affinity of the TF to the site. This intuitive
model is precisely the one we set out to obtain.

3 Learning Feature Motif Models

In the previous section, we presented our feature-based model for representing
motifs. Given a collection of features F , our method uses the log-linear model
to integrate them, as in Equation 1. As we showed, the standard PSSM model
can be represented in our framework. However, our motivation in defining the
model was to allow for integration of other features, that may span multiple
positions. A key question is how to select the set of features for a given model.
In this section, we address this problem. Since log-linear models are equivalent
to Markov networks, our problem essentially reduces to structure learning in
Markov networks. This problem is quite difficult, since even the simpler problem
of estimating the parameters of a fixed model does not have an analytical closed
form solution. Thus, the solutions proposed for this problem have been various
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heuristic searches, which incrementally modify the model by adding and deleting
features to it in some predefined scheme [7,8].

We now present our algorithm for learning a feature-based model from TFBSs
data. Our approach follows the Markov network structure learning method of
Lee et al.[8]. It incrementally introduces (or selects) features using the grafting
method of Perkins et al.[9]. We first present the simpler task of estimating the
parameters of a given model, as this is a sub-problem that we need to solve when
searching over the space of possible network structures.

3.1 Parameter Estimation

For the parameter estimation task, we assume that we are given as input a
dataset D = {x[1], . . . , x[N ]} of N aligned i.i.d TFBSs, each of length L, and
a model M defined by a set of sequence features F = {f1, . . . , fk}. Our goal is
to find the parameter vector θ = {θ1, . . . , θk} that specifies a weight for each
feature fi ∈ F , and maximizes the log-likelihood function:

log P (D | θ, M) =
N∑

i=1

log P (x[i] | θ, M) =
N∑

i=1

∑

fk∈F

θkfk(x[i]k) − N log Z (2)

where x[i]k corresponds to the nucleotides of the i-th TFBS at the positions
relevant to feature k, and Z is the partition function as in Equation 1. It can
easily be shown that the gradient of Equation 2 is:

∂ log P (D | θ, M)
∂θk

=
N∑

i=1

fk(x[i]k) − N
1
Z

∂Z

∂θk
(3)

Although no closed-form solution exists for finding the parameters that maximize
Equation 2, the objective function is concave, and we can thus find the optimal
parameter settings using numerical optimization procedures such as gradient
ascent or conjugate gradient [10]. We now deal with optimizing Equation 2.

3.2 Optimization of the Objective Function

Applying numerical optimization procedures such as gradient ascent requires the
computation of the objective function and the gradient with respect to any of
the θk parameters. Although the fact that the objective function is concave, and
that both the function and its gradient have simple closed forms may make the
parameter estimation task look simple, in practice the computing them may be
quite expensive. The reason is that the second terms of both the function and
the gradient involve evaluating the partition function, which requires, in a naive
implementation, summing over 4L possible TFBSs sequences.

Since algorithms for learning Markov networks usually require computation
of the partition function, this problem was intensively researched. Although in
some cases the structure of the features may be such that we can decompose the
computation to achieve efficient computation, in the general case it can be shown
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to be a NP-hard problem and hence requires approximation. Here we suggest
a novel strategy of optimizing the objective function. We first use the (known)
observation that the gradient of Equation 2 can also be expressed in terms of
features expectations. Specifically, since

1
Z

∂Z

∂θk
=

∑
x∈X fk(xk) exp

(∑
fk∈F θkfk(xk)

)

∑
x∈X exp

(∑
fk∈F θkfk(xk)

) = EP∼θ(fk(xk)), (4)

we can rewrite Equation 3 as:

∂ log P (D | θ, M)
∂θk

=
N∑

i=1

fk(x[i]k) − NEP∼θ(fk(xk)). (5)

We further observed that since Equation 2 is a concave function, its absolute
directional derivative along any given line in its domain is also a concave function.
We used this observation to use the conjugate gradient function optimization
algorithm [10] in a slightly modified version: Although the gradient that was
given to the algorithm was indeed as in Equation 5, the function value along
every line search step of the algorithm was the absolute directional derivative
along this line. For example, at the line search step along direction y our function
F �(θ, y) value is: F �(θ, y) = | < ∇ log P (D | θ, M), y > |.

Following the above strategy allows us to optimize Equation 2 without com-
puting its actual value. Specifically, it means that we can optimize our objective
without computing the partition function. Instead, the problem reduces to eval-
uating feature expectations, a special case of inference in Markov networks, that
can be computed using algorithms such as loopy belief propagation [11]. The abil-
ity of these algorithms to give an exact result depends on the underlying network
structure. As the network structure becomes more complex, the algorithms need
to use approximations. Since this family of algorithms can also approximate the
partition function, our method will be similar to methods that evaluate the par-
tition function when the network structure allows for exact inference. However,
as the error bounds for approximate inference are better characterized then the
error bounds of partition function estimations, it is possible that our approach
may work better under conditions that require approximation.

3.3 Learning the Features

In Section 3.1, we developed our approach for estimating the feature parameters
for a fixed model in which the feature set F is defined. We now turn to the
more complex problem of automatically learning the set of features from aligned
TFBSs data. This problem is an instance of the more general problem of learn-
ing the structure of Markov networks from data. However, quite surprisingly,
although Markov networks are used in a wide variety of applications, there are
very few effective algorithms for learning Markov network structure from data.

In this paper we followed the Markov network structure learning approach sug-
gested by Lee et al.[8]. This approach extends the learning approach of Perkins
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et al.[9] to learning the structure of Markov networks using the L1-Regularization
over the model parameters. To incorporate the L1-Regularization into our model
we need to introduce a Laplacian parameter prior over each feature, leading to
the modified objective function:

log P (D, θ | M) = log P (D | θ, M) + log P (θ | M) (6)

where P (θ | M) =
(

α
2

)|F |
exp

(
−

∑
fk∈F α|θk|

)
and log P (D | θ, M) is the data

likelihood function as in Equation 2. Taking the log of this parameter prior and
eliminating constant terms, we arrive at the final form of our objective function:

log P (D, θ | M) =
N∑

i=1

∑

fk∈F

θkfk(x[i]k) − N log Z − α
∑

fk∈F

|θk| (7)

It is easy to see that this modified objective function is also concave in the feature
parameters θ and we can thus optimize it using the same conjugate gradient
procedure described in Section 3.1. We then follow the grafting approach of
adding features in a stepwise manner. In each step, the algorithm first optimizes
the objective function relative to the current set of active features F , and then
adds the inactive feature fi /∈ F with the maximal gradient at θi = 0. Using an
L1-Regularized concave function provides a stopping criteria to the algorithm
that leads to the global optimum [9]. The L1-Regularization has yet another
desirable quality for our purpose, as it has a preference for learning sparse models
with a limited number of features [8]. It has long been known to have a tendency
towards learning sparse models, in which many of the parameters have weight
zero [12] and theoretical results show that it is useful in selecting the features that
are most relevant to the learning task [13]. Since the grafting feature addition
method is a heuristic, it seems reasonable that features that were added at an
early stage may become irrelevant at later stages, and hence get a zero weight.
We thus introduce an important difference from the method of Lee et al., by
allowing the removal of features that become irrelevant.

4 Experimental Results

We now present an experimental evaluation of our approach. We first use syn-
thetic data to test whether our method can reconstruct sequence features that
span multiple positions when these are present, and then compare the ability of
our approach to learn binding specificities of yeast TFs to that of PSSMs.

4.1 Synthetic Data

To evaluate our models in a controlled setting, we manually created three FMMs
(Figure 2) of varying weights and features, and learned both PSSM and FMMs
from TFBSs that we sampled from them. We evaluated the learned models by
computing the log-likelihood that the learned models assign to a test set of 10,000

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Feature-Based Approach to Modeling Protein-DNA Interactions 85

-8

-6.2

-6.56

-6.92

-7.28

-7.64

-7.3

-3.75

-4.46

-5.17

-5.88

-6.59

-10.55

-8.15

-8.63

-9.11

-9.59

-10.07

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

Training Likelihood Test Likelihood KL Distance

0-12.5

-10

-10.5

-11

-11.5

-12

-9

-7.4

-7.72

-8.04

-8.36

-8.68

-8

-4.35

-5.08

-5.81

-6.54

-7.27

-2

2.75

2.2

1.65

1.1

0.55

0

2.4

1.92

1.44

0.96

0.48

0

-2.4

1.92

1.44

0.96

0.48

Num. of instances Num. of instances Num. of instances 

True model

Learned model

Learned PSSM

Model

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

4.1

2.492.49

6

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

1.82.4

1.80.75

1.35

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

5.564.46

2.672.37

2.64 4.82 8.36 3.59

4.58 2.35 7.85 2.51
3.36

4.892.49

-8

-6.2

-6.56

-6.92

-7.28

-7.64

-8

-6.2

-6.56

-6.92

-7.28

-7.64

-7.3

-3.75

-4.46

-5.17

-5.88

-6.59

-7.3

-3.75

-4.46

-5.17

-5.88

-6.59

-10.55

-8.15

-8.63

-9.11

-9.59

-10.07

-10.55

-8.15

-8.63

-9.11

-9.59

-10.07

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

Training Likelihood Test Likelihood KL Distance

0-12.5

-10

-10.5

-11

-11.5

-12

-12.5

-10

-10.5

-11

-11.5

-12

-9

-7.4

-7.72

-8.04

-8.36

-8.68

-9

-7.4

-7.72

-8.04

-8.36

-8.68

-8

-4.35

-5.08

-5.81

-6.54

-7.27

-8

-4.35

-5.08

-5.81

-6.54

-7.27

-2

2.75

2.2

1.65

1.1

0.55

-2

2.75

2.2

1.65

1.1

0.55

0

2.4

1.92

1.44

0.96

0.48

0

2.4

1.92

1.44

0.96

0.48

0

-2.4

1.92

1.44

0.96

0.48

0

-2.4

1.92

1.44

0.96

0.48

Num. of instances Num. of instances Num. of instances 

True model

Learned model

Learned PSSM

True model

Learned model

Learned PSSM

Model

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

4.1

2.492.49

6

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

4.1

2.492.49

6

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

1.82.4

1.80.75

1.35

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

1.82.4

1.80.75

1.35

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

1.82.4

1.80.75

1.35

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

5.564.46

2.672.37

2.64 4.82 8.36 3.59

4.58 2.35 7.85 2.51
3.36

4.892.49

X
1

X
2

X
3

X
5

X
4

X
6

X
7

X
8

5.564.46

2.672.37

2.64 4.82 8.36 3.59

4.58 2.35 7.85 2.51
3.36

4.892.49

Fig. 2. Evaluation of our approach on synthetic data. Results are shown for three
manually constructed model, from which we drew samples and constructed FMMs and
PSSMs. For each model, shown is its Markov network and sequence logo (left), training
and test log-likelihood (average per instance for the true model, and learned FMM and
PSSM) and KL-distance of the learned FMM and PSSM models from the true model
(train likelihood error bars were excluded for clarity).

unseen TFBSs sampled from the true model, and by computing the Kullback
Leibler (KL) distance between distributions of the true and learned models.

We evaluated two specific aspects of our approach: the minimum number
of samples needed for learning FMMs, and the dependency of the learning on
the prior weighting parameter, α. In all experiments, we limited the FMM to
structures that allow exact inference using belief propagation algorithm [11].
While this poses constraints on the underlying network, learning more complex
models also gave good performance, since the most important features were still
learned. We repeated each experiment setting 3 times.

We first tested the effect of the prior weight parameter α on the quality of
the learning reconstruction. To this end, we varied α in the range of 10−6 to
100, while using a fixed number of 500 input sequences. The results showed
that in the range tested, the best reconstruction performance was achieved for
α = 0.1. While smaller values tend to allow over fitting, higher values pose harsh
constraints on the learned model.

Second, we estimated the minimum number of samples needed for learning
FMMs, by sampling different training set sizes in the range of 10-500. As can
be seen in Figure 2, for all three cases, our model reconstructs the true model
with high accuracy even with a modest number of 50 input TFBSs, reconstructs
the true model nearly perfectly with 100 or more samples. As expected, since
the true model includes dependencies between positions, our model significantly
outperforms the PSSM in these cases even when only 20 input sites were used.
In these experiments, we fixed the prior weight parameter to 0.1. Examining the
learned features, we found that for a sample size of 20 or more, only features that
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Fig. 3. Evaluating our approach on real TFBSs from yeast. (a) Train (green points) and
test log-likelihood (blue bars), shown as the mean and standard deviation improvements
in the average log-likelihood per instance compared to a PSSM. Each model was learned
from the TFBSs reported by MacIsaac06 et al. in a 5-fold cross validation scheme.
Models that were constrained to allow exact inference are marked with a red star. (b)
Markov network representation of the dominant features of the FMM model learned
for RTG3. (c) Sequence counts for positions 3 and 4 of the input TFBSs of RTG3. (d,e)
Same as (b,c), for strong feature relations learned for the STE12 TF.

appeared in the true model were learned with significant weight. Our results thus
show that we can successfully learn FMMs, even in a realistic setting in which
only a limited number of input TFBSs is available.

4.2 Identifying Binding Features of Yeast TFs

Having validated our approach on synthetic data, we next applied it to TFBSs
data for yeast TFs. Our goal is to identify whether FMMs can better describe
the sequence specificities of yeast TFs. As input to our method, we used the
high-quality TFBSs data reported by MacIsaac et al.[6]. This dataset consists of
16371 regulatory TF-binding site interactions, where each interaction reported
is one in which the TF is bound to the promoter region containing the TFBS
as determined by the ChIP-chip assays of Harbison et al.[5], and the TFBS
has a good match to the PSSM reported for the corresponding TF. While this
dataset is quite comprehensive, it is in fact a very stringent test for our method,
since each reported TFBS is required to have a relatively good match to the
PSSM, a property that we do not necessarily expect from sequences that are
well explained by our feature motif models.

We used a five fold cross validation scheme to test whether FMMs can better
explain yeast TFBSs. We took 69 TFs of length ≤ 12 and at least 30 TFBSs
and learned for each a model from the training set. Models of length greater
then 8 were constrained to allow exact inference as in Section 4.1. As a measure
of success, we computed for each motif, the average and standard deviation
of the five test sets average log likelihood. Using this criterion, we compared
the results of applying our model to that of applying the PSSM model to the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Feature-Based Approach to Modeling Protein-DNA Interactions 87

same input data. The results are shown in Figure 3(a). As can be seen, FMMs
better explained the TFBSs data of 60 of the 69 TFs (86%). In 34 of the 69
(49%) cases, the probability that our model gave to each TFBS in the test data
was, on average, more than twice the probability assigned by the PSSM. We
note that although the results of the constrained model were slightly weaker
(66%, and 33% respectively) they are still relatively good. Taken together, these
results demonstrate that TFBSs data can be better characterized by feature
motif models compared to PSSMs, and that the position independent assumption
of the PSSM model does not hold in many cases and can thus poorly represent
the binding affinities of many TFs.

We next turned to examine the actual features that we identified and test
their biological significance. To this end, we first examined the models learned
for each of the 69 TFs, by extracting the dominant features learned and observ-
ing the counts of these features in the original input TFBS data. Two examples
of such a model examination are shown in Figure 3(b-e). The leucine zipper TF
RTG3, an activator of the TOR growth pathway, represents one case in which
our model provides insight into its binding specificity, and in which we can clearly
understand why the PSSM model fails. For this TF, our model assigns a prob-
ability that, on average per test-set TFBS, is more than 20 times greater than
the corresponding probability assigned by the PSSM. Examining the dominant
features of the model reveals that the two most dominant features were defined
over positions 3 and 4. Each one of these features gives high weight to either
“GA” or “TG” at thess positions. Strikingly, the counts of these two features in
the original input data were 79 and 81 (out of 173 TFBSs), respectively. Clearly,
the PSSM model completely misses this. These results suggest that RTG3 may
have two distinct types of TFBSs, one with a “TG” in positions 3 and 4 and
another with “GA” in these positions. This hypothesis is consistent with a study
by Rothermel et al.[14] showing that RTG3 contains at least two independent
activation domains, which may interact with different co-factors, leading to two
different binding modes.

The STE12 TF, an activator of the mating or pseudohyphal growth pathways, is
another intriguing example where our model provides insight into the specificity
of the corresponding TF. Of all the 994 TFBSs of STE12 in the input data, 54
have a ‘T’ in position 6. Of these, 53 have the exact full TFBS of ‘TGAAATA’. In
other words, if a ‘T’ appears in position 6 of the TFBS, it fully determines the re-
maining basepairs of the site. As can be seen in Figure 3(d,e), our model captures
this property, by learning six features with high weights that each contained a ‘T’
in position 6, and one of the other positions as the second position. This result is
consistent with reports in the literature that the specificity of STE12 can change,
depending on its interaction with other regulators [15]. This TFBS is also an exam-
ple where a simple Bayesian network representation of the site would not be able
to compactly represent the site, since position 6 would have to be a parent of each
of the other positions, thereby placing constraints (due to acyclicity) on the types
of features that could be learned between the positions when ‘T’ is not present in
position 6, and in any case requiring many parameters for the representation. A
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Fig. 4. Biological significance of FMMs. (a) TFBSs of yeast TFs with particular fea-
tures are enriched for specific GO functional categories. (b) Same as (a) for enrichment
in protein-DNA interactions that we compiled from 10 different studies. (c) Average
weight of features that span 2 positions, across FMM models learned for all yeast TFs
with L = 8 (d) ‘Consensus’ properties of correlations between positions in the sequence
specificities of TFs, compiled based on (c).

mixture model, which is one of the options presented Barash et al.[4] would work
here, but learning it from the data might be challenging.

To further and globally characterize the biological significance of the feature
motif models learned, we took the dominant features of each of the 69 models
learned, and partitioned the TFBSs into two sets, based on the presence of each
of the features. By mapping the sites back to the promoters in which they were
identified, we could partition the genes regulated by each TF into genes that
have TFBS of the TF and have the examined feature, and genes that don’t
have TFBS that have the feature. We used the hypergeometric distribution to
compute a p-value for an enrichment of the partition to various features. In all
enrichment tests we took p < 0.01 to be significant, corrected the results by FDR,
and presented the best enrichment for each TF. We first tested for enrichment
in functional categories from the Gene Ontology (GO) database. The results
are shown in Figure 4(a). These results suggest that particular features of the
TFBS of each TF may be important for its ability to regulate one specific class
of genes. Second, we ran the same enrichment tests using a database of 346
protein-DNA interactions that we compiled from 10 different ChIP-chip studies.
The top enrichments in this case, shown in Figure 4(b), suggest hypotheses
on the cooperation between other proteins and specific types of the TFBS of
the TF as characterized by the enriched feature. Since the data include protein-
DNA interactions measured in various conditions [5], some enrichments represent
TFBSs that are bound by the corresponding TF only in some conditions.
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Finally, we used our resulting models to gain insights into the global prop-
erties of binding specificities of all yeast transcription factors. To this end, we
collected all the dominant features that we learned across all 8 length models,
and computed the average weight of features that were learned between each pair
of positions of the TFBS. The comparison of this average weight for each com-
bination of positions is shown in Figure 4(c). Intriguingly, although this average
represents many different TFs, two prominent signals emerge. First, the strongest
dependencies between features exist between features positioned in the center of
the site. Second, nearby positions tend to have a higher dependency compared
to dependencies that exist between distant positions. From these results, we
compiled a general ‘consensus’ model for representing the dependencies between
positions in the TFBSs of the yeast transcription factors, shown in Figure 4(d).
Thus, our model provides insights into global properties that are characteristics
of TFBS specificities across all yeast TFs.

4.3 Application of FMM to Motif Finder

As a natural extension of our FMM approach, we integrated our FMM model
into a basic motif finder application. Our motif sampler takes as input a set of
positive sequences, and a set of negative sequences. The algorithm searches for
a motif of length L that maximizes the sum of the log-probabilities of the best
TFBSs for each positive input sequence. The algorithm works in an iterative
manner. It first searches for a sequence of length L that maximizes the ratio be-
tween the fractions of positive sequences and of negative sequences that contain
it up to one mismatch. It then initializes a model from these L-length sequences
that appear in the positive set. Following this initialization, we then use the
Expectation Maximization (EM) algorithm to optimize the model. In the “E”
step the motif finder selects the maximum likelihood TFBS from each positive
sequence, while in the “M” step it learns a new model from these selected se-
quences. The algorithm stops after convergence is reached or after a maximal
number of “EM” steps. After finding a motif, the algorithm removes from each
sequence the highest likelihood TFBS, and then searches for a new motif.

Although our motif finder does not yet integrate all the state of the art
methodologies for motif finding, we use it to provide an example for the po-
tential of using FMMs instead of PSSMs for the motif finding task. Specifically,
we took the 177 sets of at least 25 sequences each, that bind a TF under a
specific condition according to the data of Harbison et al.[5] as positive sets,
and the rest of the sequences as negative set. We used a 5-fold cross validation
scheme to evaluate the motif finder using either FMM or PSSM as the motif
model. In these runs we used half of the background as input and half for eval-
uation. We evaluated the performance of the results by evaluating the sum of
log-probabilities of the best TFBS for both the positive sequence test set, and
for the held out set of background sequences, and compared the difference of
the two. For this evaluation, we used the best of motifs number 2 to 5 that the
motif finder outputs. As the results presented in Figure 5 show, even with this
relatively basic motif finder, in 133 of the 177 (75%) positive sets tested, we
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Fig. 5. Motif finder results. (a) The difference between the test average log-likelihood
and the background average log-likelihood for the best FMM model (stars), and the
difference between this value and the similar value using the best PSSM model (bars).
(b) Markov network representation of the dominant features of the best FMM model
learned for NRG in High H2O2 conditions. (c) PSSM representation of NRG TFBS
from Harbison et al.

found motifs that gave better average likelihood on the held out positive test set
compared to the PSSMs that were learned. Since we used the same framework
for learning both the FMM and PSSM models, these results show the potential
of our FMM models for the motif finding task, and suggest that combining them
within advanced motif finding schemes may yield improved results. An example
of FMM motif learned is presented in Figure 5 (b). Comparing it to the PSSM
of Harbison et al. reveals many similarities (the FMM resembles the comple-
mentary of the PSSM), though the FMM also describes some multi-positional
features.

5 Conclusion

In this paper we presented feature motif models (FMMs), a novel probabilistic
method for modeling the binding specificities of TFs. We presented the mathe-
matical foundations of FMMs and showed their advantage over PSSMs in learn-
ing motifs from both synthetic and real data. We demonstrated the benefits
of using undirected graphical models (Markov networks) for representing im-
portant features of TF binding specificities, and suggested a methodology to
learn such features from both aligned and unaligned input sequences. We also
suggested a methodology for optimizing the objective function, that may give
better performance under settings that require approximation.

There are several directions for refining and extending our approach. First,
expanding the network structure in which we preform exact inference, and im-
proving our approximate inference abilities, will greatly increase the power of
our models. Second, integrating our model into a state of the art (rather than
basic) motif finder algorithms may allow us to improve upon existing approaches
to the task. Finally, using our models as an improved basic building block, we
can integrate it into higher level regulatory models (e.g., [16]) and obtain a much
better quantitative understanding of the underlying principles of transcriptional
regulatory networks.
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Abstract. The study of biological networks and network motifs can
yield significant new insights into systems biology. Previous methods of
discovering network motifs – network-centric subgraph enumeration and
sampling – have been limited to motifs of 6 to 8 nodes, revealing only
the smallest network components. New methods are necessary to identify
larger network sub-structures and functional motifs.

Here we present a novel algorithm for discovering large network motifs
that achieves these goals, based on a novel symmetry-breaking technique,
which eliminates repeated isomorphism testing, leading to an exponen-
tial speed-up over previous methods. This technique is made possible by
reversing the traditional network-based search at the heart of the algo-
rithm to a motif-based search, which also eliminates the need to store
all motifs of a given size and enables parallelization and scaling. Ad-
ditionally, our method enables us to study the clustering properties of
discovered motifs, revealing even larger network elements.

We apply this algorithm to the protein-protein interaction network
and transcription regulatory network of S. cerevisiae, and discover sev-
eral large network motifs, which were previously inaccessible to existing
methods, including a 29-node cluster of 15-node motifs corresponding to
the key transcription machinery of S. cerevisiae.

1 Introduction

1.1 Network Motifs

In the past decade, new technologies have enabled the observation and study of
networks of thousands and millions of nodes, such as social networks, computer
networks, and, notably, biological networks, including protein-protein interaction
networks [4,5,6], genetic regulatory networks [12,18], and metabolic networks [7].
In order to extract meaningful information from these vast and sometimes noisy
datasets, it is necessary to develop methods of computational analysis that are
both efficient and robust to errors in the underlying data.

Network motifs – patterns of connectivity that occur significantly more fre-
quently than expected – were introduced by Milo et al. [18] and provide one such
robust property of biological networks. Network motifs also provide an important
tool for understanding the modularity and the large-scale structure of networks

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 92–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Network Motif Discovery 93

[8,13,20,25]. The importance of network motifs as information-processing modules
has been modeled theoretically [12,21] and verified experimentally [8,13,20,25].
Network motifs also have numerous other applications: they have been used to
classify networks into “superfamilies” [17], they have been used in combination
with machine learning techniques to determine the most appropriate network
model for a given real-world network [16], and they have been used to determine
which properties to use in parsimony models of phylogeny [19].

Unfortunately, all of these applications are hampered by the limited size of
motifs discoverable by current methods. Exact counting methods have only been
reported to find motifs up to 4 nodes [18] and motif generalizations up to 6
nodes [10]. Subgraph sampling methods have found motifs up to 7 [9] and 8
nodes [1,16]. The statistical measures developed by Ziv et al. [26] are an impor-
tant step towards larger network structures, but unfortunately lack a one-to-one
correspondence with subgraphs, making them potentially difficult to interpret.
Motif generalizations [10] are another important step towards these goals, al-
though current methods are still limited to finding motif generalizations of only
6 nodes.

This current size limitation leaves many fundamental questions unanswered,
and significant additional insight could be gained by exploring larger subgraphs
and finding larger motifs. [1,10]. We should not expect a priori that the building
blocks of complex networks are as small as 4 nodes, or that the largest significant
structures and pathways contain only 8 nodes. What are the fundamental build-
ing blocks? How do they combine to form larger structures? [1,10] Do networks
which share the same building blocks also share the same combinations of these
blocks? [10] How can larger structures be used to distinguish between networks
of different types, or between proposed models for a given network? [1]

In this paper, we present a new approach for discovering network motifs. The
heart of our algorithm exhaustively assesses the significance of a single query
subgraph as a potential motif. This can then be applied to all subgraphs of a
given size to emulate the behavior of previous exhaustive algorithms, but with an
exponential speed-up due to a novel symmetry-breaking technique (which
is not feasible with previous methods). The symmetry-breaking technique also
allows us to write instances of a subgraph to disk as they are found, further
eliminating limitations due to memory usage. We are thus able to find
motifs of up to 15 nodes, to find all instances of subgraphs of 31 nodes, and
potentially even larger subgraphs. Although this work is motivated by biological
networks, and this paper focuses on the protein-protein interaction (PPI) net-
work and the transcription network of S. cerevisiae, our methods are applicable
to any network – directed or undirected – and thus to many different fields, even
outside the realm of biology.

In this section, we review previous work and give an overview of our algo-
rithm, outlining several novel techniques which apply both to our approach and
to previous approaches. In Sec. 2 we present our algorithm in detail. In Sec. 3
we present benchmarks comparing our approach to previous approaches. Addi-
tionally, we present data as to the effectiveness of the resulting improvements as
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applied to both the transcription and PPI networks of S. cerevisiae. In Sec. 4,
we present some of the larger subgraphs we have discovered. Finally, in Sec. 5 we
discuss the significance of these contributions for the understanding of networks
in general.

1.2 Limitations of Network-Centric Approaches for Motif Discovery

Two basic techniques have been proposed for identifying network motifs: exact
counting [18] and subgraph sampling [1,9,16]. These methods attempt to de-
termine the significance of all or many subgraphs of a given size by comparing
their frequency in a given network to their frequency in a random ensemble of
networks with similar properties to the original. To determine which subgraphs
are motifs, subgraph sampling [1] is an effective and efficient approach, and has
been used to evaluate the significance of larger subgraphs than can be evaluated
by the exact counting method.

Most methods for finding DNA sequence motifs scan or sample a sequence pat-
tern from a genome. Similarly, previous techniques for finding network motifs
scan or sample subgraphs from a network, and count the number of occurrences
of each subgraph encountered. (This process is then repeated for each network
in a random ensemble resembling the initial network, and the counts are com-
pared.) For the discovery of DNA sequence motifs, this general methodology is
very efficient, because sequence motifs can be efficiently hashed based on their
content. Thus a single linear scan of the genome suffices to exhaustively count
all possible substrings of a given size, regardless of the size of the substrings.

In contrast, for the discovery of network motifs, enumerating all subgraphs of
a given size is in general exponential in the number of nodes of the subgraphs.
Additionally, there is no known efficient algorithm that correctly identifies two
graphs as isomorphic or not. (The graph isomorphism problem is not known to be
either in P or to be NP-complete.) This intrinsic difference in complexity between
discovering sequence motifs and discovering network motifs makes traditional
network-scanning methodologies inefficient for network motif discovery.

1.3 Distinguishing Features of the New Algorithm

To avoid these limitations of the traditional network-centric approaches, we have
taken a motif-centric approach which has several attractive features, outlined
here. Features 1-3 are specific to motif-centric methods, while features 4 and 5
can also benefit traditional network-centric methods.

(1) Searching for a single query graph. To avoid the increased complexity of
subgraph enumeration (in the absence of an appropriate hashing scheme) our al-
gorithm works by exhaustively searching for the instances of a single query graph
in a network. (To find all motifs of a given size we couple this search with sub-
graph enumeration, using McKay’s geng and directg tools [15]). Even though
the subgraph isomorphism problem – finding a given graph as a subgraph of a
larger network – is known to be NP-complete, several algorithmic improvements
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enable this search to be carried out effectively in practice, even for subgraphs
up to 31 nodes (and potentially even more).

(2) Mapping instead of enumerating. Rather than enumerating all connected
subgraphs of a given size and testing to see whether each is isomorphic to the
query graph, our algorithm attempts to map the query graph onto the network
in all possible ways. We developed this technique for subgraph isomorphism
independently, but subsequently identified a prior use [23].

(3) Taking advantage of subgraph symmetries. We introduce a technique that
avoids spending time finding a subgraph more than once due to its symmetries.
This technique improves the speed of our method by a factor exponential in the
size of the query subgraph (Table 1). Moreover, since each instance is discovered
exactly once, our algorithm can write instances to disk as they are found, greatly
improving memory usage.

(4) Improved isomorphism testing. Our isomorphism test takes into account
the degree of each node, and the degrees of each node’s neighbors, leading to
marked improvements over current motif-finding algorithms, which use exhaus-
tive graph isomorphism tests.

(5) Subgraph hashing. When examining all subgraphs of a given size we hash
the graphs based on their degree sequences, which leads to a significant im-
provement in the number of isomorphism tests needed. In a directed network,
we group the query graphs based on their undirected isomorphism types, find all
instances, and then go back to the directed network and divide these instances
into their directed isomorphism types.

2 Description of the Algorithm

For clarity, we first present the basic mapping algorithm for subgraph isomor-
phism, without taking into account the symmetries of the query graph. In Sec. 2.2
we incorporate our symmetry-breaking technique into the algorithm. In the
pseudo-code, we identify statements used solely for symmetry-breaking by en-
closing them in square brackets. Finally, In Sec. 2.3 we incorporate our technique
into two new methods of finding motifs.

Throughout this section, G will denote the network being searched and H will
denote the query subgraph. We say that a node g of G can support a node h of
H if we cannot rule out a subgraph isomorphism from H into G which maps h
to g based on the degrees of h and g and the degrees of their neighbors. (Other
constraints could also be used here, but these two proved effective and simple
to implement.) This notion of support is used to exclude inconsistent candidate
maps during the backtracking search.

2.1 Finding a Given Subgraph (Subgraph Isomorphism)

We start by presenting the algorithm without symmetry-breaking. Note that
symmetry-breaking is not required for correctness of the algorithm.
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FindSubgraphInstances(H,G):
Finds all instances of query graph H in network G

Start with an empty set of instances.
[Find Aut(H). Let HE be the equivalence representatives of H .]
[Find symmetry-breaking conditions C for H given HE and Aut(H).]
Order the nodes of G by increasing degree and
then by increasing neighbor degree sequence.
For each node g of G
For each node h of H [HE ] such that g can support h
Let f be the partial map associating f(h) = g.
Find all isomorphic extensions of f [up to symmetry]
i.e. call IsomorphicExtensions(f ,H ,G[,C(h)]).
Add the images of these maps to the set of all instances.
Remove g from G.
Return the set of all instances.

FindSubgraphInstances includes the images of the maps in the list of
instances, thus merging all maps which differ only by a symmetry of H . (Without
symmetry-breaking, the algorithm spends additional time finding several distinct
maps to a single subgraph.)

IsomorphicExtensions is a backtracking search to find all isomorphisms
from H into G. As is standard in backtracking searches, the algorithm uses
the most constrained neighbor to eliminate maps that cannot be isomorphisms:
that is, the neighbor of the already-mapped nodes which is likely to have the
fewest possible nodes it can be mapped to. First we select the nodes with the
most already-mapped neighbors, and amongst those we select the nodes with
the highest degree and largest neighbor degree sequence.

For each call to IsomorphicExtensions, f is extended by a single node.
Each time an extension is made, the algorithm ensures that the newly mapped
node is appropriately connected to the already-mapped nodes. Thus when Iso-

morphicExtensions returns a map, it is guaranteed to be an isomorphism.
We have effectively pushed the isomorphism testing of previous exhaustive

methods into IsomorphicExtensions, which allows the isomorphism test to
abort early. The ability to abort early when finding instances of a particular
query graph presents significant savings over previous methods.

2.2 Exploiting Subgraph Symmetries to Speed Up the Search

Due to symmetries, a given subgraph of G may be mapped to a given query
graph H multiple times. For example, the subgraph in Fig. 1 can be mapped to
the same 6 nodes in 8 different ways. Thus a simple mapping-based search for
a query graph will find each instance of the query graph as many times as the
graph has symmetries. To avoid this, we compute and enforce several symmetry-
breaking conditions, which ensure that there is a unique map from the query
graph H to each instance of H in G, so that our search only spends time finding
each instance once.
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IsomorphicExtensions(f,H,G[,C(h)]:
Finds all isomorphic extensions of partial map f : H → G [satisfying C(h)]
Start with an empty list of isomorphisms.
Let D be the domain of f .
If D = H , return a list consisting solely of f . (Or write to disk.)
Let m be the most constrained neighbor of any d ∈ D
(constrained by degree, neighbors mapped, etc.)
For each neighbor n of f(D)
If there is a neighbor d ∈ D of m such that n is not neighbors with f(d),
or if there is a non-neighbor d ∈ D of m such that n is neighbors with f(d)
[or if assigning f(m) = n would violate a symmetry-breaking condition in C(h)],
then continue with the next n.
Otherwise, let f ′ = f on D, and f ′(m) = n.
Find all isomorphic extensions of f ′.
Append these maps to the list of isomorphisms.
Return the list of isomorphisms.

The symmetries of a graphH are known as automorphisms (self-isomorphisms),
and the group of automorphisms of H is denoted Aut(H). For a set A of automor-
phisms, two nodes are said to be “A-equivalent” if there is some automorphism
in A which maps one to the other, or simply “equivalent” if A = Aut(H). We de-
note the A-equivalence of two nodes n1, n2 by n1 ∼A n2. This equivalence relation
partitions the nodes of H into equivalence classes. Since starting a map from two
equivalent nodes is unnecessary and wasteful, FindSubgraphInstances uses a
set consisting of one representative from each equivalence class of H .

The symmetry-breaking conditions are based on labellings of the nodes of H
by integers, represented as maps from H → Z. Let � : G → Z be a labelling
of the nodes of G by distinct integers. Then each map f : H → G generates a
labelling L : H → Z, given by L(n) = �(f(n)) for nodes n ∈ H . Thus, conditions
on labellings of H translate into restraints on maps from H into G.

Given a set of conditions C, we say an automorphism α preserves the condi-
tions C if, given a labelling L1 of H which satisfies C, the corresponding labelling
L2 : H → Z given by L2(n) = L1(α(n)) also satisfies C. We are thus search-
ing for conditions C such that the only automorphism which preserves C is the
identity. This ensures there will be exactly one map from H onto each of its
instances in G which satisfies the conditions.

To find these conditions, we pick an Aut(H)-equivalence class {n0, . . . , nk} of
nodes of H , and we impose the condition L(n0) < min(L(n1), . . . , L(nk)). Any
automorphism must send n0 to one of the ni, since these are all of the nodes
equivalent to n0. But to preserve this condition, an automorphism must send
n0 to itself. Then we continue recursively, replacing Aut(H) with the set A of
automorphisms which send n0 to itself. For example, see Fig. 1.

Because FindSubgraphInstances starts with a particular node, we can
consider that node already fixed. (Note that the version of FindSubgraphIn-

stances which uses symmetry-breaking only iterates over a set of equivalence
class representatives, and not over all nodes of H .) Thus for each representative
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Fig. 1. Finding conditions that will break all the symmetries of a 6-node graph. White
nodes are fixed by any automorphism preserving the indicated conditions, and other
nodes are shaded according to their equivalence class under the automorphisms which
preserve the indicated conditions.

used by FindSubgraphInstances, SymmetryConditions must generate a
series of symmetry-breaking conditions which start by fixing that node.

To find the automorphisms of H , we use IsomorphicExtensions without
symmetry-breaking, which returns an exhaustive list of all isomorphisms from
H to itself. To find the automorphisms which fix a node or a set of nodes, the
algorithm filters this list in a single pass.

Finding the automorphisms of a graph is thought to be computationally ex-
pensive1, but in practice we have found this is far from the bottleneck in motif-
finding algorithms. We were able to exhaustively find the automorphisms of all
11,117 8-node undirected graphs in under 30 seconds on a standard laptop, and
McKay’s tools [14] can find all the automorphisms of very large graphs very
rapidly (e.g. some graphs with thousands of nodes and millions of automor-
phisms, in less than one second on a standard laptop).

SymmetryConditions:
Finds symmetry-breaking conditions for H given HE ,Aut(H)

Let M be an empty map from equivalence representatives to sets of conditions.
For each n ∈ HE

Let C be an empty set of conditions.
n′ ← n, and A ← Aut(H).
Do until |A| = 1:
Add “label(n′) < min{label(m)|m ∼A n′ and m �= n′}” to C.
A ← {f ∈ A|f(n′) = n′}.
Find the largest A-equivalence class E.
Pick n′ ∈ E arbitrarily.
Let M(n) = C.
Return M .

2.3 Subgraph Evaluation and Network Motif Discovery

To find network motifs we enumerate candidate subgraphs H (exhaustively or
by sampling), and evaluate each candidate based on its instances.

1 Finding graph automorphisms is at least as hard as determining if two graphs are
isomorphic. Like the graph isomorphism problem, the graph automorphism problem
is not known to be either in P or to be NP-complete.
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Evaluating candidate subgraphs. We find all instances of a query graph H in
the network G, as well as in a random ensemble of networks with the same degree
distribution and same distribution of 3-node subgraphs as G.2 We evaluate the
overrepresentation of the query graph H based on the z-score of its abundance
in G against the distribution of its abundance in the random ensemble, as in
[18,21].

Exhaustive subgraph enumeration. Our method can be used to find all
instances of subgraphs of a given size, similar to previous exhaustive methods.
To do this, we generate all non-isomorphic graphs of a particular size using
McKay’s geng and directg tools [15]. Then for each graph, we evaluate its
significance as above.

Subgraph sampling. Our method can also be used in combination with sub-
graph sampling. We sample connected subgraphs (usually relatively large, com-
pared to previous network motifs: 10, 15, or 20 nodes) by picking a node at
random, and taking a random walk until we have as many nodes as desired [16].
Then we assess the significance of this subgraph as above.

Sampling subgraphs to find anti-motifs. Some studies have also consid-
ered anti-motifs: subgraphs which are significantly underrepresented compared
to randomized versions of the network. To use a sampling method to find anti-
motifs, it might be more fruitful to sample initial subgraphs from the random
ensemble rather than the network being studied. Anti-motifs will be more preva-
lent in the ensemble than in the target network, and thus are more likely to be
discovered by sampling from the ensemble.

3 Results and Evaluation

We applied our algorithm to the PPI network (1379 nodes, 2493 edges) [4] and
transcription network (685 nodes, 1052 edges) [2] of S. cerevisiae and compared
its performance to previous methods of motif disccovery.

Comparison with previous methods: time. We compare the time require-
ments of our method to those of Milo et al. [18] (Fig. 2). We make this compari-
son on the undirected PPI network of S. cerevisiae [4], by exhaustively counting
subgraphs up to 7 nodes.

We implemented both our algorithm and two versions of the Milo et al. al-
gorithm [18]: both as originally presented [18], and also by additionally hashing
subgraphs by their degree sequence (Sec. 1.3). Fig. 2 shows that our algorithm
provides an exponential improvement in time, even compared to the modified
version of the previous algorithm [18].
2 Although Shen-Orr et al.[21] use a model in which the distribution of (n − 1)-node

subgraphs is preserved when looking for n-node motifs, they only applied this to the
case n = 4, and we have found it computationally infeasible to preserve this distri-
bution for n > 4. Nonetheless, we have found it fruitful to preserve the distribution
of 3-node subgraphs, regardless of n.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



100 J.A. Grochow and M. Kellis

 1

 10

 100

 1000

 10000

 100000

 3  4  5  6  7

T
im

e 
(s

)

Nodes

x1.3
x3.0

x7.4

x18

x>15

Milo et al.
Milo (w/ hash)

Grochow-Kellis

Fig. 2. The runtimes of the original algorithm of Milo et al. [18], an improved version
of their algorithm, and our new algorithm, as applied to the undirected PPI network
of S. cerevisiae [4]. The speed-up from the original algorithm of Milo et al. [18] to our
algorithm is indicated. (Note: the values for 7 nodes for the two variants of Milo et al.’s
algorithm are underestimates: the program ran out of memory before finishing.)

Comparison with previous methods: space. Our method gains an expo-
nential memory advantage over previous exhaustive methods by not keeping a
list of previously visited subgraphs. In the previous exact counting method [18],
a list of the subgraphs encountered at each node is necessary in order to avoid
duplication, even when the instances of the subgraphs are not desired as output.
Thus the space required by the previous method is proportional to the number of
subgraphs of a given size going through a given node, which can be exponential
in the size of the subgraphs. Because our method does not need to keep such a
list, its asymptotic memory requirements are determined by the maximum depth
of recurion of IsomorphicExtensions, which is linear in the size of the query
graph. Our method thus uses exponentially less space than previous exhaustive
methods.

Disk usage. Furthermore, our algorithm uses no more memory to find a list of all
instances than to simply count the instances. Since each instance is encountered
exactly once, it can be written to disk and removed from active memory as soon
as it is encountered, using effectively no additional memory.

Improvement due to symmetry-breaking. The main reason for these im-
provements is our novel symmetry-breaking technique. Symmetry-breaking en-
sures that each instance is discovered exactly once, so our method does not have
to check a list of the subgraphs previously encountered at a node in order to
avoid duplicate counting, while the previous method of exact counting does.
Table 1 quantifies this contribution explicitly, showing that the average number
of automorphisms of graphs weighted by their occurences in the PPI network
and regulatory network of yeast – i.e. the savings gained by symmetry-breaking –
appears to grow exponentially.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Network Motif Discovery 101

Table 1. The number of subgraphs encountered by our algorithm with and without
symmetry-breaking (including multiple encounters for the version without symmetry-
breaking). The improvement factor is exactly the average number of automorphisms
of subgraphs of the associated size.

Undirected PPI Network Directed Regulatory Network

N
o
d
es

Total
Subgraphs
Searched

With
Symmetry-
Breaking

Improvement
Total

Subgraphs
Searched

With
Symmetry-
Breaking

Improvement

3 3.7×104 1.1×104 ×3.13 2.6×104 1.3×104 ×2.02

4 4.0×105 7.0×104 ×5.77 9.7×105 1.8×105 ×5.41

5 4.4×106 4.1×105 ×10.9 4.4×107 2.5×106 ×18.0

6 5.1×107 2.3×106 ×22.2 2.3×109 3.2×107 ×73.3

7 5.7×108 1.2×107 ×46.3 1.3×1011 4.0×108 ×334

8 6.4×109 6.6×107 ×96.2 — — —

4 Discovered Motifs and Their Biological Significance

Discovered motifs. We exhaustively evaluated all candidate motifs and anti-
motifs up to 7 nodes in the PPI network of S. cerevisiae[4] (1379 nodes, 2493
edges). We used a random ensemble of networks with the same degree distribu-
tion and the same distribution of 3-node subgraphs as the PPI network.3 The
most significant subgraphs tend to be motifs rather than anti-motifs: using a
z-score cutoff of 4.0, only 3 of the 54 significant subgraphs of size at most 7 were
anti-motifs. Two of the motifs were trees, and the most dense motif had 18 edges.
Most of the significant graphs were of moderate density: the mean number of
edges for 7-node motifs and anti-motifs is 11.49 ± 2.89.

Large discovered motifs. We also discovered larger motifs by first sampling
connected subgraphs from the PPI network of S. cerevisiae, and then assessing
their significance using our method. We sampled approximately 100 connected
subgraphs of 15 and 20 nodes, and found several motifs. One such 15-node motif
(Fig. 3) represents a common connectivity pattern found within the transcrip-
tional machinery of S. cerevisiae (see discussion below).

Clustering of discovered motifs and larger network structures. We
noted that almost all of the larger subgraphs we evaluated have large numbers
of overlapping instances, which become apparent since our method reports all
network instances of a discovered motif. To quantify this property, we developed
a subgraph clustering score, based on the number of subgraph instances overlap-
ping a given node, averaged over all nodes in any subgraph instance. We applied
this score to evaluate the clustering properties of all discovered motifs, and we
found that indeed some of the most abundant motifs show striking clustering
properties.

3 See footnote 2.
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Fig. 3. A motif of 15 nodes and 34 edges (left). An edge from a group of nodes to a
node n indicates that each node in the group is connected to n. This motif appears
27,720 times in the PPI network of S. cerevisiae[4], and does not appear at all in
random ensembles which preserve the degree distribution and the distribution of 3-
node subgraphs. All 27,720 instances are clustered into a total of 29 nodes (right),
corresponding to the cellular transcription machinery.

The clustered instances frequently reveal important larger network structures.
For example, the 15-node motif of Fig. 3 occurs 27,720 times in a single sub-
network of 29 nodes, part of the core transcription machinery of S. cerevisiae.
This includes a complete 11-node graph (including the two central hubs) cor-
responding to the SAGA complex, and consisting almost entirely of chromatin
modification and histone acetylation factors an 8-node core (shared by all in-
stances of the 15-node motif) corresponding to the TFIID complex, and 12 at-
tachments, which are known activators and suppressors of these two complexes
[11]. Similarly, the subgraph of 20 nodes shown in Fig. 4 occurs 5,020 times in a
total of 31 nodes, enriched in cell-cycle regulation.

The role of combinatorial effects. The extreme clustering properties of the
most abundant motifs appear to result from combinatorial connectivity patterns
prevalent in larger network structures. For example, all 27,720 instances of the
15-node motif in Fig. 3 result by choosing 3 attachments from the left and 4
attachments from the the bottom of Fig. 3 (

(12
3

)(9
4

)
= 27, 720), and similarly for

the 5,020 instances of the 20-node subgraph in Fig. 4. Additionally, in the random
ensemble, these combinatorially appearing structures occur either thousands of
times, or not at all – they almost never occur just a few or a few hundred times.

Although motif clustering has previously been observed [3] and demonstrated
analytically [24], previous motifs studied do not have enough nodes to exhibit
the extreme combinatorial clustering we observed for large subgraphs (at least 15
nodes). The magnitude of this combinatorial clustering effect brings into question
the current definition of network motif, when applied to larger structures. We
propose that additional statistics, either alone or in combination, might be well-
suited to identify larger meaningful network structures: our subgraph clustering
score, the total number of nodes covered by all instances of the query graph, the
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Fig. 4. A subgraph of 20 nodes and 27 edges (left). An edge from a group of nodes to a
node n indicates that each node in the group is connected to n. This subgraph appears
5,020 times in the PPI network of S. cerevisiae [4]. All 5,020 instances are clustered
into a total of 31 nodes (right), enriched in cell-cycle regulation.

total number of edges, and the weighting of the number of nodes/edges based
on the number of overlapping instances. All of these statistics can be easily
calculated using our algorithm, since it finds and stores all motif instances, and
these will be the subject of future studies.

5 Discussion

We presented a novel approach to the discovery of network motifs, based on
a solution to the subgraph isomorphism problem that uses a new symmetry-
breaking technique, an improved isomorphism test, and hashing based on degree
sequences. Several of the techniques presented in our algorithm can also be used
in previous algorithms, and lead to significant improvements.

We implemented our algorithm and used it to find significant structures of 15
and 20 nodes in the PPI network and the regulatory network of S. cerevisiae,
where previous methods had been limited to motifs of 6 and 8 nodes. Using our
approach to motif-finding, we re-discovered the cellular transcription machinery
– as a 29-node cluster of 15-node motifs – based solely on the structure of the
protein interaction network.

Previous methods of motif discovery were network-centric, and could therefore
not take advantage of subgraph symmetries. By using a motif-centric algorithm
instead, we are able to use symmetry-breaking to get an exponential improvement.

5.1 Applications and Advantages of the New Method

(1) Finding larger motifs. Our improvements have enabled the exhaustive dis-
covery of motifs up to 7 nodes. To find even larger motifs, we sample a connected
subgraph as in [16], and then find all its instances and assess its significance us-
ing our method. This technique has enabled us to find motifs up to 15 nodes
and examine subgraphs up to 31 nodes.

(2) Querying a particular subgraph. Our method can be used to query whether
a particular subgraph is significant, whereas previous methods can only do this
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by examining all subgraphs of the same size, which quickly becomes prohibitive
for even moderate sizes. This technique could be used to explore in silico the
prevalence of a subgraph of interest, identified experimentally (e.g. known path-
ways), computationally (e.g. motif generalizations [10]), or genetically.

(3) Exploring motif clustering. Because our algorithm finds all instances of a
given subgraph, it can be used to explore how these instances cluster together
to form larger structures. For example, after finding a 15-node motif, we were
able to determine that all of its 27,720 instances clustered in 29 nodes (Fig. 3).

(4) Time and space. Our method, applied to all subgraphs of a given size,
takes exponentially less time than previous methods, even when we implement
the previous method with our hashing scheme (Sec. 3). Additionally, there are
essentially no space limitations on our method: since each instance is found
exactly once due to our symmetry-breaking technique, it can be written to disk
and removed from active memory as soon as it is found.

(5) Parallelization. Our method is more easily parallelizable than previous
motif-finding methods, since each subgraph can be counted on a separate pro-
cessor. We have found this attribute to be very useful, and we believe other
researchers will as well, as cluster computing becomes commonplace in the com-
putational biology community.

5.2 Clustering Properties of Large Subgraphs and Motifs

We revealed that larger subgraphs tend to cluster together combinatorially – that
is, all instances share a significant core of nodes, and each instance represents a
choice of attachments to these core nodes. This combinatorial clustering brings
into question the relevance of the standard definition of network motif for large
subgraphs of 15 nodes or more. We proposed several statistics which may be
more appropriate in this domain.

Finally, we mention that the statistics of Ziv et al. [26] may not suffer from
these combinatorial effects. The main drawback of these statistics is their lack of
one-to-one correspondence with subgraphs. In combination with our algorithm,
however, the large subgraphs encompassed by these statistics could be further
explored, allowing for a clearer interpretation of the most significant statistics.

Moving forward, we expect the network motifs and methodology presented
here will open a window into the large structures and global organization of
biological and other networks.
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Abstract. A complete understanding of transcriptional regulatory processes in
the cell requires identification of transcription factor binding sites on a genome-
wide scale. Unfortunately, these binding sites are typically short and degenerate,
posing a significant statistical challenge: many more matches to known transcrip-
tion factor binding sites occur in the genome than are actually functional. Chro-
matin structure is known to play an important role in guiding transcription factors
to those sites that are functional. In particular, it has been shown that active regu-
latory regions are usually depleted of nucleosomes, thereby enabling transcription
factors to bind DNA in those regions [1]. In this paper, we describe a novel al-
gorithm which employs an informative prior over DNA sequence positions based
on a discriminative view of nucleosome occupancy; the nucleosome occupancy
information comes from a recently published computational model [2]. When a
Gibbs sampling algorithm with our informative prior is applied to yeast sequence-
sets identified by ChIP-chip [3], the correct motif is found in 50% more cases than
with an uninformative uniform prior. Moreover, if nucleosome occupancy infor-
mation is not available, our informative prior reduces to a new kind of prior that
can exploit discriminative information in a purely generative setting.

1 Introduction

Finding functional DNA binding sites of transcription factors (TFs) on a genome-wide
scale is a crucial step in understanding transcriptional regulation. Despite an explo-
sion of data about TF binding from high-throughput technologies like ChIP-chip [3, 4,
and many more], DIP-chip [5], PBM [6], and gene-expression arrays [7, 8, and many
more], de novo motif finding remains a difficult problem. The fundamental reason for
this is that the binding sites of most TFs are short, degenerate sequences which occur
frequently in the genome by chance. The ‘signal’ of functional sites (which are bound
in vivo) is overwhelmed by the ‘noise’ due to the non-functional sites (which are not
bound in vivo). Distinguishing functional sites from non-functional ones, and inferring
the true motif recognized by the TF, is thus a challenge.

Many probabilistic motif discovery methods have been developed to tackle the prob-
lem of motif discovery [9, 10]. The standard approach is to look for a pattern common

� These authors contributed equally to this work.
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to the bound sequences that is statistically enriched with respect to the background dis-
tribution of all intergenic sequences. If, in addition to the set of bound sequences, a set
of unbound sequences is available, a stronger criterion might insist that the pattern be
able to discriminate between the two sets [11, 12, 13, 14, 15]. Unfortunately, due to
the low signal-to-noise ratio of binding sites mentioned earlier, these methods generally
suffer from low specificity and sensitivity [16].

Often, DNA sequences that match known TF motifs do not appear to be functional in
vivo TF binding sites. One explanation is that not all parts of the genome are equally ac-
cessible to TFs in vivo. In particular, since DNA is wound over histone octamers called
nucleosomes, the positioning of these nucleosomes provides a possible mechanism for
differential access of TFs to potential binding sites [1, 2, 17, 18, 19, 20]. Our goal in
this paper is to leverage knowledge about nucleosome positioning to improve de novo
motif finding.

If we knew exactly what parts of the genome were occupied by nucleosomes in the
exact environmental conditions for which we have in vivo TF binding data, we could
bias our search for TF binding sites to the areas that are free of nucleosomes. Unfor-
tunately, no high-resolution nucleosome occupancy data is available for any organism
on a whole-genome scale. In the case of yeast, Yuan et al. [20] have reported high-
resolution nucleosome occupancy data using tiling arrays, but only for chromosome III.
On the other hand, Lee et al. [1] have published occupancy data for the whole genome,
but it is of low resolution: they report only the average occupancy over each intergenic
region.

Recently, Segal et al. [2] developed a computational model based on high-quality ex-
perimental nucleosome binding data to calculate the average nucleosome occupancy at
each nucleotide position in the yeast and chicken genomes. This occupancy is purported
to be intrinsic to the DNA sequence, and hence independent of in vivo conditions. The
authors claim that their predictions explain about 50% of observed in vivo nucleosome
positions. Here, we use predictions from their model to build informative priors over
DNA sequence positions that can be used to improve the accuracy of motif finding. We
formulate two different nucleosome occupancy priors: the first is based directly on the
predictions of Segal et al., while the second adopts a discriminative perspective, com-
paring nucleosome occupancy in bound versus unbound sequences. When nucleosome
occupancy information is not available, the first prior simplifies to an uninformative
uniform prior, but the second simplifies to a new kind of informative prior that can ex-
ploit discriminative information in a purely generative setting. This represents a novel
approach to discriminative motif discovery that retains the computational benefits of a
generative formulation. As we shall see, each of our three informative priors improves
upon the uninformative uniform prior.

We choose Gibbs sampling as the search method in our algorithms, but in principle,
the priors can be used with any search strategy. Our choice of a position specific scoring
matrix (PSSM) [21] as a model for the motif is also arbitrary since our priors can be
applied while learning any type of motif model. The purpose of this paper is not to
demonstrate the benefits of one search strategy over another or one motif model over
another, but to demonstrate the utility of nucleosome occupancy data in constructing
informative priors for motif discovery.
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2 Motif Discovery

In this section, we describe the popular generative formulation of the problem of motif
discovery, derive the objective function we seek to optimize, and explain the search
methodology that we use to optimize this objective function.

2.1 Sequence Model and Objective Function

Assume we have n DNA sequences X1 to Xn believed to be commonly bound by some
TF. Although in reality a sequence might have multiple binding sites, for simplicity we
model only one binding site in each sequence. Because the experimental data might
be erroneous, we also model the possibility of some sequences not having any binding
site. This is analogous to the zero or one occurrence per sequence (ZOOPS) model in
MEME [22]. Let Z be a vector of length n denoting the starting location of the binding
site in each sequence: Zi = j if there is a binding site starting at location j in Xi and we
adopt the convention that Zi = 0 if there is no binding site in Xi. We assume that the
TF motif can be modeled as a PSSM of length W while the rest of the sequence follows
some background model parameterized by φ0. The PSSM can be described by a matrix
φ where φa,b is the probability of finding base b at location a within the binding site for
1 ≤ b ≤ 4 and 1 ≤ a ≤ W .

Thus if the sequence Xi is of length mi, and Xi contains a binding site at location
Zi, we can compute the probability of the sequence given the model parameters as:

P (Xi | φ, Zi > 0, φ0) = P (Xi,1, . . . Xi,Zi−1 | φ0) ×
(

W∏

k=1

φk,Xi,Zi+k−1

)

× P (Xi,Zi+W , . . . Xi,mi | φ0)

and if it instead does not contain a binding site as:

P (Xi | φ, Zi = 0, φ0) = P (Xi,1, Xi,2 . . . Xi,mi | φ0)

We wish to find φ and Z that maximize the joint posterior distribution of all the
unknowns given the data. Assuming priors P (φ) and P (Z) over φ and Z respectively,
our objective function is:

arg max
φ,Z

P (φ, Z | X , φ0) = arg max
φ,Z

(
P (X | φ, Z, φ0)P (φ)P (Z)

)
(1)

2.2 Optimization Strategy and Scoring Scheme

As others before us have done, we use Gibbs sampling to sample repeatedly from the
posterior over φ and Z with the hope that we are likely to visit those values of φ
and Z with the highest posterior probability. Gibbs sampling is a Markov chain Monte
Carlo (MCMC) method that approximates sampling from a joint posterior distribution
by sampling iteratively from individual conditional distributions [23]. Applying the col-
lapsed Gibbs sampling strategy developed by Liu [24] for faster convergence, we can
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integrate out φ and sample only the Zi. This results in the following expression for
sampling Zi from its conditional distribution assuming the prior on Z to be independent
of the PSSM parameters φ:

P (Zi | Z[−i], X ,φ0) =
P (Z | X ,φ0)

P (Z[−i] | X ,φ0)
=

P (Z)
∫

φ

P (X | φ, Z, φ0)P (φ)dφ

P (Z[−i])
∫

φ

P (X | φ, Z[−i], φ0)P (φ)dφ

where Z[−i] is the vector Z without Zi. Proceeding analogously to the derivation of
Liu [24], we compute the integrals using a Dirichlet prior on φ. We further simplify
the sampling expression by dividing it by P (Zi = 0, Xi | φ0) which is a constant at
a particular sampling step. This results in the following sampling distribution for a
particular location j within sequence Xi, similar to the predictive update formula as
described in [25]:

P (Zi = j | Z[−i], X ,φ0) =

P (Zi = j) ×
(

W∏

a=1
φa,Xi,j+a−1

)

P (Zi = 0) × P (Xi,j , . . . , Xi,j+W−1 | φ0)
(2)

for 1 ≤ j ≤ mi − W + 1, and

P (Zi = j | X ,φ0) = 1 (3)

for j = 0, where φ is calculated from the counts of the sites contributing to the cur-
rent alignment Z[−i], plus the pseudocounts as determined by the Dirichlet prior. More
details are provided in [26].

The joint posterior distribution after each iteration can be calculated as:

P (φ,Z | X ,φ0) ∝ P (X | φ,Z, φ0) × P (φ) × P (Z) (4)

To simplify computation, we divide the above expression by the constant probability
P (X | Z = 0, φ0) and use the logarithm of the resulting value as a score for the motif.

To maximize the objective function and hence the score, we run the Gibbs sampler
for a predetermined number of iterations after apparent convergence to the joint poste-
rior and output the highest scoring PSSM at the end. We report only a single motif φ
to enable us to evaluate the algorithm and compare it with other popular methods. In
principle, however, since we are using an MCMC sampling method, we could instead
perform Bayesian model averaging over many samples from the posterior and report a
mean motif (or multiple motifs if there are multiple modes in the distribution).

3 Informative Positional Priors for Motif Discovery

The basic Gibbs sampling approach mentioned above has been used in several motif
finders, often with additional parameters and heuristics [27, 28, 29]. However, all these
methods use an uninformative prior over the locations Z at which the TF is supposed to
bind within the DNA sequences. In a recent paper, we showed how information about
the TF’s structural class could be leveraged to produce informative priors over Z that
significantly help motif discovery [26]. Here, we describe other informative choices for
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P (Z) which we will henceforth refer to as ‘positional priors’. We introduce a prior N
based solely on nucleosome occupancy, a prior DN incorporating nucleosome occu-
pancy information from both bound as well as unbound sequences, and a discrimina-
tive prior D, which is a special case of DN when nucleosome occupancy information
is unavailable. To assess the utility of these priors, we compare their performance to
the performance of an uninformative uniform prior U , keeping all other aspects of the
algorithm identical.

3.1 Building a Positional Prior

The four positional priors mentioned above can be constructed in a similar fashion from
different probabilistic scores. We use the term ‘probabilistic score’ in the remainder
of the paper to denote the probability of a particular W -mer being a binding site of
transcription factor T : Si,j = P (XW

i,j is a binding site of T ), where XW
i,j denotes the

W -mer Xi,jXi,j+1 · · · Xi,j+W−1.
For each sequence Xi, we wish to define a prior probability distribution over all

possible starting locations j of a binding site in that sequence, i.e. P (Zi = j). We
notice that the values Si,j themselves do not define a probability distribution over j,
because they may not sum to 1. As mentioned in Section 2.1, we model each sequence
Xi as containing at most one binding site of T . If Xi has no binding site, none of the
positions of Xi can be the starting location of a binding site of T so it must be that:

P (Zi = 0) ∝
mi−W+1∏

u=1

(1 − Si,u) (5)

On the other hand, if Xi has one binding site at position j, not only must a binding site
start at location j but also no binding site should start at any of the other locations in
Xi. Formally, we write:

P (Zi = j) ∝ Si,j

mi−W+1∏

u=1
u �=j

(1 − Si,u) for 1 ≤ j ≤ mi − W + 1 (6)

We then normalize P (Zi) assuming the same proportionality constant in (5) and (6), so
that under the assumptions of our model we have:

mi−W+1∑

j=0

P (Zi = j) = 1 for 1 ≤ i ≤ n (7)

3.2 Uniform Prior (U)

This is the simplest form of positional prior. It is built using a uniform probabilistic
score Ui,j which assigns equal probabilities to a W -mer XW

i,j being a binding site of T
or not:

Ui,j = 1 − Ui,j = 0.5 for 1 ≤ j ≤ mi − W + 1 (8)

If we substitute Si,j with Ui,j in equations (5) and (6) and normalize P (Zi = j), we
get a uniform prior U :

P (Zi = j) =
1

mi − W + 2
for 0 ≤ j ≤ mi − W + 1 (9)
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3.3 Nucleosome Occupancy Prior (N )

A uniform prior is a common choice for a positional prior and most motif finding algo-
rithms implicitly use such a prior. In reality though, as mentioned earlier, certain DNA
regions are inaccessible to TFs due to the presence of nucleosomes at those locations.

We would like to bias the search in a probabilistic manner towards nucleosome-free
areas. For this purpose, we use the nucleosome occupancy predicted by the computa-
tional model developed by Segal et al. [2]. This model outputs the probability Ni,j of
each nucleotide Xi,j in the input sequences being occupied by nucleosomes (for now
the model is only designed for sequences in yeast or chicken). Assuming nucleosome
occupancy indicates inaccessibility, we calculate the average probability of the W -mer
XW

i,j being accessible to the TF as:

Ai,j = 1 − 1

W

W−1∑

k=0

Ni,j+k (10)

Alternatively one could use the maximum instead of the average occupancy over the W
nucleotides when computing Ai,j , but averaging reduces the effect of outliers. Having
defined Ai,j , we can now build the positional prior N as described in Section 3.1, using
Ai,j as the probabilistic score Si,j .

3.4 Discriminative Nucleosome Occupancy Prior (DN )

The formulation of the above probabilistic score Ai,j has a drawback: What if a par-
ticular W -mer is prone to be highly accessible throughout the genome? For instance,
certain promoter elements which are required for the assembly of general TFs and are
not related to the specific TF in question, might be depleted of nucleosomes. The prior
N , in that case, could indicate a high prior belief in that W -mer being a TF binding site
regardless of the fact that the W -mer is equally accessible in the rest of the genome as
in the bound set X .

Most large-scale high-throughput experimental methods like ChIP-chip, DIP-chip,
and PBM give rise to two sets of DNA sequences: those bound by the profiled transcrip-
tion factor T (positive sequences X) and those not bound (negative sequences which we
denote as Y ). The use of the negative set along with the positive set to enrich the motif
signal has been shown previously to be beneficial in improving specificity [12, 14, 15].
In the referenced methods, if a W -mer is present in the negative set for transcription
factor T , it is generally treated as an instance of a non-binding site and hence, penal-
ized. However, in an in vivo situation, a W -mer matching the true motif of T might
occur in the negative set but be inaccessible for T due to the presence of a nucleosome
at that position. In that case, it should not be treated as a negative data point.

Here, we devise a new discriminative prior which takes into account both these is-
sues. For each W -mer XW

i,j , we ask the following question: “Of all the accessible oc-
currences of this word, how many occur in the positive set?” To answer this question,
we subject each accessible W -mer to a Bernoulli trial. Unfortunately, we cannot tell
for sure whether a particular location is accessible or not, because we only know the
probability that each location is accessible. Thus, we count the number of accessible
sequences in expectation, by weighing each occurrence of the W -mer according to how
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accessible it is. For this purpose, we introduce two functions rk,l and r′k,l defined on the
set of all possible W -mers σ:

rk,l(σ) =

{
1 : XW

k,l = σ

0 : XW
k,l �= σ

and r′
k,l(σ) =

{
1 : Y W

k,l = σ

0 : Y W
k,l �= σ

(11)

We now define a new probabilistic score Ci,j as:

Ci,j =

∑

k,l

Ak,lrk,l(X
W
i,j )

∑

k,l

Ak,lrk,l(XW
i,j) +

∑

k,l

A′
k,lr

′
k,l(X

W
i,j )

(12)

where A′
i,j is the accessibility score calculated for the set Y analogous to the calculation

of Ai,j for X in (10). Using Ci,j as our probabilistic score Si,j , we can now build the
positional prior DN as described in Section 3.1. In practice, we notice that Ci,j can have
some false peaks due to W -mers that occur very rarely in the genome. In such cases,
when the W -mer occurs in Xi at some position j, Ci,j becomes large due to a small
denominator. This effect can be alleviated by adding pseudocounts to the expression
in (12).

3.5 Simple Discriminative Prior (D)

To assess the importance of incorporating nucleosome occupancy information in dis-
criminative motif discovery, we now consider a special case of DN . We assume we
have no nucleosome occupancy information, i.e., each Ai,j = c and A′

i,j = c, where c
is some arbitrary constant. Equation (12) then reduces to a new probabilistic score Di,j :

Di,j =

∑

k,l

rk,l(X
W
i,j )

∑

k,l

rk,l(XW
i,j ) +

∑

k,l

r′
k,l(X

W
i,j )

(13)

In other words, we calculate the probability Di,j of XW
i,j being a binding site of T as the

number of occurrences of XW
i,j in X relative to the total number of occurrences of XW

i,j

in both sets X and Y without looking at accessibility. Again, we add pseudocounts
while computing Di,j and then calculate a positional prior P (Zi = j) as described in
Section 3.1 by substituting Di,j for Si,j . We refer to this positional prior as D.

Note that in computing D we use only the datasets X and Y and not any nucleosome
occupancy information. Other motif discovery algorithms that make use of both X and
Y formulate the problem in a discriminative manner, and attempt to learn a motif that
appears more often in the positive set than in the negative set. Since these models opti-
mize a discriminative objective function over the sets X and Y , they have to deal with
a large search space and typically are prone to many local optima. Such methods often
require an ‘intelligent guess’ as a seed matrix to initialize the search so as to avoid poor
local optima. In addition, at every step of the search algorithm, they have to evaluate the
parameters of the model on each sequence in both sets. Hence, the time complexity of
these algorithms is much worse compared to generative models which iterate only over
the positive set. Here, however, our generative model framework remains generative
and all the discriminative information is captured in our prior.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



114 L. Narlikar, R. Gordân, and A.J. Hartemink
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Fig. 1. Plot of Ai,j , Di,j , and Ci,j used to compute the priors N , D, and DN , respectively. The
x-axis represents part of an intergenic DNA region from a sequence-set for Fkh2 profiled under
the YPD condition in a ChIP-chip experiment [3]. The intergenic region spans positions 770845
to 770945 in Chromosome XVI. The Fkh2 binding site shown in the figure starts at position
770887.

3.6 Informative Priors in Action

To visualize how informative priors might be helpful in identifying TF binding sites,
we show in Figure 1 the values of Ai,j , Di,j , and Ci,j used to compute the priors
N , D, and DN over a portion of a DNA sequence obtained from an Fkh2 ChIP-chip
experiment. As can be seen from the figure, in this instance all three priors give a good
indication of where a Fkh2 binding site is likely to exist, even before information from
the likelihood is taken into account. Of course, this may not happen all the time so
we use the remainder of the paper to assess more precisely the relative utility of these
priors.

4 Results

We compiled ChIP-chip data published by Harbison et al. [3], who profiled the inter-
genic binding locations of 203 yeast TFs under various environmental conditions: YPD,
and one or more of Alpha, But14, But90, H202Hi, H202Lo, Pi-, RAPA, or SM over
6140 intergenic regions. These intergenic regions range from 48 to 1553 nucleotides
and have an average length of 433 nucleotides. For each TF profiled under each condi-
tion, we define its bound sequence-set to be those intergenic sequences reported to be
bound with p-value < 0.001. We restrict our attention to sequence-sets of size at least
10, which yields 242 sequence-sets, encompassing 148 TFs. Of these sequence-sets,
156 correspond to the 80 TFs with a consensus binding motif in the literature (as sum-
marized by Harbison et al. at the time their paper was published, or as earlier reported
by Dorrington and Cooper [30] or Jia et al. [31]), and these 156 are used throughout the
remainder of the paper to compare the performance of various motif finding algorithms.
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We incorporate the U , N , D, and DN priors into our Gibbs sampling framework—
implemented in PRIORITY [26]—and refer to the resulting algorithms as PRI-U , PRI-
N , PRI-D, and PRI-DN , respectively. For evaluation purposes, we fix the motif-width
W to 8 in all our runs, although in practice one could certainly explore more values of
W . As a background model, we use a third order Markov model trained on all intergenic
regions in yeast. We run each algorithm 10 times from different random starting points
for each sequence-set for 10,000 sampling iterations and report the top-scoring motif
among the 10 runs. We consider an algorithm to be successful for a sequence-set only
if the top-scoring motif matches the literature consensus for the corresponding TF. We
use a variation of the inter-motif distance measure described by Harbison et al. and
consider a motif learned by an algorithm to be correct if it is at a distance less than 0.25
from the literature consensus.1 Different distance cut-offs give different results, but we
notice the general trend across all programs remains the same.

Because we are primarily interested in quantifying the extent to which these new in-
formative priors improve de novo motif discovery, the results presented in the main por-
tion of the manuscript are limited to a comparison of PRI-N , PRI-D, and PRI-DN ver-
sus PRI-U . However, to ensure that PRI-U is not simply a ‘straw man’, but represents a
reasonable point of comparison, we have also compiled results from three other popular
motif discovery programs as reported by Harbison et al. : AlignACE [27], MEME [22],
and MDscan [32] (see Supplementary Material). Using the same criterion for success
(the top-scoring motif should match the literature consensus), AlignACE is successful
in 16 of the 156 sequence-sets, MEME in 35, MDscan in 54, and PRI-U in 46. Align-
ACE has one disadvantage over the others in that it uses a first-order Markov model
of the background, but each of the three existing methods has advantages over PRI-U :
AlignACE considers many motif widths; MEME considers many motif widths, uses
sophisticated heuristics to initialize its search, and uses a fifth-order Markov model of
the background; and MDscan makes significant use of the p-values from the ChIP-chip
experiments. Despite these disadvantages, PRI-U performs admirably, even without an
informative prior, and therefore represents a reasonable point of comparison. Since ev-
erything about the algorithm is the same apart from the choice of prior, PRI-U permits
the most accurate quantification of the utility of our new informative priors, and so we
use it in the remainder of the paper as a baseline when comparing the performance of
PRI-N , PRI-D, and PRI-DN .

Figure 2 summarizes the results of the four algorithms on 156 sequence-sets. Overall,
while PRI-U finds the correct motif in 46 sequence-sets, PRI-DN finds the correct
motif in 69 sequence-sets, resulting in an improvement of 50% over baseline. To break
down these results more carefully, we divide the sequence-sets into four groups based
on the success/failure of PRI-U and PRI-DN (corresponding to the four quadrants in
Figure 2). This grouping reveals that the DN prior never performs worse than the U
prior, a claim that is also true of the D prior, but not of the N prior. To better understand
the performance of these two priors in relation to the DN prior, we now consider each
group in detail:

1 The distance is normalized to lie between 0 and 1; see Supplementary Material for details
about the distance calculation.
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U D DNN 0
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Fig. 2. Results of the four algorithms on 156 yeast sequence-sets produced by ChIP-chip exper-
iments [3]. Each row of four balls corresponds to the four positional priors U , N , D, and DN .
A filled ball indicates the situation where the respective prior succeeds in finding the true motif.
There are 24 = 16 possible combinations of successes/failures of the four priors shown by 16
rows of filled/empty balls. The number of cases resulting in each combination is indicated next
to the respective row. The 16 combinations are divided into four quadrants, conditioned on the
success/failure of U and DN . The central numbers indicate the cardinality of each quadrant. As
can be seen, some combinations like those in quadrant III do not occur.

Group I: PRI-U succeeds and PRI-DN succeeds.

This group corresponds to the upper-left quadrant of Figure 2 and it contains 46
sequence-sets corresponding to 31 TFs. For most sequence-sets in this group (41
of 46) all four algorithms find motifs matching the literature consensus. For the
other 5 sequence-sets (Cin5 H202Lo, Ste12 Alpha, Ste12 YPD, Hsf1 H202Lo, and
Skn7 YPD) PRI-N is the only algorithm that fails.

Let us look at the case of the TF Ste12 in more detail. In theory, the way the pri-
ors are formulated, PRI-N should work on TFs for which the nucleosome occupancy
over the functional binding sites is lower, in general, than the nucleosome occupancy
over the rest of the sequences in the set. For PRI-DN to succeed though, the nucle-
osome occupancy over the functional sites must be lower than the occupancy over
the non-functional sites (that is, sites in the negative set). In both the Alpha and YPD
conditions, the average nucleosome occupancy in the sequence-sets is lower than the
nucleosome occupancy at the functional binding sites of Ste12. This explains why
PRI-N fails. But according to the analysis of Segal et al. [2, Supplemental Figure 36],
the average nucleosome occupancy at the functional sites of Ste12 is lower than the
average occupancy at the non-functional sites. This clarifies why in spite of using
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the same nucleosome occupancy data, PRI-DN succeeds in finding the true motif of
Ste12 in both conditions, although PRI-N does not. This suggests the importance of
using nucleosome occupancy information in a discriminative setting.

Group II: PRI-U fails and PRI-DN succeeds.

This group corresponds to the lower-left quadrant of Figure 2 and it contains 23
sequence-sets corresponding to 19 TFs. In eight cases, PRI-DN is the only algo-
rithm that succeeds in finding the true motif. This implies that neither D nor N alone
is strong enough to identify the true motif, but the combination DN succeeds. In 9
other cases in this group, in addition to DN , exactly one of D and N is successful.
This suggests that in those cases, the improvement in DN comes mainly from the
respective prior.

Group III: PRI-U succeeds and PRI-DN fails.

This group, corresponding to the upper-right quadrant of Figure 2, is empty. This
implies that whenever the uniform prior succeeds, the DN prior also succeeds. Thus
using this informative prior does not worsen the performance of the algorithm for any
sequence-set.

Group IV: PRI-U fails and PRI-DN fails.

This group corresponds to the lower-right quadrant of Figure 2 and contains 87
sequence-sets corresponding to 50 TFs. For 84 of these 87 sequence-sets, none of
the four algorithms finds motifs matching the literature consensus. For the remain-
ing three cases (Msn2 H202Hi, Skn7 H202Lo, and Tec1 YPD) although PRI-D suc-
ceeds, PRI-DN seems to fail to find the true motif. However, the failure of PRI-DN
seems to be the result of the program getting stuck in a local optimum in each case.
When we score the three motifs found by PRI-D according to the posterior score ob-
tained using the DN prior, we get a significantly higher score than the score reported
by PRI-DN for the respective top motifs it learns (which do not score well according
to the distance metric). The same reasoning applies for the failure of PRI-N for the
sequence-sets of Msn2 H202Hi and Skn7 H202Lo. In the Tec1 YPD sequence-set,
however, Tec1 binding sites have an average nucleosome occupancy of ∼89% which
is higher than the average occupancy over all intergenic regions (∼85%) causing the
N prior to fail.

5 Discussion

Although it has been known for a while that nucleosomes control the binding activity
of TFs by providing differential access to DNA binding sites [1, 2, 17, 18, 19, 20], we
believe we are the first to use nucleosome occupancy information to more accurately
predict de novo binding sites of TFs.

Our results show that direct use of the nucleosome occupancy predictions of
Segal et al. [2] as a positional prior does not help motif discovery much: PRI-N finds 51
correct motifs compared to the 46 found by PRI-U . Motifs of some TFs are more prone
to be occupied by nucleosomes than others. The example of Ste12 in Group I illustrates
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how the prior N can fail because of the high nucleosome occupancy at Ste12 functional
sites. However, when we adopt a discriminative perspective on nucleosome occupancy,
the prior DN succeeds in finding the true Ste12 motif. In fact, there is no sequence-set
on which PRI-N succeeds, but PRI-DN fails. Overall, our results show that discrimi-
native use of nucleosome occupancy information is extremely useful: PRI-DN finds 69
true motifs, 50% more than PRI-U . Although in this paper we focus on the usefulness
of nucleosome occupancy information, the D prior also improves motif discovery no-
ticeably without this information: PRI-D finds 60 true motifs, 30% more than PRI-U .
In addition to the three programs AlignACE, MEME, and MDscan discussed earlier,
Harbison et al. use three conservation-based algorithms to discover motifs: MEME c,
CONVERGE [3], and a method by Kellis et al. [33] which find 49, 56, and 50 cor-
rect motifs respectively (see Supplementary Material). Not only does PRI-DN perform
much better than these programs, even PRI-D finds more correct motifs than the best of
these programs. This suggests that our prior D will be quite useful in motif discovery
problems even when nucleosome occupancy information is unavailable.

Our discriminative priors (both D and DN ) are novel in the way they incorporate
discriminative information in a generative setting. Note that in a specific genome, for
a particular W -mer σ starting at position j in Xi, the denominator of (13) remains the
same regardless of the sequences in X , since it is nothing but the total number of oc-
currences of σ in the whole genome. Similarly, for a particular nucleosome occupancy
dataset (experimental or computational), the weighted sum of all accessible sites in the
denominator of (12) remains the same for all possible sequence sets X . Hence these
numbers can be precomputed and stored in a table of size 4W . Then, for a particular
sequence-set X , computing the prior involves one pass (linear-time) over just the se-
quences in X . No information needs to be explicitly computed from the negative set
Y , which is good because it changes as the positive set changes. In addition, since
the actual algorithm only needs to sample over the positive set, the overall time and
space complexities of the search are much less than the complexities of other discrim-
inative approaches. In fact, it is practically impossible to compare the performance of
PRI-D with these approaches since the size of the intergenic regions in yeast is about 3
megabases (and larger for metazoan genomes).

In this study, we have fixed W to be 8. In the case of longer motifs, we could post-
process the short motif learned by the algorithm and expand it appropriately on either
side. Alternatively, we could build priors for multiple values of W and, like most motif
finders, run the algorithm with different motif lengths. A larger value for W has certain
consequences, however. First, the space required to store priors over W -mers is expo-
nential in W . Second, as W grows, the average probability of seeing a W -mer in the
genome decreases, implying that pseudocounts used to smooth the prior become increas-
ingly important (of course, this effect will be mitigated somewhat in larger genomes).

Throughout the paper, we have used PSSMs to model motifs. Although the PSSM
is currently a popular choice for a motif model, recent biological [34] and compu-
tational [35, 36] findings indicate that more expressive (and hence, more complex)
models might be more appropriate. Since our method assigns a prior on the locations
within each sequence and not on any specific form of the motif model, it can be used to
learn any motif model.
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The nucleosome occupancy predictions from the model of Segal et al. attempt to
capture the static, intrinsic nucleosome binding properties of the DNA. In reality, how-
ever, the positioning of nucleosomes changes dynamically as the environmental condi-
tions change or even as the cell progresses through its cell-cycle. Nucleosomes covering
certain functional sites might be displaced under specific conditions by other mecha-
nisms to permit access to TFs. It is thus not surprising that Segal et al. note that accord-
ing to their computational model, certain TFs have higher nucleosome occupancy at
their functional sites than non-functional sites. If nucleosome occupancy data collected
under the same environmental conditions in which the TFs are profiled were available,
we would expect to get better results. Unfortunately, at this time high-resolution nucleo-
some occupancy data is limited. But as more data becomes available, we can incorporate
it usefully into our approach.

In closing, we stress that incorporating informative priors over sequence positions is
of great benefit to motif discovery algorithms. Low signal-to-noise ratio, especially in
higher organisms, makes it difficult to successfully use algorithms based only on sta-
tistical overrepresentation. Narlikar et al. [26] have shown that using informative priors
based on structural classes of TFs improves motif discovery and this paper shows that
other kinds of informative priors improve motif discovery as well. Algorithms using
conservation information across species [3, 33, 37, 38] are another example of success-
ful incorporation of additional information for motif discovery. We note that although
PRI-DN does better overall than the conservation based methods described earlier,
there are certain motifs that one or more of these methods find but PRI-DN does not.
This suggests that combining conservation and nucleosome occupancy might further
improve the performance of motif finders. We are currently working toward a unified
framework of informative priors based on nucleosome occupancy, TF structural class,
and conservation.
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Abstract. High-resolution array comparative genomic hybridization
(aCGH) provides exon-level mapping of DNA aberrations in cells or tis-
sues. Such aberrations are central to carcinogenesis and, in many cases,
central to targeted therapy of the cancers. Some of the aberrations are
sporadic, one-of-a-kind changes in particular tumor samples; others oc-
cur frequently and reflect common themes in cancer biology that have
interpretable, causal ramifications. Hence, the difficult task of identify-
ing and mapping common, overlapping genomic aberrations (including
amplifications and deletions) across a sample set is an important one; it
can provide insight for the discovery of oncogenes, tumor suppressors,
and the mechanisms by which they drive cancer development.

In this paper we present an efficient computational framework for
identification and statistical characterization of genomic aberrations that
are common to multiple cancer samples in a CGH data set. We present
and compare three different algorithmic approaches within the context
of that framework. Finally, we apply our methods to two datasets – a
collection of 20 breast cancer samples and a panel of 60 diverse human
tumor cell lines (the NCI-60). Those analyses identified both known and
novel common aberrations containing cancer-related genes. The potential
impact of the analytical methods is well demonstrated by new insights
into the patterns of deletion of CDKN2A (p16), a tumor suppressor gene
crucial for the genesis of many types of cancer.

Keywords: CGH, cancer, microarray data analysis, common aberra-
tions, breast cancer, NCI-60.

1 Introduction

Alterations in DNA copy number are characteristic of many cancer types and drive
some cancer pathogenesis processes as well as several developmental disorders.
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These alterations include large chromosomal gains and losses as well as smaller
scale amplifications and deletions. Genomic instability can often trigger the over-
expression or activation of oncogenes and the silencing of tumor suppressors.
Mapping regions of common genomic aberrations can therefore provide insight to
cancer pathogenesis and lead to discovery of cancer-related genes and the mecha-
nisms by which they drive the disease. Genomic aberrations are also routinely used
for diagnosis and clinical practice. For example,Erbb2amplification is a strong pre-
dictor of Herceptin activity in breast cancer patients [1]. Similarly, amplifications
of MDM2 and CDK4 genes on chromosome 12q13-15 are useful in distinguishing
well-differentiated liposarcomas from benign adipose tumors [2].

Technologies for measuring alterations in DNA copy number include local
fluorescence in situ hybridization-based techniques, Comparative Genomic Hy-
bridization (CGH [3,4,5]) and the advanced method termed array CGH (aCGH).
In aCGH differentially labeled tumor and normal DNA are co-hybridized to a mi-
croarray of thousands to hundreds of thousands of genomic BAC clones, cDNA or
oligonucleotide probes [6,7,8,9,10,11,12]. The use of oligonucleotide aCGH allows
the determination of changes in DNA copy number of relatively small chromo-
somal regions. Using high density arrays allows very high DNA copy number
resolution, in terms of genomic distances, down to single Kb and less.

A common first step in analyzing DNA copy number alterations (CNAs) data
consists of identifying aberrant (amplified or deleted) regions in each individual
sample. Aberration calling is the subject of extensive literature [13,14,15,16,17].
We briefly address this step of the process in Section 2.1.

To realize the full power of multi-sample, high-resolution oligo-aCGH studies,
we are interested in efficient computational methods that enable the automatic
elucidation of more complex structures. The focus of this paper is the discov-
ery of common genomic aberrations, either in a fixed set of samples or in a
significant subset of the samples. To date, little attention has been given in
the literature to formal treatments of this task. Two important exceptions are
the work of Disking et al [18] and Rouveirol et al [19]. In [18] the authors devel-
oped a method called Significance Testing for Aberrant Copy number (STAC) to
address the detection of DNA copy number aberrations across multiple aCGH
experiments. STAC uses two complementary statistical scores in combination
with a heuristic search strategy. The significance of both statistics is assessed,
and p-values are assigned to each location in the genome by using a permuta-
tion approach. In the work of Rouveirol et al [19] the authors propose a formal
framework for the task of detecting commonly aberrant regions in CGH data,
and present two algorithms (MAR and CMAR) for this task. The framework
requires, however, a segmentation algorithm that categorize each data point as
being gained/lost/normal. Therefore, this approach requires setting an arbitrary
threshold for the discretization step, and is not sensitive to the actual copy num-
ber change. In addition, the methods of Lipson et al [20], based on optimizing
a statistically motivated score function for genomic intervals can be adapted to
automatic identification of aberrations that are common in subsets of the sam-
ple set. Despite the lack of formal approaches to identifying common aberrations
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many studies do report common aberrations and their locations. Typically these
aberrations are determined by counting and applying human judgment to single
sample calls.

In this paper we present an efficient computational framework for identifica-
tion and statistical characterization of common genomic aberrations. In Section 2
we start with a description of the overall structure of the framework. The first
step, aimed at per-sample aberration calling is described in Section 2.1. The rest
of Section 2 is devoted to detailed description of three specific approaches for
detecting common aberrations. In Section 2.2 we present the commonly used
penetrance method, and its weighted version. We introduce a context-corrected
version of penetrance in Section 2.3. We conclude the methods section in Sec-
tion 2.4 with the CoCoA algorithm, that extends the context-corrected statistical
approach to multi-probe intervals.

In Section 3 we apply our methods to two DNA copy number cancer datasets,
one derived from a collection of 20 breast cancer samples, and the other a set of 60
cell lines. We compare the results of the three approached using the breast cancer
dataset, and highlight several interesting significant aberrations that contain
cancer related genes.

2 Framework

In this section we describe a framework for identifying and statistically scoring
aberrations that are reoccurring in multiple samples. In a nutshell, the process
consists of four steps.

1. Aberration Calling – Each of the samples’ data vector is analyzed indepen-
dently, and a set of aberrations (amplifications and deletions) is identified.

2. Listing candidate intervals - Given the collection of aberration sets called
for all samples, we construct a list of genomic intervals that will be evaluated.
We refer to these intervals as candidate intervals.

3. Scoring 〈candidate interval, sample〉 – In this step, we calculate a sta-
tistical significance score for each candidate interval with respect to each
sample.

4. Scoring candidate intervals – For each candidate interval, we combine the
per-sample scores derived in the previous step into a comprehensive score for
the candidate interval and estimate its statistical significance. In addition, we
also identify for each candidate interval the set of samples that supports it.

At the end of the process, we list the top-scoring candidate intervals together
with their support sets.

The framework is modular in nature, in the sense that different algorithms
and statistical models and methods can be used in each of the different steps. For
example, alternative algorithms can be used to call aberrations in the first step.
Similarly, alternative approaches may be employed to define candidate intervals
and interval scores.
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In the rest of this section we will describe several specific embodiments of the
framework. We begin (Section 2.1) by discussing single sample aberration calling,
which may be viewed as the input of the common aberration analysis procedure.
In Sections 2.2-2.4 we describe three different algorithms based on the framework.
For simplicity, we will describe only scores related to common amplifications,
although it is clear that symmetric scores apply to common deletions.

2.1 Single Sample Aberration Calling

The starting point of the procedure of identifying statistically significant common
aberrations is a set of aberrant segments for each sample. In this paper we
assume that, independent of the particular aberration-calling algorithm, the set
of aberration calls for a particular sample and a particular chromosome can be
represented by a step-function. The latter consists of discrete segments parallel
to the x-axis, that together span the entire chromosome. Formally, for a sample
s, denote the length (in Mb) of the chromosome by �. A step-function Fs :
[0, �] −→ R contains a segment for each aberration call (with the appropriate
boundaries and height). In addition, segments of height zero are used to represent
non-aberrant regions of the chromosome. See Figure 1 for an example of a step-
function.

Fig. 1. Step-function derived from chromosome 8 data for colon carcinoma cell line
HT29, data from Agilent 44K aCGH array. Solid blue line shows the step-function Fs.

In this study we used the StepGram algorithm for single sample aberration
calling. StepGram runs in subquadratic time in terms of the number of probes
on the chromosome. That translates to < 1 sec for 44K probes, and 3 sec for
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185K probes with current the implementation. StepGram is therefore particu-
larly suitable for analysis of large datasets and useful in the context of looking
for common aberrations. The details of StepGram were described previously by
Lipson et al [20], and an overview is provided here for completeness.

StepGram. Given a vector of real values V = (v1, . . . , vn) (corresponding to
normalized log-ratio measurements along a particular chromosome) the opti-
mization problem solved by StepGram involves identifying the interval I ⊆ [1, n]
that maximizes the score |

∑
i∈I vi/

√
I|. A branch-and-bound approach allows

solving this problem in O(n1.5) time complexity in practice. Following identifica-
tion of the maximal scoring interval the analysis is repeated by recursion to the
left, to the right, and within the identified interval until some lower threshold
score is attained. A stand-alone implementation of the StepGram algorithm is
publicly available at http://bioinfo.cs.technion.ac.il/stepgram/.

Other aberration-calling algorithms. Several other algorithms for identifying
aberrations in DNA copy number data have been described. These include CBS
[15] based on binary segmentation, CLAC [16] based on clustering, aCGH [13]
based on HMM, ACE [21] based on FDR, and others. Comparison studies of
several of these algorithms were conducted by Lai et al [14] and by Willenbrock
et al [17]. Note that many of them are segmentation algorithms in the sense that
they partition the chromosome into segments of equal copy number but do not
attempt to identify which of those segments are aberrant. For the purpose of
identifying common aberrations the segmentation output is typically sufficient.

2.2 Weighted and Unweighted Penetrance

We begin by describing the commonly-used penetrance score and its role within
the common aberrations analysis framework. Although the penetrance score is
not a measure of statistical significance, it does exemplify the different steps of
the process.

Candidate intervals. In the case of the penetrance score, the candidate intervals
are defined simply as the positions of the probes in the aCGH array. Similar
definitions, such as uniformly-spaced pseudo-probes, are also possible. In either
case, for a particular chromosome the candidate intervals can be formally defined
as a set of non-overlapping intervals I = {[xi − ε, xi + ε]}. Here ε is an arbitrary
constant smaller then the minimum distance between any two probes on the
array.

Scoring 〈interval, sample〉. For a given interval I = [xi − ε, xi + ε] and sample
s the unweighted amplification penetrance score is defined as a binary score
α(I, s) = 1Fs(xi)>t for some threshold t. The weighted penetrance scores take
into account also the height of the aberration: α′(I, s) = 1Fs(xi)>t · Fs(xi).

Scoring candidate intervals. The overall penetrance score for a given candidate
interval I is defined simply as α(I) =

∑
s α(I, s). As noted before, this score

does not reflect any measure of statistical significance.
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2.3 Context-Corrected Penetrance

A variant of the penetrance score provides a measure of statistical significance of
the common aberration at the specified probe. The significance is defined with
respect to the genomic background of each sample, as represented by the pattern
of aberrations over each of the samples. In other words, given the specific set of
aberration calls for each sample, we wish to describe our “surprise” at seeing a
specific set of aberrations co-localized at the same genomic position. Note that
the context provided for the score may be either genomic or chromosomal.

Candidate intervals. As was in the case of the penetrance score, the candidate
intervals are defined as as a set of non-overlapping intervals at specific genomic
positions: I = {[xi − ε, xi + ε]}.

Scoring 〈interval, sample〉. For the context-corrected score, we wish the score
of a given interval I = [xi − ε, xi + ε] and sample s to reflect the probability
of finding an interval of similar (or higher) amplitude given the context of the
sample. The score is therefore defined as

p(I, s) =
|{xj ∈ I : Fs(xj) ≥ Fs(xi)}|

|I| .

Scoring candidate intervals. Let S be the set of samples, with m = |S|. For
a given interval I we now have m scores. Note that the interval I might be
aberrant in only a subset of the samples, we therefore seek the subset of samples
that will provide maximal significance. Assume, w.l.o.g., that p(I, 1) ≤ p(I, 2) ≤
. . . ≤ p(I, m). Looking at the first k samples, the probability of concurrently
observing k or more scores of probability p = p(I, k) or lower is provided by the
Binomial distribution:

ρk(I) = Binom(k, m, p) =
m∑

i=k

(
m

i

)

pi(1 − p)m−i

Since we are interested in identifying aberrations that occur in at least two
samples, and to address multiple testing concerns, we define a more conservative
score that ignores the first success in the computation,

ρ
′

k(I) = Binom(k − 1, m − 1, p)

We define the score of I, to be the minimum of these scores over all values of k,
namely,

ρ(I) = min
k=1,...,m−1

ρ
′

k(I).

2.4 Context-Corrected Common Aberrations (CoCoA)

Although the context-corrected penetrance algorithm will clearly detect statisti-
cally significant common aberrations that are affecting a single probe, its ability
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to detect larger significant aberrations is not guaranteed. In some cases, a multi-
probe common aberration may be significant as a whole, although the score of
each single probe contained in the aberration may not show statistical signifi-
cance. For example, consider the case in which each of many samples contains
many random high-amplitude single-probe amplifications and a common large
moderate-amplitude amplification. In that case, the size of the aberration may
help us to determine its significance, since not many random aberrations of the
same size will be detected in the background.

The third, most sophisticated, algorithm for identifying significant common
aberrations expands the concept of a context-corrected significance score to in-
tervals that are larger than a single probe.

Candidate intervals. Consider a particular chromosome, c, and denote by T =
{[b1, e1], . . . , [bk, ek]} the set of all genomic intervals in c that are called as aber-
rant in any of the samples. The set of candidate intervals in c is defined to be all
genomic intervals that starts at the left side of one interval from T and end at
the right side of another. That is, I = {[bi, ej ] : 1 ≤ i, j ≤ k, and bi ≤ ej}. Note
that the size of I is quadratic in k, the number of called aberrations. A smaller
list of candidate intervals can be constructed by considering only intervals in T
and intersections thereof. that is I = T ∪ {t ∩ s : t, s ∈ T }. The size of I is
typically o(k2), and can be constructed in linear time (proof omitted).

Scoring 〈interval, sample〉. Applying the same reasoning as for the Context-
Corrected Penetrance, we wish the score of a given interval I = [b, e] and sample
s to reflect the probability of finding an interval of the same length with a similar
(or higher) amplitude given the context of the sample. More specifically, assume
we pick a random interval J of the same size as I in the context (that is, in
the same chromosome, or in the entire genome). The score is defined as the
probability that the average height of J would be as high (or higher) as the
height of I,

p(I, s) = PrJ:|J|=|I| (hs(J) ≥ hs(I)) .

where |I| denotes the genomic size I, and hs(J) denotes the average height of the
step-function Fs over the interval J . We outline now how to computed p(I, s)
efficiently (in linear time). Denote by Fs,�(·) the �-window moving average of
Fs. The score p(I, s), can now be expressed as a function of Fs,�,

p(I, s) =
|x : Fs,�(x) ≥ hs(I)|

c − �
.

where c denoted the length of the chromosome. Since Fs is a step-function,
its moving average Fs,� is a piecewise-linear function. Thus, we can efficiently
identify the regions where Fs,�(x) ≥ hs(i), and compute p(I, s).

Scoring candidate intervals. After computing context-corrected per-sample
scores for I, we combine them into a statistical score for I using the same bino-
mial distribution calculation as detailed in Section 2.3.
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3 Results

In this section we demonstrate the application of the above methods to DNA
copy number data from two datasets, both measured using Agilent 44K aCGH
arrays:

1. A set of 20 primary breast tumor samples were included in this study. These
samples are part of a larger patient cohort consisting of 920 breast cancer
patients stage I and II referred for surgical treatment and where detection of
isolated tumor cells in bone marrow was performed (The Oslo Micrometas-
tases Study) [22]. Tumor material were fresh frozen immediately after surgery
and stored at -80C until use. Although the sample set includes several dis-
tinct subtypes that had previously been characterized [23,24], due to its
relative homogeneity, we expected to encounter common aberrations typical
of breast cancer.

2. A diverse set of 60 cancer cell-lines known as the NCI-60 cell line panel [25].
The NCI-60 panel has been used by the Developmental Therapeutics Pro-
gram (DTP) of the U.S. National Cancer Institute (NCI) to screen > 100, 000
chemical compounds and natural product extracts for anticancer activity
since 1990 [26,27,25]. The NCI-60 panel is comprised of cell lines from di-
verse human cancers, including leukemias, melanomas, and cancers of renal,
ovarian, lung, colon, breast, prostate, and central nervous system origin. The
NCI-60 have been profiled more comprehensively at the DNA, RNA, protein,
and functional levels than any other set of cells in existence. The resulting
information on molecular characteristics and their relationship to patterns
of drug activity have proven fruitful for studies of drug mechanisms of action
and resistance [28,29,30,31,25]. Because of its diversity, we expected to find
mostly aberrations common only to specific tissue of origin, and possibly
some that were found more generally in the panel.

We first compared three algorithms – simple unweighted penetrance, context-
corrected penetrance, and CoCoA – on the breast tumor dataset. Overall, the
three algorithms detected similar patterns, although the specific output con-
tained obvious differences. In Figure 2 we show the output of the three algo-
rithms for chromosome 9 of the breast tumor dataset. The top panel (a) depicts
the aberration calls made on that set of samples, using the StepGram algorithm
[20]1. Several common aberrations, detectable by visual inspection, are indicated
at the top of the panel by green and red arrows (deletions and amplifications,
respectively). The lower three panels (b-d) depict the output of the three al-
gorithms for the chromosome, aligned by genomic position along the x-axis.
Output for the simple penetrance method is expressed in fraction of affected
samples, whereas the output for the remaining algorithms is expressed in units
of − log10 ρ(I). Note that while the output of the two penetrance algorithms
(b,c) is simple to plot in genomic coordinates (by probe location), the output

1 The data points were first centered by most common ploidy. StepGram was then
applied with a threshold parameter of 5 stds.
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Fig. 2. Common aberrations in a panel of 20 breast tumor samples, chromosome 9: a)
Aberration calls in each of the tumor samples (amplifications noted in red, deletion in
green). Aberrations were called using StepGram algorithm [20] on centered data, with
threshold of 5 stds; b) unweighted penetrance (fraction of samples), c) context-corrected
penetrance, d) context-corrected common aberrations (CoCoA), where each probe was
scored according to the maximal-scoring interval containing it. Positive values denote
amplifications, negative values — deletions. Scores for last two methods are given in
− log10 ρ(I) units, only aberrations with score ρ(I) < 10−3 and larger than one probe
are denoted. Some specific common aberrations in the data are highlighted by arrows
at the top of the figure.

of the CoCoA algorithm was transformed into a genomic plot by setting the
value of each probe to the score of the maximally-scoring common interval that
contains it.

The most prominent common aberrations in the chromosome shown are
clearly the large amplification between 110-120Mb and the smaller deletion at
95Mb, both of which were detected by all algorithms. The results of the simple
penetrance method, which is a non-statistical method, can be interpreted loosely
based on setting of some arbitrary threshold. It is clear that a significant part
of the genome can be considered to contain common aberrations if that method
is used. The context-corrected penetrance method gives improved output in the
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Table 1. Number of common aberrations in the breast cancer data

Amplifications Deletions Total

< 200Kb 160 118 278
≥ 200Kb 86 32 118

Total 246 150 396

a) b)

Fig. 3. Two common focal deletions identified in a panel of 20 breast tumor samples: a)
Common deletion in 9q22.32 disrupting FANCC – a gene that encodes a DNA repair
protein (11/20 samples, ρ(I) = 10−21), b) Common deletion in 5q13.2 disrupting a
cyclin gene CCNB1 (8/20 samples, ρ(I) = 10−11.8)

sense that only very specific parts of the chromosome are deemed to contain
common aberrations, based on a very modest threshold ρ(I) < 10−3. Clearly,
from the biological point of view, specific output of this type, a result of the
correction for the chromosomal context, is highly preferable.

The superiority of the common aberrations method (CoCoA) lies in the higher
significance that it gives common aberrations that are longer than one probe.
This feature allows higher sensitivity for lower-amplitude common aberrations
without loss of specificity. An example of the increased sensitivity is the common
amplification detected between 1-5Mb. That aberration is not clearly visible in
the outputs of the two methods based on single probe.

Overall, CoCoA identified 396 disjoint common aberrations with score ρ(I) <
10−3 in the breast tumor dataset (see Table 1). The range of sizes of the common
aberrations identified on the basis of more than a single probe is 1.7Kb - 60Mb.
The aberrations are supported by 3-17 samples each. Two specific common focal
deletions that were identified in the data set are depicted in Figure 3. The two

Table 2. Number of common aberrations in the NCI-60 data

Amplifications Deletions Total

< 200Kb 216 145 361
≥ 200Kb 60 50 110

Total 276 195 471
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Fig. 4. A common deletion in 9p that reoccurs in a large fraction (20/60) of the cell-
lines of the NCI-60 panel. Common aberration analysis points to the focus of the
deletion as being the known tumor suppressor gene CDNK2A (p16), with ρ(I) = 10−54.

deletions, identified in 5q13.2 and 9q22.32, appear to be disrupting two genes
with direct involvement in tumor development – CCNB1 (a cyclin gene) and
FANCC (a gene encoding a DNA repair protein), respectively. Slightly larger
intervals are also aberrant in many samples. The highlighted intervals, however,
have the strongest statistical significance.

In the NCI-60 cell line panel CoCoA identified 471 common aberrations
(see Table 2). The range of sizes of the common aberrations identified on the ba-
sis of more than a single probe is 0.5kb - 100Mb, and aberrations are supported
by 3-38 samples each.

One striking common aberration detected in the NCI-60 dataset was a dele-
tion of CDKN2A (p16), a well-characterized tumor-suppressor gene (Figure 4).
Clearly the deletion of this gene is a common feature of many of the cell-lines
(20/60 of the samples), crossing the boundaries of cell-line subtype. Note also
that even though some samples have deletions over larger regions, they all over-
lap at the genomic location of the p16 gene itself. This observation indicates
that a selective pressure to delete p16 was part of the development of all 20 cell
line populations and represents a very common feature of cancer development.
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4 Discussion

In this paper we propose a computational framework for identifying and ana-
lyzing copy number aberrations (amplifications and deletions) that occur across
multiple samples and for assessing their statistical significance. The framework
allows using different aberration calling algorithms as input, independent of their
statistical modeling.

Two central features of our methods are: A)When assessing the significance of
a particular aberration, we use the height of the aberration, as opposed to requir-
ing an additional threshold to discretize the aberration calls. B) The ability to
address the context of the aberration structures in the individual samples. Given
a candidate interval, its significance at a particular sample depends not only on
the average height of the candidate interval, but also on the overall prevalence
of aberrations in that sample. We describe two methods that have those impor-
tant features. The CoCoA method scores intervals while the context-corrected
penetrance method scores individual loci. In theory, there is a larger statistical
power in considering multi-loci aberrations as both a supporting sample set and
a genomic interval are identified together. Another difference between probe level
and interval level analysis, is that in probe level analysis an additional thresh-
olding step is required to determine the boundaries of the common aberrations.
Note that for any single locus penetrance based method intervals with consistent
high scoring can theoretically arise from aberrations in different sets of samples.
In practice this is usually not the case. When scoring intervals, as CoCoA does,
sample integrity is always preserved: the set of samples over which an interval is
reported as a common aberration is the same for all loci spanned by said interval.

Our framework is very efficient. When run on the NCI60 sample set our pro-
cess takes under 1 minute, including the first step of single sample aberration
calling, using StepGram. This enables interactive data analysis that is not pos-
sible for less efficient approaches. This combined approach will scale up to larger
datasets and to denser arrays that allow for much finer mapping of aberrant re-
gions. We emphasize that this requires not only an efficient approach to common
aberrations but also a very efficient aberration-calling methods.

One important previous formal treatment of calling common aberrations in
CGH data is described in [18]. The method described therein, called STAC,
is based on a heuristic search seeking to optimize statistical scores assigned
to candidate regions of common aberrations. STAC’s search is computationally
intensive and performance is further limited by relying on permutations and
simulations to obtain significance estimates. According to the paper’s Supple-
mentary material STAC implementation takes days to run on relatively small
datasets of 42 and 47 samples, measured using a low resolution (approximately
1Mb) technology. STAC treats gains and losses as binary and does not takes into
account the exact amplitude of the measured signal.

We have shown examples of applying the framework on a set of breast cancer
samples that identify both known and novel cancer related genes. It is interesting
to note p16 as a universal deletion in the NCI60 panel. FANCC, a gene from the
Fanconi anemia group of genes (FA), which codes to a DNA repair protein is
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deleted in 11 out of the 20 breast cancer samples. FA genes are known to be co-
factors interacting with BRCA2 in breast cancer pathogenesis. In a recent study
[32] the authors demonstrate a role for the FA pathway in interstrand cross-
link repair which is independent from that of BRCA2 in the same process. This
finding and our implication of FANCC as a fairly focal common breast cancer
deletion together suggest an important role for FANCC under-functioning in
cancer pathogenesis.

Lastly, we note that the methods herein presented can be extended to identify
differential aberrations in DNA copy number data coming from several pheno-
typic classes. A more detailed investigation of this application will be the topic
of future work.
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Abstract. Genomic changes such as copy number alterations are thought
to be one of the major underlying causes of human phenotypic variation
among normal and disease subjects [23,11,25,26,5,4,7,18]. These include
chromosomal regions with so-called copy number alterations: instead of
the expected two copies, a section of the chromosome for a particular indi-
vidual may have zero copies (homozygous deletion), one copy (hemizygous
deletions), or more than two copies (amplifications). The canonical exam-
ple is Down syndrome which is caused by an extra copy of chromosome 21.
Identification of such abnormalities in smaller regions has been of great in-
terest, because it is believed to be an underlying cause of cancer.

More than one decade ago comparative genomic hybridization (CGH)
technology was developed to detect copy number changes in a high-
throughput fashion. However, this technology only provides a 10 MB
resolution which limits the ability to detect copy number alterations span-
ning small regions. It is widely believed that a copy number alteration as
small as one base can have significant downstream effects, thus microar-
ray manufacturers have developed technologies that provide much higher
resolution. Unfortunately, strong probe effects and variation introduced
by sample preparation procedures have made single-point copy number
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estimates too imprecise to be useful. CGH arrays use a two-color hybridiza-
tion, usually comparing a sample of interest to a reference sample, which
to some degree removes the probe effect. However, the resolution is not
nearly high enough to provide single-point copy number estimates.

Various groups have proposed statistical procedures that pool data
from neighboring locations to successfully improve precision. However,
these procedure need to average across relatively large regions to work ef-
fectively thus greatly reducing the resolution. Recently, regression-type
models that account for probe-effect have been proposed and appear
to improve accuracy as well as precision. In this paper, we propose a
mixture model solution specifically designed for single-point estimation,
that provides various advantages over the existing methodology. We use
a 314 sample database, constructed with public datasets, to motivate
and fit models for the conditional distribution of the observed intensities
given allele specific copy numbers. With the estimated models in place
we can compute posterior probabilities that provide a useful prediction
rule as well as a confidence measure for each call. Software to imple-
ment this procedure will be available in the Bioconductor oligo package
(http://www.bioconductor.org).

1 Introduction

The demand for technologies that provide high-resolution measurements for copy
number estimates has driven microarray manufacturers such as Illumina and
Nimblegen to develop CGH-SNP microarrays [20,6,24]. Although Affymetrix has
not yet developed a product specific for copy number analysis, various groups,
including Affymetrix, have described statistical methodology that make use of
their SNP chips, originally developed for genotyping [28,1,9,19,13,15,8,16], to
provide successful copy number estimation algorithms. An advantage of the SNP
chip technology is that, given the popularity of the genotyping application, the
protocols used to prepare the genomic DNA samples is well developed and tested.
Another advantage is that we can obtain genotype calls which permits allele
specific copy number estimation which in turn can be used to predict parent
specific copy number [16].

The genotyping platform provided by Affymetrix interrogates hundreds of
thousands of human single nucleotide polymorphisms (SNPs) on a microarray.
DNA is obtained and fragmented at known locations so that the SNPs are far
from the ends of these fragments, the fragmented DNA is amplified with a poly-
merase chain reaction (PCR), and the sample is labeled and hybridized to an
array containing probes designed to interrogate the resulting fragments. We re-
fer to the measurements obtained from these probes as the feature intensities.
There are currently three products available from Affymetrix: an array cover-
ing approximately 10,000 SNPs (GeneChip Human Mapping 10K), a pair of
arrays covering approximately 100,000 SNPs (GeneChip Human Mapping 50K
Xba and Hind Array), and a pair of arrays covering approximately 500,000 SNPs
(GeneChip Human Mapping 250K Nsp Array and Sty Array). These are referred
to as the 10K, 100K, and 500K chips respectively.
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Fig. 1. Log (base 2) intensity, Si,j plotted against chromosomal position of SNP i.
Chromosomes 20, 21, 22, and X are shown for male with Down syndrome. Notice that
we expect values from chromosome 21 and X to be higher (3 copies) and lower (1 copy)
respectively.

To motivate the model and estimation procedures described here we need to
understand the basics of the feature-level data. We provide the essential details
here and refer readers to Kennedy et al. [14] for a complete description. Each SNP
on the array is represented by a collection of probe quartets. As with Affymetrix
expression arrays, the probes are defined by 25-mer oligonucleotide molecules re-
ferred to as perfect match (PM) probes1. A difference with expression arrays is
that PM probes differ in three important ways. First, two alleles are interrogated
(for most SNPs only two alleles are observed in nature). These are denoted by A
and B and divide the probes into two groups of equal size. For each PM probe
representing the A allele there is an allele B that differs by just one base pair (the
SNP). Second, features are included to represent the sense and antisense strands.
This difference divides the probes into two groups that are not necessarily of the
same size. Finally, for each allele/strand combination, various features are added
by shifting the position of the SNP within the probe. The position shift ranges only
from -4 to 4 bases, therefore within each strands the probes are relatively similar.

Most copy number algorithms can be divided into three main steps which
we refer to as 1) the preprocessing step, 2) the copy number estimation step,
and 3) the smoothing across the chromosome step. In the preprocessing step we
summarize feature intensities into two quantities, representative of allele A and
B. We refer to this step as preprocessing. In this paper, we use the following
notation to denote the preprocessed data: θA,i,j and θB,i,j are the logarithms
(base 2) of quantities proportional to the amount of DNA in target sample j
associated with alleles A and B for SNP i. In the estimation step, we use these
θs to estimate the true copy number, which we denote with Ci,j . The allele spe-
cific copy number are denoted with CA,i,j and CB,j,i. Notice that the total copy

1 There are also mismatch probes MM which we completely ignore because the man-
ufacture has plans of no longer using them.
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number is the sum of the allele specific copy numbers, i.e. Ci,j = CA,i,j + CB,i,j .
As we demonstrate here (see Figure 1), estimates of θA and θB are, in general,
not precise enough to provide useful copy number calls. Therefore, most copy
number estimation algorithms include the smoothing step in which copy number
estimates from neighboring regions are averaged to improve the signal to noise
ratio. These techniques range from the simple methods such as running median
to more complicated ones such as hidden Markov models (HMM). In Section 3
we review some of the existing methods and motivate our mixture model ap-
proach. In Section 4 we describe the mixture model approach. In Sections 5 we
present results and discussion respectively. Throughout this extended abstract
we use data obtained from collaborators and public repositories which we briefly
describe in Section 2.

2 Control Data

In Section 4 we describe a model that is trained using a reference set of 314 nor-
mal samples hybridized to Affymetrix’s 100K array. We screened out samples
not achieving the quality standard described by Carvalho et al [2]. Our reference
set consists of 86 Hapmap samples, 124 samples from the Coriell Repositories
(42 African American, 20 Asians, 40 Caucasians and 22 samples from the poly-
morphisms discovery panel) [3], and 104 from Chakravarti’s lab. The test data
was sampled from 20 Trisomy samples from Pevsner’s lab.

3 Previous Work and Motivation

The first algorithms we describe do not provide allele specific results. We there-
fore define the total copy number quantity Si,j = log2(2θA,i,j + 2θB,i,j). Ideally
the Si,j are proportional to the true log-scale copy number. Figure 1A shows
data for a male with Down syndrome. The Si,j are highly noisy and differences
between chromosome 21 and X are hard to detect unless we smooth along the
chromosome (in Figure 1 we show the results of running median). The lessons
learned from expression arrays help understand this problem. Various authors
have proposed an additive background/multiplicative model for gene expres-
sion microarray [22,10,27]. Furthermore, for Affymetrix arrays, various authors
[12,17] have clearly shown the existence of a strong multiplicative probe-specific
effect. Probe-specific background noise, attributed to non-specific binding, have
also been described [27]. Others [21,16,2] demonstrate that similar sized effects
are seen with SNP chips. These effects are strong enough to be clearly seen
even after averaging the various feature intensities associated with each SNP.
Extending these findings to the copy number case results in the following model:

θa,i,j = log (βa,i + φa,icaεa,i,j) (1)

with a = A, B denoting allele, i identifies the SNP, j identifies the sample,
β represents a positive valued SNP-specific background level, φ represents a
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Fig. 2. CARAT regression prediction on a SNP from Chromosome X. The dashed grey
lines indicate allele specific copy number = 0,1,2 (from low to high). Figure A) and B)
shows the allele specific prediction of copy number (log base 2) as compared to the real
copy number (log base 2). We can see that even though the middle of each boxplot
lies closely to the intersection of the dashed lines and the diagonal line, the ranges of
boxplots overlap. Figure C) shows a scatterplot of preprocessed log intensities for allele
A and B.

SNP-specific probe-effect, and ε is multiplicative measurement error. Assuming
this model holds, relatively simple calculations demonstrate that large values
of βa,i result in attenuation of real differences and that large variability of φa,i

across SNPs explains the large variance seen in Figure 1A.
Affymetrix’s Copy Number Analysis Tool (CNAT) [1,9] deals with the probe-

effect using a simple yet effective technique. CNAT does not provide allele specific
results and concentrates on estimating the overall copy number. For the prepro-
cessing step, all feature intensities related to the SNP are therefore averaged to
form Si,j . Using dozens of control subjects CNAT defines a SNP specific aver-
age S̄ig, standard deviation σ̂ig , for each genotype g=AA,AB,BB. Values Si,j′ ,
from any new sample j′ that are called genotype g are standardized in the usual
manner: (Si,j′ − S̄ig)/σ̂ig . A predefined regression equation is then used to trans-
form these standardized values to the copy number scale. The standardized S
values are used to obtain p-values from the null hypothesis the S = 0 (C = 2).
Figure 1B shows de-meaned values for the same data shown in Figure 1A. The
improvement is clear and it is due to the fact that φ is partially removed from
the de-mean-ed values. However, notice that the signal to noise ratio still ap-
pears to be large: the separation between chromosomes with known differences
is far from perfect. To avoid false positives, the third step in CNAT involves
looking for strings of consecutive p-values that are smaller than some predefined
cut-off. Other smoothing approaches have been used. For example, Zhao et al.
[28] proposes the use Hidden Markov models (HMM) to define the procedure
implemented by dChip.

Other authors have noted that further improvements can be obtained by
reducing the variance at the preprocessing step. For example, several groups
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Fig. 3. Conditional joint distributions of [θi,j |Ci,j = c] for a SNP on chromosome X
and a SNP on chromosome 21. The X-axis is the log base 2 intensity for allele B. The
Y-axis is the log base 2 intensity for allele A. The red dots are from 45 new samples
of male normal and 20 Down syndrome patients, respectively. The ellipses shows the
95% critical region around the centers. The brown ellipses represent C = 3, Ci,j =
(0, 3), (1, 2), (2, 1), (3, 0). The orange ellipses represent C = 2, Ci,j = (0, 2), (1, 1), (2, 0).
The tan ellipses represent C = 1, Ci,j = (0, 1), (1, 0). The yellow ellipses represent
C = 0, Ci,j = (0, 0).

[19,13,15] have used probe-sequence information, mainly GC content, and frag-
ment length to predict and remove some of the probe-effect related variability.
However, even after accounting for such factors the signal to noise ratio remains
too low to make single-point cop number calls, thus these authors propose their
own versions of the smoothing step.

Huang et al. [8] noted that CNAT’s mean removal approach does not fully
remove the probe effect because it does not properly deal with the additive back-
ground effect β. They propose the Copy Number Analysis with Regression And
Tree (CARAT) algorithm which uses a non-linear regression model, based on
model (1), to account for the probe-specific effects. To estimate model parameters
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they use a control dataset composed of dozens of arrays. First, genotype calls are
obtained and treated as known. This permits estimation of allele specific param-
eter estimates. For example, for allele A we have known values of cA = 0, cB = 2
(BB genotype), cA = 1, cB = 1 (AB genotype), and (cA = 2, cB = 0 (AA geno-
type) and thus we can estimate βa,i and φa,i with, for example, least squares, for
each SNP i and each allele a = A, B. For a new sample, we can predict cA, cB

using the fitted parameters and equation (1). Calls can then be based on cut-offs
for the prediction of ĉA + ĉB. Huang et al. [8] suggest using [0, 1.5), [1.5, 2.5],
(2.5, ∞) for total copy number < 2,= 2,> 2 respectively. Figure 2A shows the
data used in the regression for allele A from a randomly chosen SNP. The figure
demonstrates that the model works reasonably well but that the signal to noise
ratio is not large enough to provide perfect accuracy (the boxplots overlap).
CARAT utilized a regression tree approach in the smoothing step.

The Probe-level allele-specific quantitation (PLASQ) [16] procedure is similar
to CARAT. Two major difference is that PLASQ fits model (1) to the feature-
level data and that PLASQ does not rely on external genotype calls. Although,
in our opinion, PLASQ provides a superior model-based framework than any
other approach, it is computationally challenging to implement. This is because
a non-linear estimation procedure is performed at the feature-level for every
SNP. Furthermore, it is difficult to adapt it to be robust to outliers and to take
probe-sequence and fragment size into account.

Model based approaches such as CARAT and PLASQ provide a great ad-
vantage over previous ones: reliable confidence intervals can be computed for
single-point copy number estimates. Huang et al. [8] point out that their uncer-
tainty assessment permits one to call a relatively large group of SNPs and keep
the false positive rate relatively low. We now briefly describe a simple adaptation
of these methods that provides further improvements.

Notice that all of the above described algorithms use regression-type ap-
proaches to give a continuous prediction of copy number. The current approaches
rely on three assumptions that we believe are not exactly true. The first is that
the linear relationship predicted by model 1. Figure 2A and 2B show that there
are small but significant deviations from these models. Other SNPs (not shown)
show slightly larger deviations. The second is that θA and θB are independent.
This assumption is clearly not true as demonstrated by Figures 2C and 3. The
third assumption is that the variance of the measurement error term does not
depend on allele-specific copy number values. Figure 3 also shows this is not the
case. In general, we are making convenience assumptions regarding the condi-
tional probabilities of (θA, θB)′ given allele-specific copy number that might be
hurting our bottom-line results.

Theoretically, one can show that the best predictor of discrete classes given
continuous covariates is Bayes classifier. Bayes classifier is a function of the
conditional distribution of the predictors given the classes which we can not
always estimate effectively. In the next section we describe how we can use the
large amount of public data and equation (1) to obtain useful estimates of these
conditional distributions and therefore improved copy number calls.
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Another problem with the above mentioned approaches is that they do not
take into account the strong lab/study effects that are seen in SNP chip data [2].
Huang et al. [8] notice this problem and propose an ad-hoc solution that relies
on having genotype calls for many samples from each study. This approach is
clearly not usable in cases where we wish to obtain copy number calls for a small
batch of new samples. Recently, Carvalho et al. [2] proposed a preprocessing
algorithm, SNP-RMA, that remove much of the lab-effect. We use SNP-RMA
preprocessed values throughout this extended abstract. These authors also de-
scribe the CRLMM procedure which we use to obtain genotype calls for the
control dataset.

4 Allele-Specific Mixture Model

Figure 2C shows a scatterplot of θA vs. θB values from hundreds of control arrays
for a particular SNP. The three genotypes are clearly seen. Furthermore each of
the three “clouds” looks bivariate normal with the AB genotype showing signs
of correlation. Most SNPs show very similar plots and motivate the following
model:

[θi,j |Ci,j = c] =
(

γA,cA,i

γB,cB ,i

)

+
(

εA,cA,i,j

εA,cB,i,j

)

(2)

with θi,j = (θA, θB)′, Ci,j = (CA,i,j , CB,i,j)′ representing the un-observed true
copy number of alleles A and B for SNP i on sample j, c = (cA, cB)′ are the
possible values Ci,j can take, (γA,cA,i, γB,cB,i)′ accounts for the shifts in loca-
tion caused by the probe-effect, and (εA,cA,i,j , εB,cB ,i,j)′ is a bivariate normal
error with mean 0 and copy-number-specific covariance matrix Σc,i which is
defined by the allele-copy-number-specific standard deviations σcA,i, σcB ,i and
copy-number-pair-specific correlation ρcA,cB,i.

Remember that the sequence composition of the sense and antisense probes
are quite different. Carvalho et al. [2] point out that, for a few hundred SNPs,
one of the two strands does not appear to be sensitive to genotype changes. This
difference is also observed with probes within the same strand. Huang et al. [8]
used arbitrary cutoffs to select probes with strong allelic dosage response for
further analysis. For this reason, we propose fitting the above model for probe-
level data. Currently, the SNP-RMA preprocessing provides, by default, separate
values of θA and θB for sense and antisense. However, without loss of generality
we describe the procedure as if there was only one probe.

For a large set of control data, described in Section 2, we obtain genotype
calls, act as if these are known. This implies we know C for all these samples
and we can estimate the γs by simply using:

γ̂A,cA,i = N−1
cA,i

∑

{j: CA,i,j=cA}
θA,i,j , cA = 0, 1, 2 (3)

with NcA,i the number of samples with genotypes implying CA,i,j = cA. The
covariance matrix Σc,i,s is computed in a similar way, namely using the sample
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covariance matrix of θi,j for samples j implying Ci,j = c.2 Because we assume
the εs are normal, these sets of parameter estimates define the conditional dis-
tributions for C = (2, 0), (1, 1) and (0, 2). Notice that model (1) is not used to
form any of these conditional distributions. Next we assume that the behavior of
the θs for CA = cA is similar for all values of CB and vice-versa. We then infer
the conditional means for C = (0, 0), (0, 1), (1, 0). For example the conditional
mean for SNP i when C = (0, 1) will be (γA,0,i, γB,1,i). The covariance matrix
is inferred in a similar way (described below). To predict (γA,cA,i, γB,cB,i)′ for
C = (3, 0),(2, 1),(1, 2), (0, 3),(4, 0),(3, 1),. . ., we use model 1. For example, we
first use the estimates of γA,0,i, γA,1,i, γA,2,i as outcomes in model (1) for values
of CA = 0, 1, 2 respectively, fit the model, and obtain estimates of βA,i and φA,i,
which permit us to predict γA,3,i, for CA = 3.

We now describe how we infer Σc,i for cases other than C = (2, 0), (1, 1),(0, 2)
using the estimates we already have. For the A and B variance components
(the diagonal entry) of the covariance matrix, we simply assume they depend
only on cA and cB respectively. For cA > 2 and cB > 2 we assume the same
variance as cA = 2 and cB = 2 respectively. We therefore use the estimates of
the six parameters: σA,cA,i,cA = 0, 1, 2, σB,cB ,i,cB = 0, 1, 2 and do not need to
predict any new values. The correlation component is a bit more difficult. We
assume that the correlation coefficient when CA > 0 and CB > 0 is the same
as C = (1, 1). The rationale for this is that correlations are due to PCR effects
being different from sample to sample. Thus if both allele fragments are present,
the resulting quantities will be similar regardless of the starting quantities. When
one of the two alleles is not present (PCR no longer makes it grow) we assume
that the correlation for case where CA > 0 but CB = 0 is the same as C = (2, 0)
and CA = 0 but CB > 0 the same as C = (0, 2). For C = (0, 0) we simply
assume independence. With this assumption in place we can produce conditional
expectations for any value of C given the observed θs, described as follows.

With the model parameter estimates in place we are able to provide posterior
probabilities for allele specific copy number. Furthermore, we can compute these
posterior probabilities for total copy number:

[CA,i,j + CB,i,j = c|θi,j ]

∝
∑

{c: cA+cB=c}
[θi,j |Ci,j = c] × [Ci,j = c]

where [θi,j |Ci,j = c] is the bivariate normal distribution defined by model (3).
The marginal probability of the C pair can be pre-specified and used to control
specificity and sensitivity for any copy number value. We can obtain mean-
ingful values by decomposing the probability into: Pr(CA,i,j = cA, CB,i,j =
cB) = Pr(CA,i,j = cA, CB,i,j = cB|CA,i,j + CB,i,j = c) Pr(CA,i,j + CB,i,j = c).
The first component relates to the proportion of each genotype in the popula-
tion and can be computed using the Hardy-Weinberg Equilibrium for diploids

2 In this extended abstract we actually use robust (to outliers) versions of these sample
means and covariances.
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(CA,i,j +CB,i,j = 2). The second component relates to the probability of each al-
teration c = 0, 1, 3, 4, . . . which is unknown. We recommend the user define these
probabilities to control specificity and sensitivity. For the examples shown in this
extended abstract we assigned equal probabilities to CA,i,j +CB,i,j = 0, 1, . . . , 6.3

Once we have calculated the probabilities above we can provide estimates of copy
number by, for example, computing the expected value of C = CA + CB .

A summary of the algorithm:

1. For each array, we obtain the pre-processed probe-level log intensities from
snpRMA, the pre-processing algorithm used by CRLMM. These resulting
measurements are θA,+,θA,−,θB,+,θB,− for each SNP.

2. We estimate the conditional probability of these measurements, given al-
lele specific copy number. We assume a bivariate normal for the A and B
alleles at each copy number pair. This reduces the number of parameters
greatly and we can estimate them precisely using a large training set. We
use genotype calls to treat the allele specific copy number as known. We do
this independently for sense (+) and antisense (-). More specifically:

3. We assume the prior probability for the joint distribution of CA and CB is
a uniform distribution.

4. For a new dataset, we use the above estimates to calculate the posterior
probability for CA and CB being 0, 1, 2, . . . , K (K is the maximum copy
number permitted). We average the sense and antisense results.

5. Finally, we compute the posterior probability of CA+CB being 0, 1, 2, . . . , K.

5 Results

We now describe some of the applications of the hierarchical model described
above. In general we refer to our procedure as the Copy Number-Robust Linear
Model and Mixture Model (CN-RLMM) procedure.

Figure 3 gives the SNP-specific bivariate normal distribution of θ for C =
(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), depicted in ellipses
(95% confidence regions). These are estimated from the control data as described
in Section 2. Figure 3A and 3B give the sense and antisense-specific distributions
for a SNP on chromosome X. We observe the extrapolated distribution of θs given
C = (0, 1), (1, 0) coincide with the observed θs from 45 male samples that were
not used in training. Similarly, figure 3C and 3D give the sense and antisense-
specific distributions for a SNP on chromosome 21 and we observe that our ex-
trapolated distributions coincide with the observed θs from 20 Trisomy samples.
This demonstrates that our assumptions seem to provide reasonable estimates of
the conditional distribution of copy number the cases predicted with mode (1)
(C = (0, 0), (0, 1), (1, 0), (0, 3), (1, 2), (2, 1), (3, 0)).

In Figure 4A and 4B we demonstrate how our results have much better pre-
cision than CNAT and values with and without probe- sequence and fragment
3 Remember that we perform the above calculation separately for the sense and anti-

sense values. A final estimate of the posterior probability simply average these two
values.
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Fig. 4. CN-RLMM results. CN is abbreviation for CN-RLMM, c.CNAT is CRLMM
preprocessed probes + CNAT. Figure A) shows the expected copy number given prepro-
cessed log intensities for 817 SNPs on Chromosome 21 of 20 Down syndrome patients
(with identified Trisomy 21). Figure B) shows the expected copy number given prepro-
cessed log intensities for 807 SNPs on Chromosome X of 45 male trio samples. Figure
C) shows the average true positive rate versus 1-average percentage of call rate for 2
Down syndrome patients. The points demonstrate some of the corresponding posterior
probability values used as cut-offs.

length corrections. We achieve this precision without any loss of accuracy. Note
that we could not get PLASQ to work with our data and no software is avail-
able to implement CARAT. The preprocessing used by dChip is very similar to
CNAT and thus we expect results to be the same. Keep in mind the smoothing
step is not being assessed. We observe that the degree of improvement is not
equivalent for copy numbers 3 and copy number 1. This is expected because it
is easier to detect a 2 times difference (copy number 2 versus 1) than to detect
a 1.5 times difference (copy number 3 versus 2).

The most useful application of our results is that we provide improved single-
point copy number estimates with reliable uncertainty assessment without the
need to re-calibrate for new samples. Note that we can easily control our false
positive rate by simply restricting calls to SNPs with posterior probabilities close
to 1. Figure 4C demonstrates that we can get usable single-point copy number
estimates for a large amount of SNPs. Notice that the worst performance is
observed for CN=3. This is likely due to the fact that we used model (1) to
extrapolate (as done by CARAT).

6 Discussion

We have presented a mixture model approach that permits us to obtain im-
proved copy number estimate as well as reliable single-point copy number calls.
A major advantage of our methodology over the best existing one, e.g. CARAT
and PLASQ, is that we explicitly model the conditional joint distribution of the
intensities given the copy number values. This permits us to model the strong
correlation that sometimes exists between A and B and exploit this information
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to improve bottom-line results. This advantage is best exemplified by Figure 3C
where the C = (2, 1), (1, 1), and (1, 2) are usefully separable only if we take this
correlation into account. Furthermore, avoiding the linearity assumption made
by these other procedures seems to help as well. This is best demonstrated by
the fact that we perform worst in cases where we rely on this assumption, i.e.
making calls for CN = 3. Finally, because we use training data to fit the mixture
models, the procedure is entirely linear. Other procedures, such as CARAT and
PLASQ rely on non-linear algorithms that present many practical problems.

We have plans to extend and improve our approach in various ways. First, we
plan to implement it for the 500K chips. Second, we believe this approach can
be used with Illumina’s SNP array and thus plan to try it with data from this
platform. Third, we plan to add another level to the model that will permit
us to borrow strength across the thousands of SNPs to better estimate the
parameters of the conditional probabilities. We plan to use an approach similar
to that of CRLMM. Fourth, we plan to look for ways to avoid using the linearity
assumption to infer the parameter of conditional distributions when C > 2. We
plan to use general regression approaches that predict these parameters from the
known parameters C <= 2. We can train this regression model with Trisomy
data (C = 3) and design experiments to be able to train for C > 3. Fifth, we
plan to look for better ways of combining the results form sense and antisense
probes. It is desirable to detect and ignore misbehaving strands. Finally, we have
observed correlation between parameter estimates coming for proximal locations
on the chromosome. This could be due to the fact that various SNPs are on each
of the fragments that are amplified. We will explore ways to exploit this finding.

It is possible that the reference set we use has an influence on our results. We
plan to study this problem in more detail in the near future. We also plan to
substantially increase the size of the reference set to reduce the effect of outlier
samples. By combining various publicly available assessment experiments, we
plan to develop an comparison protocol for analysis methods. This will help us
determine not only which methods work better, but to explore if subsets of the
reference set provide better results.

Notice that we did not offer any solutions for the smoothing step as we are
more interested in developing techniques for single-point estimates. We expect
some of the existing techniques to work well when applied to our estimates of
copy number. However, because we explicitly model the conditional probabilities
it is possible to develop new methods that impose the across-chromosome corre-
lation through those probabilities instead of the actual copy number estimates.
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Abstract. Genetic instability represents an important type of biological
markers for cancer and many other diseases. Array Comparative Genome
Hybridization (aCGH) is a high-throughput cytogenetic technique that
can efficiently detect genome-wide genetic instability events such as chro-
mosomal gain, loss, and more complex aneuploidity, collectively known as
genome imbalance (GIM). We propose a new statistical method, Genome
Imbalance Scanner (GIMscan), for automatically decoding the underly-
ing DNA dosage states from aCGH data. GIMscan captures both the in-
trinsic (nonrandom) spatial change of genome hybridization intensities,
and the prevalent (random) measurement noise during data acquisition;
and it simultaneously segments the chromosome and assigns different
states to the segmented DNA. We tested the proposed method on both
simulated data and real data measured from a colorectal cancer popula-
tion, and we report competitive or superior performance of GIMscan in
comparison with popular extant methods.

1 Introduction

A hallmark of the defective cells in precancerous lesions, transformed tumors,
and metastatic tissues, is the abnormality of gene dosage caused by regional
or whole chromosomal amplification and deletion in these cells [1]. Cytogenetic
and molecular analysis of a wide range of cancers have suggested that amplifica-
tions of proto-oncogenes and deletions or loss of heterozygosity (LOH) of tumor
suppressor genes can seriously compromise key grow-limiting functions (e.g.,
cell-cycle checkpoints), cell-death programs (e.g., apoptotic pathways), and self-
repair abilities (e.g., DNA repair systems) of injured or transformed cells that
are potentially tumorigenetic [2]. Thus DNA copy number aberrations are cru-
cial biological markers for cancer and possibly other diseases. The development
of fast and reliable technology for detecting (the presence of) and pinpointing
(the location of) such aberrations has become an important subject in biomedi-
cal research, with important applications to cancer diagnosis, drug development
and molecular therapy.
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Array comparative genomic hybridization (array CGH, or, aCGH) assay offers
a high-throughput approach to measure the DNA copy numbers across the whole
genome [3]. The outcome of an array CGH assay is a collection of log-ratio (LR)
values reflecting the relative DNA copy number of test (e.g., tumor cells) versus
control (e.g., normal cells) samples at all examined locations in the genome.
Ideally, for diploid cells, assuming no copy-number aberration in the control
and perfect measurement in the assay, the LRs of clones with k copies in the
test sample can be exactly computed. It is noteworthy that among all possible
magnitudes of k, usually only a few need to be distinguished, such as 0, 1, 2, 3,
and collectively all integers that are greater (often significantly greater) than 3.
These are typical copy numbers that reflect distinct cytogenetic mechanisms
of chromosome alteration and rearrangements, and hence they are commonly
referred to as gene dosage states: deletion, loss, normal, gain, and amplification.

Manual annotation of gene dosage tedious and inaccurate due to various rea-
sons, such as impurity of the test sample (e.g., normal cell contaminations),
intrinsic inhomogeneity of copy numbers among defective cells, variations of hy-
bridization efficiency, and measurement noises arising from the high-throughput
method [4]. Numerous computational methods have been developed for efficient
and automated interpretation of array CGH data. Earlier methods used value-
windows defined by hard thresholds to determine gene dosage state for each
clone based on noisy LR measurement (e.g. [5]). However, these methods suffer
from high false positive rate and low coverage (see Sec. 3.1). Recent develop-
ments resort to more sophisticated statistical modeling and inference techniques
to interpret aCGH data. Based on the underlying statistical assumptions on sig-
nal distribution adopted by these methods, they largely fall into four categories:
mixture models, regression models, segmentation models and spatial dynamic
models. Mixture models [6] assume that the LR measurements of all the clones in
an aCGH assay are independent samples from an underlying distribution consist-
ing of multiple components, each corresponding to a specific gene dosage state.
Regression models [7,8] try to fit the noisy LRs with a smooth intensity curve
over the chromosome to facilitate detection of gene dosage change via visual in-
spection which are only suitable for data denoising and visualization, rather than
explicitly predicting the discrete dosage state underlying the LR signals. Segmen-
tation models [9,10,11,12,13,14,15] directly search for breakpoints in sequentially
ordered LR signals so that the resulting LR segments have the minimum within-
segment signal variations. However, this segmented clone sequences suffer from
state “over-representation”, in which numerous spurious states without appar-
ent biological meanings are uncovered for the segments. Spatial dynamic models
solve the problems of dosage-state annotation and clone-sequence segmentation
under a unified model for array CGH data. Fridlyand et al. [4] proposed a spa-
tial dynamic framework that models the LR sequence as the output of a hidden
Markov model (HMM) that governs the distribution of the dosage-states along
the chromosome. Marioni et al. [16] extended this model by considering the dis-
tances between adjacent clones when modeling the transition matrix in HMM.
Broet and Richardson [17] developed a Bayesian HMM by allowing the mixture
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Fig. 1. The LR values (blue dots) of genome X77 from Nakao et al. [5]. The solid
vertical lines delineate the boundaries between chromosomes; and the dashed vertical
lines indicate the position of the centromere of each chromosome. The red horizontal
lines indicate the thresholds used by Nakao et al. [5] to decide clones dosage states.
Clones within these two lines are predicted to be normal state.

weights to be correlated for neighboring genomic sequences on a chromosome.
More recently, Shah et al. [18] proposed a new Bayesian HMM model that inte-
grates prior knowledge of DNA copy number polymorphisms (CNPs).

This progress notwithstanding, the computational methods for aCGH analy-
sis developed so far are still limited in their accuracy, robustness and flexibility
for handling complex aCGH data, and are inadequate for addressing some of the
deep biological and experimental issues underlying aCGH assay. Take the whole-
genome aCGH data displayed in Fig. 1 as an example. Overall, the LR signals are
highly fluctuating, but exhibit visible spatial auto-correlation patterns within the
chromosomes. A caveat of the mixture-model-based or threshold-based methods
is that they are very sensitive to such random fluctuations of the LR signals
because they treat each measurement as an independent sample and ignore spa-
tial relationships among clones. This could lead to highly frequent dosage-state
switching (e.g., alternating back and forth between gain and loss, as we will show
in our results) within short genetic distances, which is biologically implausible.
A number of recent methods, particularly the spatial dynamic models based on
HMM, have offered various ways to address this issue, which have significantly
improved the performance of computational array CGH analysis.

Nevertheless, a key limitation of the HMM-based methods is that they all
assume invariance of the true hybridization signal intensity alone chromosome
for each dosage state, which is not always satisfied in real data. As shown in
Fig. 1, an outstanding feature of the spatial pattern of the LR signals is that,
within each chromosome, there exists both segmental patterns that are likely due
to change of the copy number of the corresponding region, and spatial drift of
the overall trend of the LR intensities along the chromosome. For example, in
chromosome 4, the LR signals along the sequence of clones are not fluctuating
around a baseline (presumably corresponding to a certain dosage state) that is
invariant along the chromosome; instead, it is apparent that the baseline itself
first has an increasing trend from left to right on 4p and into 4q, and then
turns to a decreasing trend along the rest of 4q. Visually, there is not many
abrupt breakage points that would signal a dosage-state alteration alone this
continuously evolving sequence of LRs. But an HMM approach, which models
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spatially-dependent choices among different copy-number state, each associated
with an invariant distribution of LR values, can fail to capture the spatial drift
of LRs over chromosome region with the same copy number as shown in Sec. 3.

Rather than reflecting the discrete change of copy numbers of the clones, the
non-random spatial trend of LR signals possibly reflects a continuous change
of the biophysical properties and hybridization quality along the chromosome.
As discussed in [2], the intensity of the hybridization signal of each clone is
affected by a number of factors such as base compositions of different probes, the
proportion of repetitive content in sequence, the saturation of array, divergent
sequence lengths of the clones, reassociation of double-stranded nucleic acids
during hybridization, and the amount of DNA in the array element available
for hybridization. These factors may further contribute random or correlated
stochasticity of the LR values on top of the content-derived spatial drift. Pinkel
and Albertson [2] reported that signal intensity may vary by a factor of 30 or
more among array elements even if there are no copy-number changes. These
complexities present in real aCGH data render extant models based on fixed
state-specific LR distributions, such as an HMM, incapable of making accurate
or robust state prediction.

Another problem that affects all the approaches discussed above lies in the
calibration of signals across chromosomes and across individuals. As observed
from Fig. 1, the mean and the variance of the LRs, and their spatial trends
vary significantly from chromosome to chromosome, and more so from individ-
ual to individual (not displayed in the Figure), due to reasons possibly beyond
copy number differences. This makes measurements from different individuals
and/or for different chromosomes difficult to compare. Engler et al. [19] recently
proposed a parameter sharing scheme for a Gaussian mixture model for ge-
netic variability between and within chromosomes. In the new statistical model
for aCGH data presented below, we introduce more careful treatments, which
employ different parameter sharing scheme for effects shared among different
chromosomes in the same individual (e.g., state baselines) and effects common
to the same chromosomes in different individuals (e.g., signal dynamics).

In this paper, we introduce a new method Genome Imbalance scanner (GIM-
scan) for computational analysis of aCGH data. GIMscan employs a more pow-
erful spatial dynamic model, known as switching Kalman filters (SKFs) [20],
to jointly capture the spatial-trends of evolving LR signals along chromosomes,
and spatially dependent configuration of gene dosage states along chromosomes.
Unlike an HMM, which captures all the stochasticities in LRs with invariant
dosage-specific distributions, an SKF breaks the accumulation of the stochastic-
ities into two stages: 1) the hybridization stage, which involves physical sensory
of clone-copies from the digested chromosomes, during which the spatial trend
of DNA content and its biophysical properties, saturation effects, etc., can cause
stochastic spatial drift of the mass of the hybridized material; 2) the measure-
ment stage, which involves acquisition of the readings of fluorescence intensity
of each clone, during which errors from reagents, instruments, environment,
personal effects, etc., can cause another layer of random noises on top of the
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hybridization signal. Under the SKF, we model the variations in the hybridiza-
tion stage using dosage-state-specific continuous dynamic processes, akin to the
regression approach discussed above. These hybridization intensities can be un-
derstood as the “true”sensory signals in an aCGH assay, which are unobservable
to the examiner. We refer the sequence of hybridization intensities following such
a linear dynamic model as a hybridization trajectory. Given the hybridization tra-
jectory, we model the random noise from the measurement stage by a conditional
Gaussian distribution whose mean is set by the sensory signal which evolves over
each clone according to the trajectory. Overall, for each dosage state, we have
a unique linear dynamic model for the sensory signals and a Gaussian emission
model for their corresponding noising measurements. This model is known as
a Kalman filter. To model changes of dosage-state along the chromosome, we
follow the HMM idea to set up a hidden Markov state-transition process, but in
our case not over state-specific distributions of LRs with fixed means, but over
state-specific Kalman filters over both the observed LR measurements and the
unobserved sensory signals for each clone.

On both simulated and experimental aCGH data, GIMscan has shown supe-
rior performance over other approaches such as HMM or mixture-model based
threshold methods, being able to handle a number of complex LR patterns be-
yond the recognition power of reference models. We applied our methods to a
whole-genome aCGH assay of 125 primary colorectal tumors [5], and constructed
a high-quality genome-level gene dosage alteration map for colon cancer.

2 SKF Model and Adaptation to aCGH Analysis

For each specific gene dosage state, we model the spatial drift of its hybridiza-
tion signal intensities using a hidden trajectory and model the uncertainty in LR
measurements using a zero-mean Gaussian noise. This corresponds to a standard
dynamic model named Kalman filter (KF). Observed LR values arise as a mix-
ture of the outputs of state-specific Kalman filters. The mixing proportion, mod-
eled as latent variables indicating gene dosage states, is also spatially dependent
as captured by a Markov state-transition process (or switching process). Now we
have multiple Kalman filters controlled by a dynamic switching process, which
can be formulated as a factored switching Kalman filters (SKF). Our proposed
method, GIMscan (Genome IMbalance SCANner), adopts the SKF model to
whole-genome analysis of aCGH data by allowing a parameter sharing scheme
among multiple chromosomes and multiple individuals which makes best use of
data. In this section, we first introduce the SKF model and its parameters, then
discuss the approximate inference algorithm for joint dosage-state annotation
and clone-sequence segmentation. Model selection and further extension of the
model are covered briefly at the end of this section.

Figure 2(a) illustrates the Kalman filter for a specific dosage state m, which
is a linear chain graphical model with a backbone of hidden real-valued vari-
ables (denoted by X

(m)
1:T ) emitting a series of real-valued observation (denoted

by Y
(m)
1:T ). The trajectory of hidden variables is linear and subject to Gaussian
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Fig. 2. (a) Graphical structure of dosage-state-specific Kalman filter for dosage state

m. X
(m)
t is the hidden variable at clone t on the trajectory, and Y

(m)
t representing

the corresponding observed variable of the Kalman filter. (b) Graphical structure of
the switching Kalman filter (SKF) model. The model consists of M linear chains from

Kalman filters (X
(1:M)
1:T ), a Markov chain of switching processes (S1:T ) and a series

of observed variables (Y1:T ). (c) Graphical structure of the uncoupled model which
represents the tractable subfamily of distributions to approximate the true posterior
of the SKF model.

noise which reflects the evolving hybridization signal intensities. The emission
model imposes a Gaussian noise arising in the measurement stage on each hidden
variable to generate the LR ratio at each position (clone). This model for a spe-
cific dosage state m can be formulated as P (X(m)

t |X(m)
t−1 ) ∼ N (a(m)X

(m)
t−1 , b(m)),

P (Y (m)
t |X(m)

t ) ∼ N (X(m)
t , r).

The parameters a(m), b(m), r are all position-invariant; r determines the degree
of uncertainty in observation measurements. We also assume the initial value of
the hidden trajectory, X

(m)
1 , is distributed normally: P (X(m)

1 ) ∼ N (μ(m), σ(m)).
All the variables and parameters are univariate. The computation of posterior
distributions of the hidden variables given the observation is tractable because
of the conjugacy of the normal distribution to itself. This computation will be
part of the inference procedure discussed later in which we decouple the SKF
model to a number of tractable linear chains.

Given the dosage-state-specific Kalman filter for M dosage states, a switch-
ing Kalman filters generates the LR value at each position from one of the
outputs: Yt =

∑M
m=1 Y

(m)
t S

(m)
t , where St is the M -dimensional multinomial

switching variables for clone t following 1 × M binary coding scheme. The
discrete switching process S1:T evolves according to Markov dynamics, with
initial state distribution parameterized by π and state transition matrix Φ:
S1 ∼ Multinomial(1, π), P (S(m)

t = 1|S(n)
t−1 = 1) = φmn. We could save the

variables Y
(1:M)
t and generate the observation directly from the M hidden
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linear Gaussian trajectories as P (Yt|X(1:M)
t , St) ∼ N

(∑M
m=1 X

(m)
t S

(m)
t , r

)
. The

graphical structure of the SKF model is shown in Fig. 2(b).
To facilitate dosage state annotation and clone-sequence segmentation, the

posterior distribution P (St|Y1:T ) need to be computed for t = 1, . . . , T . How-
ever, exact computation of this posterior probability is intractable. We employed
an algorithm [21] which approximates the posterior distribution P with a pa-
rameterized distribution Q(v) from some tractable subfamily of distributions. It
iteratively updates the values of variational parameters v to minimize the KL
divergence between the approximate posterior distribution and the true poste-
rior distribution. The choice of the tractable subfamily for the SKF model is
a discrete Markov chain and M uncoupled KFs (Fig. 2(c)). Two sets of vari-
ational parameters are introduced for the Markov chain and KFs respectively.
Their updates can be carried out using fix-point equations [21], which maintain
or increase a lower bound of log likelihood of the model and usually converge in
a few iterations. Fast rate of convergence is mainly due to low data dimension.

Parameter estimation is performed under the EM framework. The E step
employs the variational inference algorithm to find the best approximate poste-
rior via iterative updates of the variational parameters. The M step reestimates
the model parameters Θ to maximize the same lower bound of log-likelihood
in variational inference. This reestimation can be performed exactly by zeroing
the derivatives with respect to the model parameters. Parameter estimation is
implemented by a coordinate ascent procedure.

Now we have introduced the SKF model and its parameters μ(m), σ(m), a(m),
b(m), r, π and φ, each of which delineates one property behind the aCGH data.
μ(m) and σ(m) are the mean and variance of Gaussian distribution of the starting
clone on hidden trajectory for dosage state m. a(m) and b(m) determine the
transition model of that trajectory which dictate the spatial drift of the signal
intensities. r is the variance of the Gaussian accounting for the noise introduced
in the experiment stage, and is independent of the hidden dosage-state. Lastly, π
and Φ are initial state parameters and transition matrix for the discrete switching
process between different dosage states.

In the settings for a whole-genome analysis, the aCGH dataset are collected
from experimental data of J individuals, the genome of which consists of K
chromosomes, and chromosome k contains Tk clones. The LR values Y1:T,j,k

on individual j, chromosome k are generated by an SKF model with hidden
trajectory X1:T,j,k and switching states S1:T,j,k.

We are now ready to describe the parameter sharing scheme in GIMscan for
the analysis of whole genome aCGH data. We consider two groups of parameters.
Firstly, we let μ(m), σ(m), r, π and Φ be shared across all chromosomes of one
particular individuals. Mainly due to the normal cell contamination, the mag-
nitude of starting value for the trajectory of one particular state varies across
different individuals. Different μ(m) and σ(m) for different individuals can ac-
count for this “un-normalized” starting value of the trajectory of one state. r
is also shared by chromosomes from one individual because one individual cor-
responds to one experiment, and different experiments may have different noise
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levels. π and Φ are shared by one individual because the number of dosage
states are individual-specific: different individuals may have different number of
dosage states. The second group of parameters, a(1:M) and b(1:M), is assumed to
be shared by one particular chromosome of all individuals, because the physical-
chemical properties (e.g. the base composition) of one particular chromosome of
different individuals (the same tumor cell line of same species) are very similar.
This similarity leads to similar hybridization signal intensity over a chromosome.

The maximum number of dosage states M one individual can have remains
to be determined. we employ Gaussian mixture model using penalized likelihood
criteria such as AIC to select the number of states for each individual.

3 Experiments and Results

We tested the performance of GIMscan on simulated aCGH data and real data
with complex aCGH patterns to demonstrate the working principle and general
trends of our method in gene dosage prediction, and to evaluate our prediction
quality under nontrivial genome imbalance and hybridization scenarios. The ben-
efit of applying a sophisticated hybrid stochastic model to capture both discrete
(e.g., changing DNA copy number) and continuous (e.g., varying hybridization
efficiency) latent spatial trajectory underlying noisy aCGH measurements is ev-
idenced in each level of genetic scales we have analyzed.

3.1 Simulated aCGH Data

We first validate GIMscan on simulated aCGH datasets, which mimic typical
spatial patterns of LR sequences in real aCGH assays, and allow a quantitative
assessment of model performance based on known underlying gene dosage states
in the simulation.

In our simulation experiments, three methods—threshold, HMM as in [4], and
GIMscan—were tested on 12 datasets simulated with different settings of two
parameters, the Gaussian emission variance r and the KF transitional variance
b (see Section 2). These two parameters represent the two sources of the overall
noise in the data: r reflects the quality the LR measurements in an aCGH experi-
ment, whereas b reflects the variability of the hybridization signal intensity along
the chromosome. Our datasets correspond to three different values of r, ranging
from low, to medium, high; and four values of b also spanning a significant range
(see Fig. 3). For each combination of r and b, a total of 100 LR sequences each
containing 100 clones were generated. For each sequence, we simulated a random
5 × 5 stochastic matrix, T , for modeling transitions between gene dosage states,
and T was set to allow both short and long stretch of gene dosage alterations,
but not high-frequency oscillations between different states. All three methods
were applied to each dataset to infer the gene dosage states underlying the simu-
lated LRs, and the experiments were repeated 100 times. Fig. 3 summarizes the
medians, quantiles and ranges of the prediction error rates by different meth-
ods under various parameter settings. Consistently, GIMscan outperformed the
other two methods by a significant margin.
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Fig. 3. Performance of gene dosage state prediction on simulated aCGH datasets. Each
row corresponds to an emission noise, and each column corresponds to a Kalman filter
transitional variance. In each case, we plot the results of threshold method (Thres.),
HMM and GIMscan (GIM). The red line represents the median, and the blue box
indicates upper and lower quantiles. The black bars are the range of the error rate.
Outliers are plotted by “+”.

As an illustration of the advantage offered by the SKF model adopted by GIM-
scan, and the effectiveness of our inference algorithm, Fig. 4 and Fig. 5 show two
examples of GIMscan’s performance in the simulated datasets. The first example
concerns “high-quality” aCGH records simulated with low measurement noise
(r = 0.001) over 100 clones switching between two gene dosage states both with
low spatial drift in their corresponding true hybridization intensities (b = 0.001)
(Fig. 4(a)). Figure 4(b) presents the inferred gene dosage state and the inferred
dosage-state-specific “trajectories” (i.e., the latent dynamical trend captured by
each KF) of the latent true hybridization intensities underlying the observed LR
sequence shown in Fig. 4(a). As shown in this illustration, each inferred latent
trajectory indeed represents a smoothed and spatially changing baseline of the
LR signals corresponding to a particular dosage state; and all inferred trajec-
tories agree well with the true trajectories of hybridization intensities used for
simulating the observed LR signals. As a result, the inferred switching process
over these trajectories gives a highly accurate prediction of the gene dosage states
underlying the LR sequence. GIMscan can also estimate the confidence intervals
(i.e., standard deviation) of the inferred hybridization trajectories, as shown in
Fig. 4(c).

Another example shown in Fig. 5 concerns low-quality, arguably more realistic
aCGH records simulated with high measurement noise (r = 0.01) and severer
spatial change (b = 0.01) in the true hybridization trajectories. The combined
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Fig. 4. (a) Simulated data (blue dots), two latent trajectory (green and pink), and
switching process (red). The length of the simulated data is 100 clones. (b) Simulated
data (blue dots), inferred trajectory (green and pink) and inferred switching process
(red). (c) The confidence intervals of the inferred trajectories.
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Fig. 5. (a) Simulated data (blue dots), two latent trajectories (green and pink), and
switching process (red). The length of the simulated data is 100 clones. (b) Given the
observed data in (a), the red line is the state predicted by HMM. (c) Given the observed
data in (a), the green and pink curves are trajectories inferred by SKF, and the red
line is the switching process inferred by SKF.

effects of high measurement noise and high spatial variance of the hybridization
trajectories are excepted to lead to misassignment of gene dosage state due to
inaccurate estimation of the dosage-state-specific hybridization intensities when
spatial trajectory of the hybridization intensities is ignored. Note that the trajec-
tories in Fig. 5(a) of both dosage states are not flat, which reflect severe spatial
drift of hybridization signal intensity within each state. When assuming spatial
invariance of dosage-state-specific signal distribution, the unflatness of both tra-
jectories can cause the estimated mean of LR signals to be highly biased (e.g.,
higher for state 1, and lower for state 2), and their variances to be significantly
greater than the actual fluctuation. Consequently, the estimated dosage-specific
signal distributions can be seriously overlapping, causing the LR signals from
two states hard to distinguish. Fig. 5(b) shows exactly this effect, on the qual-
ity of state estimation by an HMM model. Whereas the SKF model underlying
GIMscan readily mitigates this effect, and produces the correct estimation.

3.2 Real aCGH Data with Diverse Spatial Patterns

Now we present case studies of selected real aCGH data with a diverse spec-
trum of spatial patterns. Our dataset was obtained from an online repository of
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whole-genome aCGH profiles of 125 colorectal tumors originally studied in [5].
This dataset was found to contain highly stochastic LR measurements with se-
vere spatial variance and drifts along the chromosomes, and bear rich cohorts
of genome imbalance patterns. Such complications present a great challenge to
naive algorithms for gene dosage inference, and are thus particularly suitable for
evaluating our proposed method.

Given an aCGH profile, GIMscan first employs a k-nearest neighbor regres-
sion procedure (e.g., k = 3) to impute the missing values in the LR records.
Then it fits the processed data with a Gaussian mixture based on maximum
likelihood estimation, and performs model selection based on AIC to determine
the total number of gene dosage states, M (which is constrained between 1 to
5), for each individual. Afterwards, the number of component KFs (i.e., dosage-
state-specific hybridization trajectories) in GIMscan is set to be M , and the
mean of the starting clone of each KF takes on the mean of a component in the
estimated Gaussian mixture as initial value. Note that with this setup, we still
need to establish the exact mapping between the KFs inferred by GIMscan and
the possible gene dosage states, namely deletion, loss, normal, gain, and ampli-
fication. Since GIMscan provides estimations of the hybridization trajectories of
each KF, we follow a straightforward statistical and biological argument and de-
termine the corresponding dosage-state of each trajectory based on the relative
mean-values of the estimated true hybridization intensities of all clones.

For comparison, we re-implemented the HMM methods according to Fridlyand
et al. [4], with modest extension (i.e., parameter sharing) so that it can be applied
to whole genome CGH profiles covering multiple chromosomes. Following [4] AIC
is also used for model selection for the HMM.

The dataset we studied contains a total of ∼ 2.75 × 105 LR measurements
from 23 × 125 chromosomes (i.e., 125 human genomes). Here we first present
a small-scale case study of three representative chromosomes, each containing
a typical spatial pattern for the LR sequence that was found to be difficult to
analyze by conventional methods. For convenience, we refer to these patterns
as, flat-arch, step, and spike, respectively, according to their shapes in the LR
intensity plots (Fig. 6).

Pattern I: Flat-Arch Figure 6(a)(b) displays the LR measurements from chro-
mosome 4 of individual X77, this pattern is marked by lower magnitudes of LRs
at the two telomere regions of the chromosome and elevated magnitudes in the
central region. Locally (i.e., along the plotted chromosomal region), there is a
continuous trend of spatially evolving hybridization intensity along the chromo-
some, and there are few abrupt breakage points that would signal a dosage-state
alteration. But due to the high dispersion of LR values as a result of such a
spatial drift, methods based on invariant state-specific hybridization intensity,
such as the HMM, would either fit the observed LR values with one biased and
high-variance Gaussian distribution, or split the LRs with two highly overlapping
Gaussians. These caveats could seriously compromise the quality of gene dosage
state estimation. Figure 6(a) shows the dosage estimation by an HMM fitted on
this chromosome. The outcome suggests heavy oscillations between two dosage
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Fig. 6. Three typical spatial patterns for the LR sequence which were found to be diffi-
cult to analyze by convenctional methods: (a)(b)Flat-Arch pattern; (c)(d)Step pattern;
(e)(f) Spikes pattern. (a)(c)(e) shows states predicted by HMM (red). In (b)(d)(f) the
pink, green and yellow curves are inferred trajectories for loss, normal and gain, re-
spectively. Red solid line indicates states predicted by GIMscan. Centromere position
is indicated by dashed vertical line in these two plots.

states throughout the chromosome, which is biologically implausible. Figure 6(b)
shows the dosage state sequence and dosage-state-specific trajectories underlying
chromosome 4 of individual X77 inferred by GIMscan. A whole-genome fitting
resulted in three estimated dosage-states. On this particular chromosome, the
trajectories of the loss and gain states (the pink and yellow curves, respectively)
were not matched to any observations, and the entire region is determined to
be corresponding to a normal state whose hybridization intensity varies along
the chromosome (the green curve). Indeed, a more global visual inspection of
these Flat-Arch patterns in the context of whole aCGH profile often reveals that
the flat-arch shape in the LR-plots often merely reflects modest (but spatially
correlated) change of the LR magnitude most likely within a single dosage state.

Pattern II: Step This pattern is typical when there appears to be a quantum
change of LR magnitudes from one to the other end of the chromosome, but the
boundary of the change is not sharp and the overall sequence is moderately noisy,
such as shown in Fig. 6(c)(d) which is taken from chromosome 8 from individual
X265. In addition to the step, this sample also harbors a number of local spikes
and short regions potentially implying dosage-state alterations. Via AIC model-
selection, the HMM adopted four dosage state when processing this data. The
states predicted by HMM are shown in Fig. 6(c). As can be seen, the results are
reasonable, except that several positions near clone 100 contains highly frequent
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switching between states. The dosage state sequence and dosage-state-specific
trajectories inferred by GIMscan are shown in Fig. 6(d). Note that there is a
slightly decreasing trend in the trajectory corresponding to the amplification
state. While the gain and normal trajectories correspond to only a few clones on
this chromosome, a genome-level parameter sharing scheme adopted by GIMscan
enables them to be reliably estimated, and thereby leads to plausible prediction
of point changes on isolated clones (e.g., clone 97 and 152).

Pattern III: Spikes Spikes are a typical pattern often accompany other patterns,
such as steps. It is marked by short sequences, sometimes singletons, of elevated
or attenuated LR measurements along the chromosomes. Figure 6(e)(f) shows
such an example from chromosome 8 of individual X318. In this chromosome,
the copy-number loss was apparent on 8p arm, while three spikes (around clone
75, 110 and 140) were visible on 8q arm. These spikes correspond to the gain
state with a large measurement variance. Figure 6(e) shows the states predicted
by HMM. Although HMM correctly predicted the states on 8p, it predicted more
clones on 8q to be gain state. However, by our visual check, some clones (e.g.
around clone 79, 96) should have been classified to be normal state. The possibly
faulty predictions of gain states resulted from the large variance of the spikes
estimated by the HMM. GIMscan correctly detected and annotated the spikes,
as well as giving convincing predictions on other clones (Fig. 6(f)). Compared
to the case for the same chromosome (i.e., no. 8) from individual X265 shown in
Fig. 6(c)(d), where four dosage-state-specific trajectories were determined, here
we uncovered only three states for chromosome 8. This is because model selec-
tion for SKF in this individual based on the whole-genome aCGH only identifies
three states—normal, loss and gain. Parameter-sharing was adopted by GIMscan
for all chromosomes in this individual, and leads to three common trajectories.
Comparing Fig. 6(d) with Fig. 6(f), one can notice that the elevates of the tra-
jectories corresponding to the same dosage state (e.g., normal) can be quite
different across individual, which is likely due to some unidentified systematic
error or hybridization-efficiency difference across individuals. The parameter-
sharing scheme adopted by GIMscan (i.e., sharing dosage-state-specific trajec-
tories across chromosomes within individual, but not across individual) provides
a reasonable strategy to tackle such variations.

We finally used GIMscan for populational analysis of Nakao et al.’s [5] dataset.
Overall, over the 125 genomes each examined at ∼2200 clones uniformly dis-
tributed in the genome, on average each genome have 19.18% (or 407) of the
clones suffered either gain or loss (9.25% and 9.94%, respectively), and another
1.33% of the clones were hit by amplification or deletion (0.93% and 0.4%, re-
spectively). The whole-genome spatial spectrum of GIM rates over the entire
study population is displayed in Fig. 7. As can be seen, the population rates
of gain and amplification of clones in chromosome 7, 8q, 13q, 20q and 23 were
significantly higher than those of the other regions, suggesting possible presence
of proto-oncogenes in these regions. Likewise, the population rates of loss and
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Fig. 7. Overall frequency of DNA dosage state alteration over entire genomes of 125
individuals. Blue bars represent clones with DNA copy number loss or deletion, whereas
red bars for DNA copy number gain or amplification. Solid vertical lines show bound-
aries between chromosomes; dashed vertical lines show centromeres of chromosomes.

deletion in chromosome 1p, the distal-end of 4q, 5q, 8p, 14, 15, 17p, 18, and
21, were significantly higher than those of the other regions, suggesting possible
presence of tumor suppressor genes in these regions.

4 Discussion

An important issue for the success of GIMscan is the parameters initialization.
Our experience with GIMscan shows that the initial values for π and φ may be
fairly arbitrary, while the initial values for μ and r are more essential. We can
employ the Gaussian mixture to cluster the data points into M clusters. The
mean LR value of one cluster is used as the initial value for the starting mean of
the corresponding trajectory. The initial value of r can be determined similarly.
We initialized a and b with some constants: a was fixed to 1 and b was fixed to
10−2. σ was given the same initial value as r.
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Abstract. Given the substantial computational requirements of stochas-
tic simulation, approximation is essential for efficient analysis of any re-
alistic biochemical system. This paper introduces a new approximation
method to reduce the computational cost of stochastic simulations of an
enzymatic reaction scheme which in biochemical systems often includes
rapidly changing fast reactions with enzyme and enzyme-substrate com-
plex molecules present in very small counts. Our new method removes the
substrate dissociation reaction by approximating the passage time of the
formation of each enzyme-substrate complex molecule which is destined
to a production reaction. This approach skips the firings of unimportant
yet expensive reaction events, resulting in a substantial acceleration in the
stochastic simulations of enzymatic reactions. Additionally, since all the
parameters used in our new approach can be derived by the Michaelis-
Menten parameters which can actually be measured from experimental
data, applications of this approximation can be practical even without
having full knowledge of the underlying enzymatic reaction. Furthermore,
since our approach does not require a customized simulation procedure for
enzymatic reactions, it allows biochemical systems that include such reac-
tions to still take advantage of standard stochastic simulation tools. Here,
we apply this new method to various enzymatic reaction systems, resulting
in a speedup of orders of magnitude in temporal behavior analysis without
any significant loss in accuracy.

1 Introduction

This paper considers a well-stirred chemically reacting system with the following
enzymatic reaction scheme:

E+ S
k1

�
k−1

C k2−→ E + P (1)

� This material is based upon work supported by the National Science Foundation
under Grant No. 0331270.

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 166–180, 2007.
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where E, S, C, and P represent an enzyme, a substrate, an enzyme-substrate
complex, and a product, respectively, and k1, k−1, and k2 represent non-zero
rate constants for the reaction channels, R1, R-1 and R2, respectively. This en-
zymatic reaction scheme specifies the transformation of S into P catalyzed by E
where E has one active site to which S can bind to form C. These types of enzy-
matic reactions can be found in many biochemical pathways such as metabolic
pathways, and therefore, abstracting away low-level details found in enzymatic
reaction schemes may have a significant computational benefits.

Traditionally, biochemical systems—including the enzymatic reaction system
that is considered in this paper—are modeled and analyzed typically within the
continuous-deterministic, classical chemical kinetics (CCK) framework based on
the law of mass action where the dynamics of a well-stirred system is described
by a set of ordinary differential equations (ODEs). However, the limitations of
the CCK analysis have been broadly accepted [1,2,3,4]. In particular, given the
same initial condition, the CCK analysis of biochemical systems always produces
the same results as it neglects fluctuations. Such treatment, nevertheless, can be
justified when the molecular populations are very large, and hence a CCK anal-
ysis may provide the most efficient approach to determine the time evolution
of a system in such cases. However, many regulatory components in biological
systems are often present in amounts too small to simply neglect the effects of
inherent fluctuations [5,6,7,8]. Moreover, if a system being analyzed has multiple
steady states, the traditional ODE approach may not be able to provide an accu-
rate time evolution of a system since it cannot capture spontaneous transitions
between steady states [9,10].

In order to more accurately predict the temporal behavior of biochemical sys-
tems without acquiring more information on a biological system such as the posi-
tions and the velocities of every molecule, the stochastic chemical kinetics (SCK)
framework can be used [11]. SCK describes the time evolution of a well-stirred
biochemical system as a discrete-state jump Markov process that is analytically
governed by the chemical master equation (CME) [12]. The CME is derived from
the state-change vector, specifying the change in each molecular species popula-
tion for each reaction, and a propensity function for each reaction. For example,
the enzymatic reaction scheme (1) contains the following propensity functions
for each reaction Ri:

R1 : a1(x) = k1xExS , R-1 : a−1(x) = k−1xC , R2 : a2(x) = k2xC

where x = (xE, xS , xC, xP ), and each x∗ is the value of random variable X∗(t)
representing the molecular population of the species subscripted. Thus, the vec-
tor of these random variables: X(t) = (XE(t), XS(t), XC(t), XP (t)) represents the
system state at time t. Assuming that the system is spatially homogeneous, this
SCK approach describes the time evolution of a biochemical system at the indi-
vidual reaction level by exactly tracking the quantities of each molecular species
and by treating each reaction as a separate random event. However, directly
obtaining the solution of the CME of any realistic system, either analytically
or numerically, is not feasible due to its intrinsic complexity. Note that, though
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it is possible to numerically solve the CME of the enzymatic reaction scheme
(1) as the system state is bounded albeit with potentially substantial compu-
tational demands, if systems also contain other reactions and species as is the
case for many realistic biological systems, then the space complexity of CMEs
of such systems often inevitably becomes too large to be tractable, making the
numerical solutions of such CMEs infeasible. Consequently, the time evolution
of moments 〈Xn(t)〉 is also generally infeasible to compute from the CME.

To overcome this, several methods have been introduced to approximate the
time evolution of moments of the process X(t) without solving the CME [9,13].
Such approximations are very useful to efficiently understand the mean behavior,
standard deviation, skewness, etc. of X(t), as well as to potentially characterize
the time evolution of the asymptotic probability distribution of the system states.
However, utilizing such methods alone may encounter difficulties in quantitative
analyses of some biologically relevant properties based on stochastic competition
such as probabilistic analysis of lysis/lysogeny developmental pathways in bac-
teriophage λ-infected Escherichia coli [1]. Furthermore, since the complexity of
the moment evolution equations may significantly increase as that of a system
increases [9], such approach may be unwieldy for a large-scale biological system.

Instead of attempting to solve the CME, exact discrete-stochastic numerical
realizations of a system via Gillespie’s stochastic simulation algorithm (SSA)
[14], which is derived from the same premise as the CME, are often used to
infer the temporal system behavior with a much smaller memory footprint. This
Monte Carlo simulation approach is useful to intuitively observe the trend of
system dynamics, which may be possible with as few as tens of numerical re-
alizations. Furthermore, in silico experiments via Monte Carlo simulation come
with potentially unlimited controlling capabilities and abilities to capture vir-
tually any dynamical properties of the system, making a number of qualitative
and quantitative analyses which cannot be done in wet-lab experiments possi-
ble. Unfortunately, the computational requirements of the SSA—even with the
Gibson and Bruck optimization [15], which, among other things, reduces the
generations of the random numbers by reusing them—can be substantial. This
is due largely to the fact that it not only requires a potentially large number of
simulation runs in order to estimate the system behavior at a reasonable degree
of statistical confidence, but it also requires every single reaction event to be
simulated one at a time. For example, if k2 � k−1 in the enzymatic reaction
scheme (1), then C dissociates into S much more often than into P, and thus,
much of the computation time is allocated for this substrate-complex loop.

Several approximation methods have been proposed to accelerate the sim-
ulation process of the SSA by sacrificing exactness. For example, the explicit
τ -leaping method approximates the number of firings of each reaction in a pre-
defined interval rather than executing each reaction individually [16]. While this
and similar methods [17,18,19] are very promising, they may not perform well for
an enzymatic reaction which bears rapidly changing fast reactions driven by the
enzyme and enzyme-substrate complex molecules present in very small counts
because the leaping condition may not be satisfied in such situations.
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Some acceleration methods for the stochastic simulations of enzymatic reac-
tions have been proposed that perform well even when the enzyme is present in
very small amounts by eliminating the undesirable substrate-complex loop in the
enzymatic reaction scheme. For example, Rao and Arkin have performed model
abstraction by using biochemical insight in combination with the quasi-steady-
state approximation (QSSA) to remove the expensive substrate-complex loop,
and then applied a modified version of SSA to the simplified model [20]. Cao et al.
[21] have demonstrated how the substrate-complex loop can be removed by ap-
plying the enzyme substrate reaction system to their slow-scale SSA approach
which explicitly simulates the firings of only the slow reaction events [22]. Both
approximation methods require the use of special simulation procedures. Thus,
there might be cases where one finds the use of these approximation methods
inconvenient when it comes to the analysis of a system containing enzymatic re-
actions along with other types of reactions. Such cases occur, for example, when
a biochemical system is represented in the Systems Biology Markup Language
(SBML), the emerging standard format to represent models of biochemical reac-
tion networks [23]. SBML level 2 version 1 contains reactions only in the generic
type, and it cannot specify any specific reaction types without using proprietary
annotations. Thus, in order for SBML compliant SSA tools to know when to use
a specially tailored Monte Carlo simulation procedure for enzymatic reactions,
the tools must either understand the semantics of proprietary fields that specify
enzymatic reactions or perform structural analysis to find enzymatic reactions.

This paper introduces a new approximation approach to accelerate the process
of stochastic simulations of enzymatic reactions. Our new approach, which we
call production-passage-time approximation (PPTA), approximates the passage
time of the complex C which is destined to turn into the product P, and only
tracks such instances of C. Thus, this approach eliminates the substrate-complex
loop by removing R-1, allowing a substantial acceleration in stochastic simula-
tions of enzymatic reactions. Furthermore, since our approach does not require
a customized simulation procedure for enzymatic reactions, it allows a biochem-
ical system comprising the PPTA reactions along with other types of reactions
to still be modeled using a SBML modeling tool such as PathwayBuilder from
BioSPICE [24], and analyzed by using any SBML compliant SSA tools.

This paper describes the PPTA method in Section 2. Section 3 demonstrates
how our approach can help analyze the temporal behaviors of enzymatic one-
substrate reaction models efficiently with reasonable accuracy. This is shown by
applying our new approximation method to various systems and comparing the
full models with the corresponding PPTA models in terms of the accuracy—
by calculating means and standard deviations—as well as runtime. Finally, this
paper concludes in Section 4 by discussing the benefits gained by the PPTA.

2 Production-Passage-Time Approximation

To describe the PPTA method, the enzymatic reaction scheme (1) is first con-
sidered to have the initial condition: X(t0) = xt0 , where xt0 = (etot, stot, 0, 0),
etot ≥ 1, and stot ≥ 1. Let x∞ = (etot, 0, 0, stot), then the probability that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



170 H. Kuwahara and C. Myers

X(t) = x∞ given X(t0) = xt0 approaches 1, as t → ∞. In other words, in any
simulation runs, the enzymatic reaction process always reaches x∞ eventually.
In order for each numerical realization of X(t) to transition from xt0 to x∞, S
must be transformed into C at least stot times and C must be converted into P
exactly stot times. Thus, let x(i)(t) be the i-th sample trajectory of X(t) given
that X(t0) = xt0 and Ti be a set of time instances such that each time instance
tij represents the time point where the j-th reaction event occurs in x(i)(t). Then,
the statement ∀i. |Ti| ∈ [2stot, ∞) must be true. Intuitively, if k−1 � k2, then
C tends to be consumed by R2 rather than R-1, making the size of each Ti close
to the lower bound 2stot. On the other hand, if k−1 
 k2, then C is more likely
to be consumed by R-1, and in consequence each |Ti| is very likely much greater
than 2stot, making the computational cost of simulations significantly higher.

Our new PPTA approach minimizes the number of reaction events that fire
through the passage of each x(i)(t) to x∞ by preventing each x(i)(t) from revisit-
ing the same state. Thus, it guarantees that ∀i. |Ti| = 2stot. This is achieved by
eliminating R-1 and approximating transitions of each x(i)(t) using only complex-
formation and production reactions. In other words, the PPTA approximates the
passage time of the formation of each C molecule which leads to a production of
P, and only keeps track of such instances of formation of C, rather than explic-
itly also simulating the formation of C molecules that are destined to dissociate
into E and S molecules. Therefore, the PPTA can accelerate the stochastic sim-
ulations of the enzymatic reaction scheme (1), especially when k−1 
 k2 where
the reduction in each |Ti| by this new approach is substantial.

Let us first consider the special case where the total molecular count of the
enzyme is 1 (i.e., etot = 1), and describe the derivation of the PPTA model.
This section then extends this special case to more general cases where the total
molecular count of the enzyme is greater than 1 (i.e., etot > 1).

When etot is 1, the enzyme state for all t ≥ 0 is defined by XE(t) = 1−XC(t).
Also, R1 is only enabled when E is active (i.e., XE(t) = 1), and R-1 and
R2 are only enabled when C is active (i.e., XC(t) = 1). In this case, X(t)
can be seen as a temporal-homogeneous birth-death Markov process Y(t) with
2stot + 1 states as shown in Figure 1. Each state s ∈ [0, 2stot] of Y(t) can
then be mapped onto a system state xs of X(t) by the relationship: xs ≡
((s + 1) mod 2, stot − �s/2 , s mod 2, �s/2�). Thus, for all t > t0, the probability
that Y(t) = s given that Y(t0) = 0 is the same as the probability that X(t) = xs
given that X(t) = xt0 , and with the initial condition X(t0) = xt0 , each simula-
tion run of Y(t) starts in state 0, and eventually ends up in state 2stot. Since
E is active only in even number states in this process, R1 can fire only in these
states except in state 2stot. Similarly, C is active only in odd number states, so
R-1 and R2 can fire in these states. Thus, let Se be a set of even number states
{2m | 0 ≤ m ≤ stot}, Se′ be a set of states Se \ {2stot}, and So be a set of odd
number states {2m + 1 | 0 ≤ m < stot}. Then, the s → s + 1 transition rate λs

is a1(xs) if s ∈ Se′ , and a2(xs) if s ∈ So, whereas the s → s − 1 transition rate
μs is a−1(xs) if s ∈ So and 0 if s ∈ Se.
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Fig. 1. The state graph of the birth-death process of the enzymatic reaction scheme
(1) when etot = 1. This birth-death process has n + 1 states where n = 2stot, and
each state s can be mapped onto a system state of X(t) by the relationship xs ≡
((s + 1) mod 2, stot − �s/2�, s mod 2, �s/2�). Transition rate λs is a1(xs) if s is an even
number, and a2(xs) if s is an odd number. Transition rate μs is a−1(xs) if s is an odd
number and 0 otherwise.

Suppose Y(t) starts in state s0 where s0 ∈ Se′ . Then, the average waiting time
that Y(t) spends in states s0 and s0 + 1 for each simulation run are equivalent
to t(s0; s0 → s0 +2) and t(s0 +1; s0 → s0 +2), respectively, where t(sj ; si → sk)
is the mean time that Y(t) spends in state sj in the course of a (first) passage
from si to sk. In other words, using the variable t(sj ; si → sk),

t(s0; s0 → s0 + 2) ≡ t(s0; 0 → 2stot),
t(s0 + 1; s0 → s0 + 2) ≡ t(s0 + 1; 0 → 2stot),

since the transitions: s0 → s0 − 1 and s0 + 2 → s0 + 1 are not allowed in Y(t).
To find out the mean waiting times in states s0 and s0 + 1 using the pedestrian
approach [9], then, variables: v(s) and v+(s) are defined. The variable v(s) is
defined as the average number of visits by Y(t) to state s in the course of a first
passage from state 0 to state 2stot while v+(s) is defined as the average number of
transitions s → s+1 taken by Y(t) in the course of a first passage from state 0 to
state 2stot. Using these variables, the probability that Y(t) moves to state s0 +2
from state s0 +1 at the very next jump can be expressed as v+(s0 +1)/v(s0 +1).
Since this probability can also be expressed as λs0+1/(λs0+1 + μs0+1), and since
v+(s0 + 1) is 1, we can say

v(s0 + 1) =
(λs0+1 + μs0+1)

λs0+1
.

Because state s0 + 1 can only be visited from state s0 in Y(t), v+(s0) must be
equal to v(s0 +1). Furthermore, since the transition from state s0 to state s0 −1
cannot occur in Y(t), v(s0) must be equivalent to v(s0 + 1). Therefore,

v(s0) =
(λs0+1 + μs0+1)

λs0+1
.

Now, let T (s) be a random variable which represents the pausing time in state
s in Y(t). Then, since Y(t) is a temporally homogeneous birth-death Markov
process, T (s) must be a random variable which is necessarily exponentially
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distributed with parameter (λs + μs). Then, the mean pausing times in states
s0 and s0 + 1 can be expressed, respectively, as:

〈T (s0)〉 =
∫ ∞

0
tλs0 exp(−λs0 t)dt =

1
λs0

,

〈T (s0 + 1)〉 =
∫ ∞

0
t (λs0+1 + μs0+1) exp (− (λs0+1 + μs0+1) t) dt

=
1

λs0+1 + μs0+1
.

Since t(sj ; si → sk) can be formulated as the product of 〈T (sj)〉 and v(sj), the
mean waiting times that Y(t) spends in states s0 and s0 + 1 can be expressed
as:

t(s0; 0 → 2stot) =
λs0+1 + μs0+1

λs0+1λs0

=
a2(xs0+1) + a−1(xs0+1)

a2(xs0+1)a1(xs0)
,

t(s0 + 1; 0 → 2stot) =
1

λs0+1
=

1
a2(xs0+1)

.

Using this information, Y(t) can be approximated by creating a temporally
homogeneous birth Markov process Y′(t) with the same state space where the
mean waiting time in each state s is t(s; 0 → 2stot) derived from Y(t). Figure 2
shows the state graph of Y′(t). Since the waiting time in each state s in Y′(t)
is exponentially distributed, the s → s + 1 transition rate λ′

s is the reciprocal of
t(s; 0 → 2stot). Thus, λ′

s is a1(xs)a2(xs+1)/(a−1(xs+1)+a2(xs+1)) if s ∈ So and
a2(xs) if s ∈ Se′ . Therefore, using the PPTA, the enzymatic reaction scheme (1)
with etot being 1 is approximated by a new reaction scheme:

E+ S
k1′−−→ C k2−→ E+ P (2)

where k1′ = k1k2/(k−1 + k2).

�������	0
λ′
0 �� �������	1

λ′
1 �� �������	2

λ′
2 �� · · ·

λ′
n−3 �� 
������n − 2

λ′
n−2 �� 
������n − 1

λ′
n−1 �� �������	n

Fig. 2. The state graph of the pure birth process of the PPTA model when etot = 1.
This birth process has the same state space as the birth-death process in Figure 1.
Transition rate λ′

s is a1(xs)a2(xs+1)/(a−1(xs+1) + a2(xs+1)) if s ∈ So and a2(xs) if
s ∈ Se′ .

When etot > 1, the enzymatic reaction scheme (1) is considered as a set of
the enzymatic reactions as follows:

Ei + S
k1

�
k−1

Ci
k2−→ Ei + P, 1 ≤ i ≤ etot
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Fig. 3. Comparison of the average time evolutions of the original enzymatic reaction
model, its PPTA model, and its QSSA model with initial conditions: xt0 = (25, 50, 0, 0)
and the rate constants: k1 = 100.0, k−1 = 10.0, k2 = 0.01

where XEi
(t0) = 1 and XCi

(t0) = 0 for each i. Although simulations of this
process is definitely slower than that of X(t), this transformation itself does
not require any approximation as, when X(t) = x, k1xExS ≡

∑etot

i=1 k1xEi
xS ,

k−1xC ≡
∑etot

i=1 k−1xCi
, and k2xC ≡

∑etot

i=1 k2xCi
. Thus, by applying the PPTA

to each of the transformed enzymatic reactions, the enzymatic reaction scheme
(1) can be approximated by

Ei + S
k1′−−→ Ci

k2−→ Ei + P, 1 ≤ i ≤ etot,

which can now be represented using reaction scheme (2). This implies that the
accuracy of the PPTA of the etot > 1 case is based on that of the PPTA of the
etot = 1 case, and that the PPTA model provides the most accurate results if
etot = 1.

The two parameters in a PPTA model: k1′ and k2 can be derived from KM ,
and Vmax, the maximal reaction rate. Unlike the parameters: k1 and k−1, the
parameters KM and Vmax can actually be measured experimentally. Thus, a
PPTA model can be constructed and simulated even when full knowledge of
the underlying enzymatic reaction is not available and the enzymatic reaction
cannot be analyzed quantitatively at that level of detail. This is also true for a
QSSA model as its MM form only requires KM and Vmax parameters; however,
since a PPTA model does not assume that the intermediate species is in quasi-
steady state, a PPTA model may perform better than a QSSA model in terms
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of accuracy, especially in the pre-steady state phase. For example, suppose the
enzymatic reaction scheme (1) has the conditions:

xt0 = (25, 50, 0, 0) , k1 = 100.0, k−1 = 10.0, k2 = 0.1.

Then, since etot is arguably much smaller than stot, the QSSA could be applied to
safely approximate the temporal behavior of the underlying enzymatic reaction.
However, in this system, the propagation effects of the pre-steady state dynamics
are rather important, making any QSSA-based models unable to describe the
temporal behavior well. Therefore, as shown in Figure 3, the estimated mean
time evolution of this enzymatic reaction model is captured more accurately by
the PPTA model than by the QSSA model.

3 Case Studies

This section describes the benefits gained by the PPTA method by applying
it to various systems containing enzymatic reaction scheme. This section first
considers two model of the enzymatic reaction scheme (1) which are used to
help illustrate the application of the slow-scale SSA in [21]. It then considers the
enzymatic futile cycle motif which can be ubiquitously seen in biological systems
including GTPase cycles, mitogen-activated protein kinase cascades, and glucose
mobilization [4]. Finally, it considers a more complex competitive enzymatic
reaction. Each model is encoded in SBML [23] and simulated for 1,000 runs
using the same stochastic simulator, an optimized SSA implementation within
our modeling and analysis tool reb2sac [25]. Accuracy of a PPTA model is
measured by comparing the time evolution of means and standard deviations.

3.1 Single Enzymatic Reaction

The first model of the enzymatic reaction scheme (1) has the following initial
condition and the reaction rate constants:

xt0 = (220, 3000, 0, 0) , k1 = 0.01, k−1 = 100.0, k2 = 0.01.

This system is simulated for 20,000 time units and each data point is plotted
every 100 time units. Figure 4 shows the results from the original model and the
PPTA model of this system. The estimated means and standard deviations of
XS and XP are shown in Figures 4(a) and (b), respectively.

The results from the PPTA model are in a very close agreement with those
from the original model, yet the speedup gained by the PPTA model is signifi-
cant. While the entire simulation of the original model takes 68.58 hours, that
of the PPTA model only takes 22.8 seconds, achieving more than 10,800 times
speedup. Furthermore, since the speedup gained by the slow-scale SSA is about
950 on this system, the PPTA method is able to outperform the slow-scale SSA
by an order of magnitude.
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Fig. 4. Comparison of the original enzymatic reaction model and its PPTA model
with initial conditions: xt0 = (220, 3000, 0, 0) and the rate constants: k1 = 0.01, k−1 =
100.0, k2 = 0.01. (a) Means of XS and XP . (b) Standard deviations of XS and XP .

The second enzymatic reaction system has the following initial conditions and
the specification of the reaction rate constants:

xt0 = (10, 3000, 0, 0) , k1 = 0.01, k−1 = 600.0, k2 = 0.1.

This system illustrates a case where the average of XC(t) remains less than
1 as the maximum reaction rate of R1 (i.e., k1etotstot) is less than k−1. This
system is simulated for 80,000 time units and each data point is again plotted
every 100 time units. Figure 5(a) shows the estimated means of XS and XP , and
Figure 5(b) shows the estimated standard deviations.

Both the means and the standard deviations from the PPTA model track those
from the original model very well while, at the same time, the simulation time
of the PPTA is substantially reduced compared with that of the original model.
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Fig. 5. Comparison of the original enzymatic reaction model and its PPTA model
with initial conditions: xt0 = (10, 3000, 0, 0) and the rate constants: k1 = 0.01, k−1 =
600.0, k2 = 0.1. (a) Means of XS and XP . (b) Standard deviations of XS and XP .
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Whereas the simulation of the original model takes 27.63 hours, that of the
PPTA model only takes 17.9 seconds, improving the computation performance
by a factor of more than 5,500. Since the speedup gained by the slow-scale SSA
is 400 on this system, the PPTA method is able to outperform the slow-scale
SSA by an order of magnitude.

3.2 Enzymatic Futile Cycle

The enzymatic futile cycle motif consists of two instances of the enzymatic re-
action scheme (1) as follows:

E1 + S
k1

�
k−1

C1
k2−→ E1 + P, E2 + P

k3

�
k−3

C2
k4−→ E2 + S . (3)

One is to transform S into P catalyzed by E1, and the other one is to transform
P into S catalyzed by E2. This motif is found in many biological systems [4],
abstracting away low-level detail of the motif such as unproductive substrate-
complex cycles may provide a significant improvement in performance of the
overall system behavior analysis. With the PPTA method, unproductive dis-
sociation reactions are removed, transforming the enzymatic futile cycle model
into the following PPTA model:

E1 + S
k1′−−→ C1

k2−→ E1 + P, E2 + P
k3′−−→ C2

k4−→ E2 + S, (4)

where k3′ = k3k4/(k−3 + k4).
The original enzymatic futile cycle model and its PPTA model are simulated

for 300 time units with one time unit plot-interval to analyze the accuracy as
well as the performance gain of the PPTA model with the initial conditions:

(XS(0), XP (0), XE1(0), XE2(0), XC1(0), XC2(0)) = (0, 100, 10, 20, 0, 0),

and the rate constants:

k1 = 103; k−1 = 1.5 × 103; k2 = 2; k3 = 103; k−3 = 5 × 102; and k4 = 1.

Since each numerical simulation of the two models starts with no copies of S
and 10 copies of E1, this system illustrates a case where substrate is initially
lower than the catalyzing enzyme. Furthermore, since XS(t) +XP (t)+ XC1(t)+
XC2(t) is fixed at 100 for all t ≥ 0, this enzymatic futile cycle system illustrates
an applicability of the PPTA model when the numbers of both substrate and
enzyme molecules are very low.

Figure 6 shows the results from the original model and the PPTA model of this
enzymatic futile cycle system. The time evolutions of the estimated means and
standard deviations of XS and XP are shown in Figures 6(a) and (b), respectively.
From these figures, it is clear that both the means and the standard deviations
of XS and XP from the PPTA model approximate those from the original model
very well. The simulation of the original enzymatic futile cycle model takes 17.73
hours while that of the PPTA model only takes 87.51 seconds which represents a
speedup of more than 729 times. Furthermore, this demonstrates that the PPTA
can be applicable to systems with a low number of substrate molecules.
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Fig. 6. Comparison of the original enzymatic futile cycle model (3) and its PPTA
model (4) with initial conditions: XS(0) = 0, XP (0) = 100, XE1(0) = 10, XE2(0) = 20,
XC1(0) = 0, XC2 (0) = 0, and the rate constants: k1 = 1.0 × 103, k−1 = 1.5 × 103,
k2 = 2.0, k3 = 1.0 × 103, k−3 = 5.0 × 102, k4 = 1.0. (a) Means of XS and XP .
(b) Standard deviations of XS and XP .

3.3 Competitive Enzymatic Reaction

To further demonstrate the usefulness of the PPTA, the following competitive
enzymatic reaction scheme is considered:

S1
kb1−−→ P1, E + S1

k1

�
k−1

C1
k2−→ E + P1,

kp1−−→ S1, S1
kd1−−→,

S2
kb2−−→ P2, E + S2

k3

�
k−3

C2
k4−→ E + P2,

kp2−−→ S2, S2
kd2−−→ .

(5)

In this scheme, both S1 and S2 compete to bind to E to produce P1 and P2,
respectively. Also, this scheme contains basal reactions to transform S1 and S2
into P1 and P2, respectively, without being catalyzed by E. Moreover, since
substrates S1 and S2 are often produced and consumed via various reactions,
reaction scheme (5) also contains reactions to model productions and consump-
tions of S1 and S2.

The PPTA model of the competitive enzymatic reaction model (5) removes
the substrate-dissociation reactions from C1 and C2, resulting in the following
model:

S1
kb1−−→ P1, E + S1

k1′−−→ C1
k2−→ E + P1,

kp1−−→ S1, S1
kd1−−→,

S2
kb2−−→ P2, E + S2

k3′−−→ C2
k4−→ E + P2,

kp2−−→ S2, S2
kd2−−→ .

(6)

To analyze the accuracy of this PPTA model, the following initial conditions:

(XE(0), XS1(0), XS2(0), XP1(0), XP2(0), XC1(0), XC2(0)) = (10, 0, 0, 0, 0, 0),

and the rate constants:
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kb1 = 2 · 10−5; k1 = 102; k−1 = 102; k2 = 0.1; kp1 = 10; kd1 = 0.2;

kb2 = 10−5; k3 = 200; k−3 = 102; k4 = 0.15; kp2 = 10; and kd2 = 0.2,

are used for the simulations. The values of rate constants for the productions and
consumptions of S1 and S2 are chosen so that the consumption rate constants are
relatively high to capture isolation of substrates from binding to the enzyme and
that both substrates are present in low counts throughout the simulations (i.e.,
∀t ≥ 0. 〈XS1(t)〉 ≤ 100∧〈XS2(t)〉 ≤ 100). The values of basal transformation rate
constants kb1 and kb2 are chosen so that basal transformation rates are much
smaller than those from the catalyzed reactions when the substrates are present
in low counts (i.e., k2 · etot 
 100kb1 and k4 · etot 
 100kb2).

Figure 7 shows the results from the simulations of the two models. The es-
timated means of XS1 and XS2 are shown in Figure 7(a), while the estimated
standard deviations of XS1 and XS2 are shown in Figure 7(b). Once again, both
the means and the standard deviations of XS1 and XS2 from the PPTA model
track those from the original model very well with a substantial improvement in
simulation time. While the simulation of the original model takes 65.16 minutes,
that of the PPTA model only takes 35.78 seconds, achieving more than 109 times
speedup.
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Fig. 7. Comparison of the original model of competitive enzymatic reaction model (5)
and its PPTA model (6) with initial conditions: XE(0) = 10 and 0 molecule for the rest
of the species, and the rate constants: kb1 = 2 · 10−5, k1 = 102, k−1 = 102, k2 = 0.1,
kp1 = 10, kd1 = 0.2, kb2 = 10−5, k3 = 200, k−3 = 102, k4 = 0.15, kp2 = 10, kd2 = 0.2.
(a) Means of XS1 and XS2 . (b) Standard deviations of XS1 and XS2 .

4 Conclusion

This paper introduces a new model abstraction method, production-passage-time
approximation (PPTA), that can significantly improve the temporal behavior
analysis time of enzymatic reaction systems. As a case study, we have applied the
PPTA method to various systems, and compared the accuracy as well as the run-
time between the original model and the PPTA model. The preliminary results
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are promising. This paper has shown that the PPTA model can make stochastic
simulations orders of magnitude faster without any significant loss in accuracy.
This paper has also shown that the PPTA method achieves an acceleration of
an order of magnitude over the slow-scale SSA for the two enzymatic reaction
systems from [21]. Moreover, this paper has demonstrated that the PPTA can be
utilized to efficiently approximate more complex systems, exemplified here using
an enzymatic futile cycle model and a competitive enzymatic reaction model.
Additionally, our approach can also be used within a continuous, deterministic
framework to remove the stiff condition often found in enzymatic reactions with
k−1 
 k2 that gives significant computational challenges. Furthermore, since
our approach does not require a customized simulation procedure for enzymatic
reactions, it allows biochemical systems comprising such reactions along with
other types of reactions to still take advantage of utilizing general stochastic
simulation tools for the standard Gillespie stochastic simulation algorithm.

Future work includes comprehensive analysis of the PPTA errors under various
conditions and analysis of efficiency-versus-accuracy among the PPTA and other
approximations such as the QSSA based on the initial conditions, that is, a static
and systematic approach to determine when to use the PPTA.
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Abstract. Specificity of MHC binding to short peptide fragments from
cellular as well as pathogens’ proteins has been found to correlate with
disease outcome and pathogen or cancer evolution. The large variation
in MHC class II epitope length has complicated training of predictors
for binding affinities compared to MHC class I. In this paper, we treat
the relative position of the peptide inside the MHC protein as a hidden
variable, and model the ensemble of different binding configurations. The
training procedure iterates the predictions with re estimation of the pa-
rameters of a binding groove model. We show that the model generalizes
to new MHC class II alleles, which were not a part of the training set.
To the best of our knowledge, our technique outperforms all previous ap-
proaches to MHC II epitope prediction. We demonstrate how our model
can be used to explain previously documented associations between MHC
II alleles and disease.

1 Introduction

The open binding pocket of the MHC class II molecules allow for a greater
variation in peptide length relative to the closed pocket of the MHC class I
molecules. This difference combined with the relative lack of sequence similar-
ity across binding peptides makes MHC binding prediction significantly more
challenging for the class II molecules. Recent efforts for MHC class II binding
have been focused on methods to identify a nine amino acid binding core of the
peptide, which is widely believed to be responsible for a majority of the binding.
This is then combined with one of numerous existing methods for predicting
MHC class I binding over the derived nonamers.

Several approaches to binding core identification have been explored. Many of
these search for an optimal alignment of nonamers across the binding peptides.
[2] and [1] use MEME [16] to identify and align the over represented nonamers.
Gibbs sampling is used by [3]. The Linear Programming method of [5] effectively
produces an alignment or choice of nonamers during training.

The alignment can be a pre-processing step as in [2] and [1] who use the set
of nonamers in the alignment as direct input into their MHC class I predictors.
� Corresponding author.

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 181–195, 2007.
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The Gibbs sampling method of [3] uses the PSSM of the alignment as input
into the binding prediction method. The method closest to our work in the
Linear Programming model proposed by [5]. They use a sliding window over each
peptide and a set of LP constraints which attempt to identify the window for
each peptide that maximizes their ability to separate binders from non-binders
with a PSSM model.

Several MHC class I tools have been applied to these nonamer alignments.
Motif based methods such as RANKPEP [2], attempt to identify amino acids at
particular positions that are characteristic of binding for a given allele. A variety
of machine learning base methods such as neural networks, support vector ma-
chines, and hidden Markov Models have been applied. Structure based methods
such as ours and [4] attempt to model the physics of MHC binding using the
growing number of MHC class I and II molecules that have been solved by X-ray
crystallography.

In this paper, we demonstrate a new method for predicting binding to arbi-
trary MHC class II alleles. Our binding model is based on the protein structure
of the molecules and treats the possible peptide alignments as an ensemble of
possible configurations. Rather than assuming simply that any peptide align-
ment is equally possible, or turning to separate methodology to provide the best
alignment, we infer the distribution over possible states for each peptide-MHC
combination based on the predicted state energy. This is not treated as a dis-
tribution over a variable with mutually exclusive and exhaustive states, but as
population frequencies in the thermodynamics sense, and the equivalent total
binding energy is estimated accordingly. This is the key difference between our
approach and previous approaches to MHC class II binding prediction, which
enabled us to outperform, to the best of our knowledge, all previously published
techniques.

2 Modeling Variable Peptide Position in the MHC
Groove

Since a longer peptide (15-30 amino acids, for example) has only part of it
in the groove of the MHC class II molecule, we introduce a hidden random
integer variable � that represents the unknown alignment of the peptide with
the groove. The largest difference in the binding of peptides to the same MHC II
allele is in where the bound part of the peptides start. We represent the starting
index of this segment with the variable � ∈ [1, N − 8], where N is the length
of the peptide, and we assume the segment that is inside the groove is 9 amino
acids long (Fig. 1). There are, of course, other hidden variables that describe
the binding configuration, such as the particular geometric configuration m of
the amino acids in the groove of the MHC molecule from the available crystal
structures. In this section, we will denote all such hidden variables with h, and in
the next section, we will define h = (�, m) as the hidden variables in our shifted
adaptive double threading model.

For now, we simply assume the existence of a model E(s, e,h), where s denotes
a particular MHC allele, and e denotes a particular peptide, such that if the
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Fig. 1. Examples of binding configurations of MHC class I molecules (left) and MHC
class II (right) bound to different peptides. The class I molecules are gray, except for
the alpha helices forming the groove, which are shown in blue to accentuate the peptide
(pink) sitting snugly inside it. The class II molecules consist of two separate chains.
Their alpha helices (blue and green) form a similar groove to that of class I molecules.
A class II molecule can bind to peptides of more variable length, with only a short
segment (dark pink) of the bound peptide captured in its groove, and the peptide tails
(light pink) sticking out and having a smaller effect. The start of the segment that fits
the groove is modeled by the random variable � in Section 2.

setting for the hidden variables h are provided, the model can produce a good
estimate of the binding energy for the pair s, e. In many past approaches to MHC
binding, the settings of h (in particular the alignment analogous to our variable
�), were provided by a separate routine, unrelated to the energy model E.

We index energy states E(s, e,h) of a MHC-peptide complex by h with
the partition function Z =

∑
h e−E(s,e,h), and the free energy per particle of

the system of such particles is F = − log Z, where the kT factors are omitted,
as the reported measured binding energies are dimensionless log IC50 values.
Thus, we can model the measured binding energy log IC50 as

E(s, e) = − log
∑

h

e−E(s,e,h). (1)

In particular, for the case of a shift as the hidden variable h = �, the energy
of a particular configuration E(s, e, �), can be derived from a model Emod(s, e)
that does not deal with peptide shifts, and requires e to be a known k-mer sitting
in the MHC groove, if the assumption is that k amino acids are in the pocket. In
this case, E(s, e, �) = Emod(s, e�:�+k−1). Choices for models of binding given a
known alignment include most previous MHC I and MHC II binding models (e.g.
pssm, logistic regression, support vector machine, motif search), although they
may have to be retrained in this new context. In what follows, we describe how this
retraining may be done, on the example of the adaptive double-threading model
[18], into which we add hidden variables according to the above recipe, and then
derive an EM-like learning algorithm that can fit the parameters of the model.

An important feature of our treatment of variable peptide alignment with the
groove is that the distribution over possible alignments is effectively determined
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by the model’s energy predictions alone, rather than by the fit of these predic-
tions to the energy data. This means that the proper alignment can be inferred
not only in training, but also in testing on new peptides for which the true (mea-
sured) binding energy is not provided to the predictor. Since the energy in (4)
is dominated by the minimum energy state E(s, e,h), the preferred alignments
will have lower energy, rather than better fit to the data.

3 Shift-Invariant Double Threading Model

Our basic binding energy model is based on the geometry of MHC-peptide com-
plexes, and is motivated by the threading approach [20]. As in [18], its imple-
mentation in [19] is here augmented by including learnable parameters. The
parameters are estimated from the experimental data.

Assuming that energy is additive, and that the pairwise potentials depend
only on the amino acids themselves — and not on their context in the molecule
— the energy becomes a sum of pairwise potentials taken from a symmetric
20×20 matrix of pairwise potentials between amino acids. These parameters are
computed based on the amino acid binding physics, or from statistical analyses of
amino acid pair contact preferences in large sets of available protein structures.
Several sets of pairwise potentials have been described in the literature, each
derived in a different way (for review see [21]. The choice of pairwise potential
matrix can dramatically alter performance of the energy predictor [19].

In the adaptive double threading model of MHC I - peptide binding, the
binding energy is estimated as

E(m, s, e) ≈
∑

i

∑

j

wm
i,jφsi,ej

h(dm
i,j), (2)

where MHC-specific weights wm
i,j and a trainable soft threshold function h pro-

vide added parameters whose role is to correct for the drastic approximations in
the original threading approach. The adaptive soft step function and the addition
of the weights w are meant to absorb the errors of the model assumptions [18].

The basic idea behind threading approaches is that, even though the structure
information d is inferred from a known binding configuration of a particular
peptide-MHC I combination, substituting a different peptide of the same length
(or even another MHC molecule, as in our previous work) in the above equations
still lead to a reasonable estimate of the binding energy for the new MHC-
peptide combination. This is due to the fact that relative positions and the basic
chemistry of the amino acid-amino acid interactions are fixed. Even the light
changes over different geometries of peptide-groove configurations (indexed by
m) have a small (though measurable) effect on the accuracy of the model. The
success of the previous work on MHC I binding energy prediction attests that
this main assumption holds well for MHC I molecule.

The same basic modeling strategy can be used for modeling MHC class II
with one very important difference. While the fixed chemistry of the amino acid
interactions and the fixed overall geometry of the MHC molecule are still rel-
atively mild assumptions, the fixed relative position of the peptide is a gross
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over-approximation. Thus, the model needs to be extended to account for vari-
able position of the peptide, as discussed above.

To estimate the energy of the binding configuration for a particular shift �,
we update our model in the following way:

E(m, s, e, �) ≈
∑

i

N+�∑

j=1+�

wm
i,j−�φsi,ej−�

h(dm
i,j−�), (3)

In order to fit the model to experimental binding essays, we need to express
the total affinity of the peptide by summing over all the binding configurations.
The binding energy is usually reported in terms of an IC50 value, which approx-
imates the dissociation constant. The energy is assumed to be proportional to
the negative log of this value, and so energy estimators are typically trained on
the E = − log nIC50 values. When many copies of the same longer peptide are
mixed with many copies of the same MHC class II molecule, binding configura-
tions with all different shifts � may form. Therefore, according to (1), we sum
over the two unknown variables that meaningfully affect the energy used in (3):

E(s, e) = − log
∑

m,�

e−E(m,s,e,�). (4)

Variable m, as in the case of the MHC class I molecule (2), represents the
geometry of the configuration of the MHC molecule and the peptide’s segment
that is in the groove. The variable m influences the energy estimate through
the distance matrix dm

i,j . As the variability in the binding configurations of the
groove is low, the influence of variable m is existent, but mild. In case of MHC
class II molecule, this variability has a much smaller effect on the energy estimate
than the shift variable � – upon 3D alignment of different MHC structures, the
relative positions of molecules close to the binding grooves change very little.
While the slight geometry changes in the groove have an effect on the prediction,
the shift variable � influences the prediction much more dramatically as it alters
the predicted amino acid composition of the peptide’s segment sitting in the
groove.

Short inspection (or simulation) of (4) reveals that the energy estimate is
indeed dominated by the state (m, �) with the smallest energy. However, as we
will discuss later, it is typically dangerous to assume that the observed energies
are equal to the minimum among the estimated energies for different states
(m, �). The reason for this is that the predictors are inherently noisy, and the
more states we consider, and the more predicted variability across the states we
find, the more likely it becomes that the wrong minimum energy state will be
picked with a dramatically wrong predicted energy value. Taking more states into
account in the estimate, on the other hand will lead to more robust estimates.

Parameter estimation and binding configuration inference. In our train-
ing and testing procedures, we assume that the data is given in a form of a list of
triples, each consisting of an MHC class II sequence s, a peptide s and the mea-
sured binding energy E(s, e). During training, we wish to determine the model
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parameters w, phi, dthr, a which minimize the error of approximation in (4). Any
number of optimization or search algorithms can be used for this. Since the er-
ror of approximation in (4) depends on the parameters in a highly nonlinear
way, in our implementation, we introduce new auxiliary variables for each train-
ing case, in order to simplify the optimization criterion into a simple quadratic
form. The price to pay is the EM-style iteration the parameter optimizations
step with re-estimation of the case-specific auxiliary variables. To derive the
algorithm, we first introduce an auxiliary probability distribution over states
q(m, �), 0 ≤ q(m, �) ≤ 1,

∑
m,� q(m, �) = 1. As log is a concave function, we have

E(s, e)=− log
∑

m

N−8∑

�=1

q(m, �)
e−E(m,s,e,�)

q(m, �)
≥ −

∑

m

∑

�

q(m, �) log
e−E(m,s,e,�)

q(m, �)

=
∑

m

∑

�

q(m, �)E(m, s, e, �) +
∑

m

∑

�

q(m, �) log q(m, �).

Since for a given state m, �, the energy depends on each subset of model pa-
rameters w and φ linearly, this bound on the energy is also bi-linear in model
parameters, and the same iterative linear regression reported in our previous
work can be used to minimize the approximation error. The above bound is true
for any auxiliary probability distribution q, but it becomes tight (exact equality
is accomplished) when

q(m, �) =
e−E(m,s,e,�)

∑
m,� e−E(m,s,e,�) , (5)

i.e., the distribution q is the exact distribution over states according to the
energy model. This distribution depends on the sequence content of both the
MHC molecule s and the peptide e, and so it has to be recomputed for each
training or test case. It is important to note that this distribution is not treated
as a distribution over a variable with mutually exclusive and exhaustive states,
but rather as population frequencies in the thermodynamics sense. In the former
case, the hidden shift variable could only be inferred from a given binding energy,
and in prediction, energies of different possible shifts would have to be averaged.
In the latter case, the distribution over shifts depends on the predicted energies
for individual shifts, and not on the observed energies, and so it can be equally
used in training and testing. To learn the model parameters, the configuration
inference step has to be iterated with re-estimation of model parameters. Such
an iterative learning algorithm consists of the following steps:
– Initialize model parameters (e.g., setting all weight w to one, dthr and a so

that the step function h is smooth and has a larger threshold, e.g. 6 or 7,
and the φ matrix to either uniform or the one previously estimated for other
purposes.

– Initialize qt(m, �) to uniform for each training sample (et, st, Et).
– Re-estimate the model parameters w, φ, dthr , a so that

∑
t(E(et, st) − Et)2

is minimized, where

E(et, st) =
∑

m,�

qt(m, �)E(m, st, et, �) +
∑

m,�

qt(m, �) log qt(m, �). (6)
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Since the model is linear in w and linear in φ, iterative linear regression to
solve for one set of parameters at a time is efficient. Step function parameters
dthr, a are updated every few steps by gradient descent.

– Using the new parameters, re-estimate the distribution

qt(m, �) =
e−E(m,s,e,�)

∑
m,� e−E(m,s,e,�) . (7)

– Iterate the last two steps until convergence.

This procedure has some similarity with transformation-invariant generative
models developed primarily for vision applications in [17]. However, the impor-
tant difference is that the possible shifts are not considered as equally likely a
priori. In fact, they depend on the peptide and MHC sequences. Consequently,
the distribution over states m, � can be determined both for training and test-
ing peptides, and in prediction, the state energies are not averaged. Rather, the
possible binding configurations are considered as an ensemble with population
frequencies defined by q. It is also different form the LP approach discussed in
the introduction, which tries to infer a single best alignment for each peptide in
training.

Using temperature to account for modeling errors during learning.
The update of the position distribution in (7) and the estimate of the energy
in (6) are highly sensitive to the errors in prediction due to the non-linearity of
estimating the equivalent energy by summing over all configurations (4). This can
cause local minima problems for the EM-like procedure described in the previous
section, as the parameters, and therefore the predictions, are less reliable in the
early iterations of learning.

To illustrate how the prediction errors may be propagated through (4), we
present the following simple experiment. Assuming the total number of different
shifts � is 10, and that the true binding energy for fake MHC-peptide configura-
tions E�are drawn randomly form a uniform distribution on the interval [0, 10],
we computed total binding energies according to Etrue = − log

∑
� e−E� for 100

such configurations. Then, we computed

Eestimate = −T log
∑

�

e−
Ẽ�
T , (8)

where Ẽ� = E� + v�, and v�, a random variable drawn from a zero mean Gaus-
sian distribution with some variance σ2, simulates a modeling error. A choice
of the auxiliary temperature parameter T > 1 leads to smoothing of the energy
estimate in the following sense: By reducing the differences between the energies
of different states, it becomes possible for more states to significantly influence
the estimate. This is potentially useful as the wrong state may have the lowest
energy due to the prediction errors, and the state with the lowest energy dom-
inates the estimate at T = 1. For larger parameter T , on the other hand, the
lowest energy state would contribute more to the estimate of the energy, but the
other states would contribute, as well.
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Fig. 2. The effect of the temperature T used in energy estimate (8) on the prediction
accuracy, here measured in terms of the correlation between the estimate and the
“true” energy in the synthetic experiment described in the text. The curves correspond
to the variance of the modeling error σ2 of 0,1,2, and 3. Higher error variance leads
to lower Spearman correlation factors, and the best correlation is achieved at optimal
temperatures which increase with the error variance.

We assume for the moment that the measurement procedure which would in
practice provide a direct measurement of Etrue is perfect, and that a potential
inability of a predictor to match it is only due to predictor’s errors in predicting
the binding energy of the groove-peptide segment configurations for different
shifts. In Figure 2 we show how well the tempered prediction Eestimate using
the noisy predictions E� correlate with the true energies Etrue. In particular,
for different levels of error variance σ2, we show how the Spearman correlation
factor between Etrue and Eestimate varies with the temperature T . The graph
shows that a rise in modeling error σ2 can, to some extent, be absorbed by
raising temperature factor T .

Adding the temperature factor into (4) leads to the following change in (6)
and (7) in the algorithm of the previous section:

E(et, st) =
∑

m,�

qt(m, �)E(m, st, et, �) + T
∑

m,�

qt(m, �) log qt(m, �). (9)

qt(m, �) =
e−

E(m,s,e,�)
T

∑
m,� e−

E(m,s,e,�)
T

. (10)

In training, rather than annealing the temperature according to some fixed
training schedule, we search for the optimal temperature parameter after ev-
ery few updates of the model parameters. Upon convergence of all model and
auxiliary parameters, the temperature typically settles to a value close to 1,
which might indicate that the physical measurement errors are higher than the
modeling errors.

4 Experiments

We downloaded the complete set of MHC class II structures that contain an epi-
tope of at least seven amino acids from the pdb [13]. The resulting set consisted
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of 12 HLA-DR and 3 HLA-DQ. Although the MHC class II allele HLA-DP are
missing from this set, they share relatively high sequence similarity with HLA-
DR alleles. These structures are used as exemplars m of the groove structures
in the experiments. To evaluate the prediction accuracy, we used our method
both as an epitope predictor and a binding energy predictor and tested it on
the available epitope and energy data. In addition to comparisons with existing
techniques for epitope prediction, we analyze the ability of our model to assist
in association studies in immunology.

4.1 Energy and Epitope Prediction Experiments on Published Data
Sets and Comparisons with other Methods

MHCPEP Dataset. The MHCPEP data set has recently been used to eval-
uate the performance of the MHC class II binding predictors DistBoost and
RANKPEP. Following the procedure of [1] and [2], we downloaded the contents
of the MHCPEP database [6] in order to compare the relative performance of our
method. The data are peptide sequences paired with MHC alleles and binding
affinities. As in [1] and [2], we removed all peptides classified as low binders or
with unknown residues at some position. We removed peptides from all non hu-
man MHC alleles (although our method can be applied to these as well), leaving
1265 peptides from 17 MHC class II alleles. We verified via email correspondence
that our data set matched the corresponding subset of [1]. Unlike [1] and [2] our
method does not require an alignment step and was therefore omitted.

We compared our method to DistBoost and RANKPEP [2] by replicating the
exact same experimental setup. The MHCPEP data set described above was used
as the set of positive binders. Non-binders were taken from random protein se-
quence from the SwissProt database, so that there were twice as many non-binders
as binders per allele. Training was performed using half of the binders for each al-
lele with twice as many non-binders. Testing was performed on the remaining set.
We used 5-fold cross validation over the training set to find an optimal set of pa-
rameters, and then evaluated the method on the test set. This setup was repeated
10 times to measure average performance and standard deviation.

We plotted ROC curves for our model and compared the AUC of our method
with the published results of RANKPEP and DistBoost . Our method outper-
formed both DistBoost and RANKPEP on 15 out of the 17 data sets (p-value
.00014 binomial) see Table 1. The average AUC for our method was .87 com-
pared to .78 for DistBoost and .71 for RANKPEP. In addition, our average
standard deviation was lower than either method, 0.04 compared to 0.044 and
0.05, showing our method is as robust or better.

MHCBench Dataset. The MHCBench dataset was constructed for the pur-
pose of evaluating MHC class II binding predictors. Recently, [5] and [3] have
evaluated their methods over this dataset after training on similar training data.
In order to evaluate the relative performance of our method, we followed their
training and testing procedures. We downloaded the set of HLA-DRB1*0401
binding peptides from the SYFPEITHI [12] database that were added before
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1999. [3] does not require negative training examples for his method, so we
followed the example of [5] and added the HLA-DRB1*0401 non-binders from
the MHCBN database [7]. We followed their example and removed peptides
that have a hydrophobic residue in the first position according to their model.
Peptides that were more than 75% alanine were also removed. This left a dataset
of 462 binding and 177 non-binding peptides and is the training data set. Our
method also has the capability to incorporate information from other alleles
in training. We therefore created another training data set which consists of
that described above in addition to the set of non HLA-DRB1*0401 peptides
contained at MHCBN. All peptides overlapping the test data (see below) with
alignment over 90% were removed, leaving a set of 2997 peptides.

The test data sets used by [5] and [3] consist of the 8 data sets described in [9],
the data set from [10], and the data set from [11]. In the [9] data set, any peptide
with a non-zero value is considered a binder and is a non-binder otherwise. For
the other data sets, any peptide with affinity of less than 1000nM was considered
a binder, and a non-binder otherwise. Since there is a significant overlap between
the peptides in the training and test data sets, we removed any peptide with
> 90% sequence identity to a peptide in the training set. We verified via email
correspondence that our training and test data sets matched those of [5] and [3].

Table 1. Comparison of RANKPEP,DistBoost , and our Shift Invariant Double Thread-
ing (SIDT) method over the MHCPEP data set. Best values shown in bold font.
Columns A and B for DistBoost refer to training without and with negative con-
straints. Columns A and B for RANKPEP refer to PSSMs constructed using PRO-
FILEWEIGHT and BLK2PSSM.

Allele RANKPEPA RANKPEPB DistBoostA DistBoostB SIDT #
QA10501x0201 0.87 0.88 0.93 0.93 0.87 31

QA10301x0302 0.7 0.7 0.75 0.77 0.87 52
PA10201x0901 0.8 0.88 0.75 0.74 0.88 18

RB10101 0.74 0.75 0.81 0.8 0.87 188
RB10102 0.72 0.72 0.9 0.83 0.91 21
RB10401 0.68 0.6 0.71 0.73 0.87 321

RB10402 0.7 0.72 0.74 0.69 0.88 72
RB10405 0.76 0.82 0.86 0.86 0.89 64
RB10404 0.7 0.61 0.74 0.7 0.84 44
RB10701 0.71 0.72 0.79 0.76 0.89 81
RB10901 0.8 0.78 0.89 0.91 0.97 39

RB11101 0.57 0.54 0.76 0.73 0.85 124
RB11501 0.61 0.6 0.73 0.75 0.87 35
RB50101 0.83 0.81 0.83 0.8 0.87 52
RB10801 0.52 0.52 0.67 0.65 0.84 42
RB11104 0.91 0.92 0.87 0.88 0.83 29
RB10301 0.54 0.52 0.54 0.62 0.83 52

AVERAGE 0.72 0.71 0.78 0.77 0.87 74.4
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Table 2. Performance of our shift invariant double threading method (SIDT), the
Gibbs sampler, TEPTITOPE, and the Linear Programming method over 10 homology
reduced data sets. *This is our method trained with additional data for different alleles.
It demonstrates the ability of our method take advantage of information across alleles.

Method Set1 Set2 Set3a Set3b Set4a Set4b Set5a Set5b Geluk Southwood Average
SIDT 0.76 0.71 0.73 0.79 0.77 0.72 0.71 0.79 0.78 0.61 0.737
SIDT* 0.75 0.73 0.72 0.74 0.77 0.73 0.83 0.85 0.78 0.69 0.759
Gibbs 0.68 0.66 0.6 0.69 0.67 0.68 0.59 0.59 0.69 0.88 0.673
Tepi 0.6 0.65 0.6 0.7 0.59 0.66 0.66 0.68 0.66 0.49 0.629

LP2 0.67 0.7 0.67 0.76 0.65 0.7 0.73 0.76 0.66 0.84 0.714

Table 3. Description of data sets used in this paper. Train is the training set used for
the MHCBench test set. Train2 is the same training set with the addition of peptides
belonging to different alleles.

Set1 Set2 Set3a Set3b Set4a Set4b Set5a Set5b So. Gel1 Trn Trn2 PEP
Bind 248 161 151 128 120 120 65 47 19 15 462 1782 1037
Non 283 255 204 197 283 255 45 37 80 6 177 121 2074

Total 531 416 355 325 403 375 110 84 99 21 639 2997 3111

We used 5 fold cross validation over the training set to estimate the optimal set
of parameters for our model. ROC curves were generated for each test set and the
AUC was computed for comparison with the published results of LP, Gibbs, and
Tepitope. In addition, we trained on another training data set which contained
peptides from other alleles to show how our method can incorporate other data
to improve performance. The results are shown in Table 2. Our method has
a higher average ROC than any other method, and it is further improved by
adding non DRB1*0401 alleles to the training set. We beat the other methods
on 8 out of 10 data sets (pvalue ¡ 0.017 binomial). In training our model we
assume a different cutoff for good versus bad binders than the 1000 nM cutoff
used for the Southwood and Geluk data sets in the test data. Using our cutoff
of e6.2 improves our performance on these data sets, but can not be compared
with the above methods since the training set would be different.

4.2 Generalizing to New Alleles

One of the important features of our approach as opposed to most others is that
after training, any MHC sequence may be threaded onto a structure and used
for binding prediction1. This allows us to predict peptide binding for alleles with
little or no experimental data. For MHC class I molecules there are hundreds of
alleles. MHC class II molecules are polymers of two different molecules called the
alpha and beta chains. HLA-DQ has several hundred alpha and beta chains, with
thousands of possible combinations, each of which binds different peptides. Since
1 Some techniques attempt something similar. For example, TEPITOPE learns indi-

vidual binding pockets, allowing it some level of generalization.
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Fig. 3. The capability of generalizing epitope prediction to alleles not found in the
training set allows our method to be applied to a much larger set of MHC molecules.
This figure shows the significantly greater predictive power of our method over two
voting based mechanisms for binding across alleles.

peptide binding experiments are currently costly and time consuming,the ability
to predict binding for unseen alleles is an extremely useful feature of our method.

The IEDB [8] is a meticulously curated data set of peptide binding data-
database. This resource maintains a hand curated list of epitopes, and carries
continuous IC50 values. We downloaded the complete IEDB MHC and TCell
binding data from IEDB, removing peptides from before 1993, and any peptide
marked as a good binder with an IC50 of greater than 3000 and any peptide
marked as a non-binder with IC50 less than 500. In order to guarantee an equal
number of binding and non-binding peptides in each allele set, we added ran-
dom human peptides from SwissProt until each allele was balanced. This data is
described at http://www.research.microsoft.com/jojic/hlaBinding.html

Using the IEDB database described above, we created transfer data sets by
removing all epitopes of each allele in turn. For each of these data sets, we trained
the model using 5 fold cross validation to estimate the optimal parameters. We
then threaded the MHC sequence of the allele that was left out onto the structure
of the allele that had the closest sequence alignment. We then ran the model
using this sequence structure combination over all of the alleles from the data
set. Since there is significant overlap between peptides that bind to different
alleles, we compared our transfer results to two different voting based methods
for predicting binding of unseen alleles. We ran our standard trained model for all
observed alleles in the training data over the set of peptides of the unobserved
allele. We called a peptide a binder if the majority of the alleles called it a
binder. In another voting setup, we called a peptide a good binder if a majority
of the alleles in the supertype of the left out allele called it an good binder. We
plotted a ROC curves for the performance of each method and calculated their
average AUC. The results are show in Figure 3. As can be seen in the figures, our
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threading method significantly (p-value < .00001 binomial) outperforms either
voting mechanism. We are able to predict peptide binding for MHC class II
alleles having learned over both alpha and beta chains, a single alpha or beta
chain, or without any previous exposure to either chain of the allele.

4.3 Myelin Binding

There are several auto-immune diseases in which the nerve insulating mate-
rial called myelin is degraded. This degradation disrupts signal passage through
the nervous system and can cause severe health problems. Myelin Basic Protein
(MBP) has been shown to bind to the MHC class II allele HLA-DRB1*1501, and
is a candidate autoantigen for multiple sclerosis (MS), an auto-immune disease
of the central nervous system. We demonstrate how our MHC class II binding
predictor can be used in autoimmune research by replicating several MS experi-
mental results in silico. The HLA-DR2 supertype has been repeatedly shown to
positively associate with MS [15]. We ran our method over the MBP using the
HLA-DR2 allele HLA-DRB1*1501 and found four potential binders. Of these,
the strongest signal was located at amino acid 91 of the MBP. The peptide
consisting of residues 85-99 which contains our predicted binding site has been
shown experimentally to be an immunodominant epitope for HLA-DRB1*1501
[14]. Furthermore, there is an approved drug to treat certain forms of MS that
works by disrupting this binding, and there is active research to find new can-
didate peptides that will displace MBP 85-99 by competitively binding to the
HLA-DRB1*1501 allele. These drugs have been shown to suppress relapse rates
of certain forms of MS by 30% [14]. The drug and two other competitive bind-
ing peptides take the form of coplymers 1 poly(Y,E,A,K)n, 2 poly(F,Y,A,K)n,
and 3 poly(V,W,A,K)n. These are peptide sequences of random combinations of
each the amino acids inside the in the poly groups. We measured the number of
predicted binders to HLA-DRB1*1501 over 20 random peptides of each of these
polymers and found that in 20 polymers of length 50, there were 60, 80, and
155 predicted binders with a binding strength greater than that predicted for
MBP 85-99, for polymers 1, 2, and 3 respectively. When 20 random SwissProt
proteins of equivalent length were used, there were only 10 predicted stronger
binders. This shows our method predicts the potential therapeutic uses of these
coplymers. Recently, [14] examined the properties of the copolymers and syn-
thesized non-random peptides of length 15. Three of these J2, J3, and J5 were
experimentally found to suppress MBP 85-99 binding with the relative strength
of suppression J5 > J3 > J2. We ran our method over each of these 15 amino
acid long peptides and found that all three had predicted binding energies lower
than MBP 85-99 (they form stronger bonds). Furthermore, the order of binding
strength matched that of the relative levels of suppression. That is, J5 was the
strongest binder followed by J3 and then J2.

5 Conclusion

We have developed a novelMHC class II binding model which can be trained on ex-
amples of measured binding affinities for a number of allele-peptide combinations,
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as well as lists of good and bad binders for various alleles.2 To the best of our knowl-
edge, our method outperforms significantly all previously published class II epi-
tope prediction techniques, due to its unique treatment of the variable position
of the peptide with respect to the binding groove. Our method is physics-based,
and treats the binding configurations with different possible peptide positions as
a statistical ensemble in a thermodynamic sense. However, as opposed to other
structure-based techniques [4], our approach is both accurate in binding energy
prediction and computationally efficient. For instance, due to the computational
cost, [4] reports results for only six peptides. Our model, while guided by the known
MHC II structures, is simplified and enriched with trainable parameters, which
allows us to refine it using published binding data. Testing a new peptide takes a
fraction of a second. One of the most appealing properties of our technique is that
it naturally generalizes well to previously unseen MHC II alleles (or unseen com-
binations of alpha and beta chains). We illustrated the accuracy of our technique
on a biological problem: identifying targets and drugs for an autoimmune disor-
der. We are also investigating the uses of the model to explain certain evolutionary
trends in pathogens.
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Abstract. The study of mobile element evolution yields valuable in-
sights into the mechanism and history of genome rearrangement, and
can help answer questions about our evolutionary history. However, be-
cause the mammalian genome contains millions of copies of mobile ele-
ments exhibiting a complex evolutionary history, traditional phylogenetic
methods are ill-suited to reconstructing their history. New phylogenetic
reconstruction algorithms which exploit the unique properties of mobile
elements and handle large numbers of repeats are therefore necessary to
better understand both mobile elements’ evolution and our own.

We describe a randomized algorithm for phylogenetic reconstruction
that scales easily to a million or more elements. We apply our algorithm
to human and chimpanzee Alu and L1 elements, and to SINE elements
from 61 species, finding 32 new L1, 111 new SINE, and over 1000 new
Alu subfamilies. Our results suggest that the history of mobile elements
is significantly more complex than we currently understand.

1 Introduction

Nearly half our genome is the result of the activity of mobile elements, short
sequences originating as exogenous viruses which copy and reinsert themselves
into our genetic code. Of these mobile (or repeat) elements, a fifth are evolution-
arily modern, found only in primates, and a few are still active today. Analysis
of these mobile elements can help answer organism-level questions of primate
phylogeny and human population structure [1]. Furthermore, a detailed picture
of mobile element evolutionary history is crucial to understanding their role in
genome rearrangement, protein evolution, and some genetic diseases [2,3]. Fun-
damental problems therefore include estimating the number and size of mobile
element families, the relations between them, and their distribution over species.

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 196–210, 2007.
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Repeat element phylogeny is difficult for at least three reasons: First, a single
major repeat family can contain over 1 million elements, presenting a computa-
tional challenge for traditional phylogeny methods. Second, the families exhibit
complex evolutionary history, with a large number of related and highly similar
subfamilies. Third, because many of the mobile elements are ancient and are lo-
cated in non-coding regions, they are very degenerate due to mutation; it is not
uncommon for a mobile element to have mutated in over 20% of its positions since
insertion. Furthermore, truncation and partial insertion leave only fragments of
most instances of the longer families. Although tools such as RepeatMasker [4]
exist to identify repeat elements in the genome, few computational tools exist
to identify repeat element subfamilies and construct their phylogeny.

The spread of repeat elements and their evolutionary and developmental roles
have long aroused scientific interest, starting with McClintock’s work on coloring
differences in maize in the 1950’s [5]. Much recent work has focused on the role
and dynamics of the Alu repeat in humans and other primates. Eichler et al. [6]
investigate Alu’s potential role in producing the relatively abundant segmental
duplications seen in the human genome. Mishra et al. [7] propose that LINE-1
elements mediate some genome rearrangement in rat, as Alus do in primates.
Han et al. [8] show that LINE elements may also play a role in genomic deletions
in chimpanzee and human. Hedges et al. [3] review the putative role of several
types of mobile element in genome growth, protein evolution, and human disease.
Jurka [9] reviews the dynamics of Alu insertion and deletion, and discusses L1-
mediated retrotransposition as a mechanism for their duplication.

Recent work has focused not just on the role of mobile elements in genomic
evolution, but on the phylogeny of the elements themselves. Cordaux et al. [10]
reconstruct a phylogenetic network over the Alu Y subfamily, showing that hu-
man Alu elements came from multiple active sources. Price et al. [11] reconstruct
a phylogeny of all human Alu elements using a novel clustering method based on
tests for correlated mutation. Salem et al. [12] use Alu Ye elements to provide
evidence about species relations among human, chimpanzee, and gorilla. Their
repeat phylogeny, reconstructed by traditional methods [13], gives evidence that
hominids are monophyletic and more closely related to chimpanzee than to go-
rilla. Hedges et al. [3] argue that organism-level phylogenies should be used to
provide further insight into mobile element population dynamics.

In this paper, we describe a method for recovering the most likely phylogeny
of observed instances. Traditional phylogenetic methods are not appropriate for
at least three reasons: First, since most are quadratic or worse in the number
of sequences, they do not scale to the million or more repeat sequences we wish
to analyze. Second, unlike in the case of species phylogeny, only a few repeat
elements in the genome actively replicate, while the vast majority merely persist
with gradual mutation. For this reason, repeat phylogenies are characterized by
a few nodes in the tree each having a very large number of offspring and most
nodes having none. Finally, since repeat subfamilies are highly overlapping in
sequence space, the results of distance-based methods are uninformative (see
“Why distance-based clustering fails” in Section 2.2).
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Our method divides mobile elements into subfamilies via a novel clustering al-
gorithm, Randomized Test and Split (rats). The algorithm uses a statistical test
of subfamily validity to recursively partition the set of elements, while ensuring
that the final clustering is statistically well-motivated. A traditional approach to
the subfamily identification problem would formulate a generative model for the
data and apply the Expectation Maximization (EM) algorithm. However, due
to the tremendous number of mobile elements and the fact that the subfamilies
are closely related to each other, this is impractical due to slow convergence and
numerous poor local optima. Using simulated data, we demonstrate that rats

approximately recovers the EM partition in a fraction of the time.
Our method is based on the following three-phase algorithm from Price et al.

[11]: (1) Repeatedly compute the correlation between amino acids at every pair
of positions in each subfamily and split it into two new subfamilies if any pair
of positions fails a statistical test for independence. (2) When no such family
exists, further split these initial subfamilies based on single-position deviations
from a molecular clock estimated from the initial subfamilies. (3) Construct a
minimum spanning tree over the subfamilies’ consensus sequences.

We extend and improve upon this approach in four ways. First, we test a
random subset of pairs of positions for correlation rather than testing all of
them (Section 2.2). This reduces the time and space complexity from quadratic
to linear in repeat sequence length, allowing us to analyze significantly larger
data sets and longer elements. Second, we incorporate more partial sequence
fragments. Together, these advances allow us to extend our analysis to longer
families of repeats such as L1. Third, we apply a stronger statistical test between
pairs to recover more subfamilies (many of Price’s novel subfamilies were found
not by correlation tests, but by single-position splits). Finally, we relate our
statistical test to the (approximate) optimization of an underlying generative
model, formalizing the assumed repeat generation process.

We apply rats to repeat elements found in the encode project database [14],
and to repeats from the full genomes of human and chimpanzee, finding 32 new
L1, 111 new SINE, and over 1000 new Alu subfamilies. We analyze the phylogeny
of the SINE subfamilies, demonstrating its agreement with species phylogeny and
with currently known repeat subfamilies.

2 Methods

Our goal is to recover the most likely phylogeny of the observed instances. Rather
than directly computing a phylogeny over all individuals, we approach the prob-
lem in two independent steps, first identifying the most likely subfamilies and
their (implicit) source elements, then constructing the best phylogeny of these
predicted subfamilies. The phylogeny of individual elements is then specified by
this subfamily phylogeny and the individuals’ subfamily memberships, with all
individuals in a subfamily being offspring of the subfamily source element. We
present our generative model of mobile element replication in Section 2.1. We
then discuss the subfamily identification problem and an efficient algorithm to
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solve it in Section 2.2, and finally discuss the simpler problem of subsequently
constructing the phylogeny Section 2.3.

2.1 Subfamily Generation Model

In our model, mobile elements replicate by asexual reproduction and we assume
a neutral mutation rate. Each individual sequence z generates a copy of itself
at time t with probability pc(z, t), and each site mutates with some probability
pm(z, t). However very few individuals create copies, and these copies are all
created over a relatively short period of time. In other words, pc(z, t) is zero
almost everywhere, and large relative to pm(z, t) where it is not. We can therefore
make two simplifications: First, since almost no mutation occurs between copies
of a single active element, we assume that all copies are initially identical. Second,
since extant (inactive) individuals are simply the result of neutral mutation
from these identical copies, we assume that a subfamily’s elements are uniformly
distributed (in sequence space) around its source element.

These considerations lead to the following view of mobile element generation:
Each subfamily consists of a large number of inactive copies of a single active
source element. (Source elements which themselves mutate are considered new
distinct source elements if they are still active.) Each copy or instance under-
goes independent point mutation over time, diverging from the sequence of the
original source element. Each instance can, with some small probability, itself
become a source element and generate its own distinct subfamily. Viewed as
clusters of points in sequence space, the subfamilies form a highly-overlapping
set of spheres whose radii reflect their ages.

More precisely, let Σ = {a1, . . . , am} be an m-letter alphabet, and let X =
(X1, . . . , Xl) be a vector random variable over Σl. Let C be a scalar random
variable over cluster source element indices {1, . . . , k}, with μ(C) ∈ Σl being
source element C’s sequence. The k source elements are used to generate n
sequences Z = {z} under the following model: First select a cluster c ∈ C with
probability p(C = c) and make sequence z a copy of μ(c). Then independently
mutate each letter zi to some symbol s �= μi(c) with a small cluster- and position-
dependent probability ris(c). Equivalently, let p(Xi|C =c) define the conditional
probability distribution of position i of a sequence in c, and let μi(c) be its
consensus value, μi(c) = argmaxx p(Xi =x|C =c). Then p(Xi =s|C =c) = ris(c)
for s �= μi(c) and p(Xi = μi(c)|C = c) = 1 −

∑
s ris(c). The distribution over

sequences X can then be modeled as a mixture of per-cluster distributions:

p(X) =
∑

c∈C

p(C = c)
l∏

i=1

p(Xi|C = c)

2.2 Subfamily Identification

Given an n-element sample Z from p(X), our goal is to recover the number of
clusters k and, given k, to find the assignment p(C|Z) of individuals to clusters
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maximizing the likelihood of the sample. The model’s free parameters, represent-
ing the cluster probabilities p(C) and discrete distributions of symbols occurring
at each sequence position in each cluster p(X |C), assume their maximum likeli-
hood values.

This is an instance of hard clustering, a well-studied problem for which Ex-
pectation Maximization (EM) with soft assignment has been shown to perform
well in many cases [15]. However, EM is not applicable to our problem for two
reasons. First, our dataset is enormous: there are over one million elements in
just the single largest repeat family in the human genome (Alu), representing a
thousand or more distinct clusters. EM clustering, which requires O (kl(m + n))
operations per iteration (or ≈ 1011 for k = 103, n = 106, and l = 102), is not
computationally feasible at this scale. Second, since the objective function has
many poor local optima, EM often requires many random restarts to find a good
solution (see Section 3.1), further increasing runtime.

Limiting Model Complexity. Since data likelihood will always increase as
the number of clusters increases, we need to control the tradeoff between smaller
models and higher likelihood. One common solution to this well-known problem
is to add a model complexity penalty to the objective function, with the Bayesian
Information Criterion (BIC) being a popular choice [16]. The BIC for M model
parameters and N data elements is M

2 log N .
However, we find on simulated data that the BIC penalty dominates our model

score long before we have recovered the correct number of clusters (Section 3.1).
For example, even on the small simulated dataset in Figure 4 with k = 11,
the penalty is approximately 3 × 104, or almost ten times the improvement in
likelihood over the random model. This happens because the BIC for our model,
k
2 (1 + l(m − 1)) log n, depends linearly on the number of free parameters, and
hence in our case on the sequence length. However, the number of parameters in
our model is artificially high because we learn a set of independent clusters for
data we assume are generated by a hierarchical model.

Our assumptions from Section 2.1 allow an alternative approach. Since we
assume that mutations are independent within a subfamily, if the distribution
of mutations at a pair of positions within a single cluster fails a statistical test
for independence, we have evidence of further substructure. When no such pair
exists, we have evidence of a candidate solution. Therefore instead of directly
maximizing the likelihood as we would with EM, we instead search for a solution
that satisfies this statistical test.

Specifically, we consider the estimated mutual information between pairs of
positions [17]:

I(Xi; Xj |c) =
∑

si,sj∈Σ

p(si, sj|c) log
p(si, sj |c)

p(si|c)p(sj |c)

Goebel et al. [18] show that the mutual information between two uncorrelated
discrete random variables can be approximated by a gamma distribution
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Γ

(
1
2
(|X1|−1)(|X2|−1),

1
N log 2

)

where N is the sample size and |Xi| is the number of possible values of Xi.
From this approximation we can derive a p-value for independence between two
positions 1 ≤ i < j ≤ l and a corresponding threshold α for I(Xi; Xj |c).

Rather than testing all O(l2) pairs of positions, we randomly sample enough
pairs to detect correlation with high confidence. Assume that a single supposed
cluster contains members of two true clusters differing in λ of l positions drawn
from a binary alphabet, and that we want to test at least one pair of these
λ positions with probability 1 − p. Then the probability of choosing a pair of
correlated positions in a single draw is λ(λ−1)

l(l−1) and probability of not detecting

correlation after t trials is p =
(
1 − λ(λ−1)

l(l−1)

)t

Therefore choosing t to achieve our
desired p yields

t =
log p

log
(
1 − λ(λ−1)

l(l−1)

)

For example, to detect a difference in 4 out of 300 positions with p = 0.99,
we must sample 343 pairs. Mutation will increase the number of tests required
by causing some of the λ(λ − 1) pairs of correlated positions to no longer be
significantly correlated.

Fast Randomized Clustering. Conveniently, this same random pair sampling
suggests an efficient top-down clustering algorithm. When positions i and j are
correlated in cluster c, splitting c into two clusters c1 and c2 such that c1 contains
all individuals z with (zi, zj) = argmaxp(Xi =zi, Xj =zj|c), c2 the rest, will tend
to improve p(Z|C). When no such positions exist, further cluster splits cannot
significantly decrease the entropy of a cluster at multiple sequence positions at
once. We have therefore found a reasonable approximation to the maximum
likelihood solution.

While these tests ensure that each pair of split clusters is statistically justified,
multiple splits and poor initial splits may create clusters which could be merged
without creating correlated pairs. Such problematic pairs can be found by trying
to merge sets of clusters and repeating the above correlation sampling. Because
testing all subsets of clusters is computationally impossible, we instead test only
pairs of clusters with similar consensus sequences.

Recursively applying this cluster splitting criterion yields the iterative algo-
rithm in Figure 1. Starting with a single cluster, iteratively apply the following
two steps: First, recursively test and split the current set of clusters until no clus-
ter fails the correlation test. Second, merge neighboring pairs of clusters when
doing so does not create detectable correlation. However, the split heuristic will
poorly assign some elements, and splitting can only make large-scale changes
to the current clustering. We therefore apply an additional fine-grained greedy
improvement between split and join, assigning each individual z to the cluster
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Fig. 1. The rats algorithm. The optional greedy updates are performed between split
and join, and again after the final iteration.

with the closest consensus sequence μ(c), i.e. c = argminc dH(z, μ(c)) where
dH is the Hamming distance.

Why Distance-Based Clustering Fails. Consider two populations A and B
of bitstrings of length n, where As are instances of Ā = 0X1, Bs of B̄ = 1X0; X
represents a sequence of n−2 random bits. The distance DAA between an A and
Ā follows a binomial distribution B(n−2, 0.5), while the distance DAB between it
and B̄ is 2+B(n−2, 0.5). So the probability p(DAA ≤ DAB) of its being at least
as close to B̄ as to Ā is approximately p (DAA ≤ E[DAB]) = I0.5(n

2 + 1, n
2 − 2),

which for n = 100 equals 0.38. Since a substantial minority of the elements from
each population are closer to the other’s consensus sequence, a distance-based
phylogeny will misleadingly relate elements from different populations, obscuring
the two actual subpopulations. However, testing for correlated mutation can
correctly identify Ā and B̄.
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2.3 Subfamily Phylogeny

Given a set of subfamilies, we next reconstruct the most likely phylogeny. The
standard approach to this problem is to assume that the observed sequences
are the tree’s leaves, then to infer a maximum likelihood binary tree over them
according to some mutation model (see e.g. [19]). Our problem is different in
three ways: First, our subfamilies represent not just the leaves of the tree, but also
its internal nodes, obviating the usual optimization over unobserved ancestral
nodes. Second, the inferred p(X |C) defines a fixed mutation model for each
cluster. Third, the average divergence within a cluster defines its age, allowing
us to constrain our tree so that a node must be younger than its parent.

We assume that the consensus sequence of each subfamily is generated from
its parent family, and is therefore drawn from the parent family’s distribution,
though it does not have to be one of the actual observed members of either. For
each cluster c ∈ C, we choose as its parent the most probable ancestor for its
consensus sequence μ(c),

argmax
{c′|age(c′)>age(c)}

p(c′)p(μ(c)|c′)

where age(c) is the estimated age of cluster c. By assuming that mutation rate is
constant over the genome at each point in time, we can approximate a subfamily’s
age by its average mutation rate or (equivalently) its entropy. Although this
assumption is clearly not valid for estimating a subfamily’s absolute age, our
algorithm depends only on the ordering of the age estimates across different
subfamilies. Since a genome containing elements of one subfamily will contain
elements of all of its ancestors, it is highly unlikely that molecular clock variation
will cause a repeat subfamily to appear younger than its ancestors.

3 Results

We first demonstrate that our method performs well relative to EM on simulated
data similar to actual repeat elements. We then apply our method to repeat
elements collected from over sixty organisms, finding subfamilies and phylogenies
of the Alu, SINE (an evolutionary superset of Alu), and L1 families. We discuss
a phylogeny of SINE elements across all encode project species. Our repeat
phylogeny’s close agreement with known repeat family and species phylogenies
validates our approach.

3.1 Simulated Data

A repeat phylogeny algorithm should obey two correctness properties: First, it
should be approximately optimal: for any cardinality, the likelihood of the data
given the model it finds is close to the optimum likelihood. Second, it should be
conservative: the probability of the algorithm finding more than the true number
of subfamilies should be acceptably small. Here we show that rats exhibits these
properties on simulated data similar to actual repeat subfamilies.
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Each dataset consists of sequences in {0, 1}300 drawn from one of k subfamilies
separated by d mutations with a uniform per-position mutation rate u. For each
(d, k, u), we generate 5 sets of repeats with these parameters, then run rats 20
times. We approximate the optimal likelihood for each number of subfamilies
found by taking the best of 10 EM solutions.
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Figure 2 shows the distribution of the number of subfamilies found for d = 6
and u = 0.1 while varying k. As desired, rats is conservative, finding more
than the true number of subfamilies 1–12% of the time. Figure 4 compares the
likelihood of the best solutions found by rats and EM (with 10 restarts) to
the average likelihood of a random clustering. (The random model likelihood is
used instead of the generating model likelihood because, particularly for larger
numbers of subfamilies with fewer members, the generating model can yield sig-
nificantly lower likelihood than a learned model.) As expected, rats consistently
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performs slightly worse than EM, with both approaching the random score as
the number of subfamilies diverges from the true number.

Figure 3 shows the time for a single run of each algorithm as a function of the
subfamily arity k and subfamily size n/k. Since the two algorithms are imple-
mented in different languages, we cannot directly compare runtimes. However,
EM’s runtime grows at a faster rate, largely because the number of iterations to
convergence grows with k. A least-squares fit of AkB to both curves shows EM is
at least quadratic in k (B = 2.7, 2.4), where rats is nearly linear (B = 1.2, 1.1).

3.2 Data Preparation

We obtained “full” genome sequences for P. troglodytes and H. sapiens from the
most recent sequence builds available at UCSC as of March 1, 2006. We also
downloaded accession numbers for orthologous regions of 64 vertebrate species
from the NIH Intramural Sequencing Center (NISC) Comparative Sequencing
Program (encode) [14], obtaining the corresponding sequence data from Gen-
Bank. Sequences were joined together according to the position information spec-
ified within the GenBank files.

A data set of repeat elements was created for the complete set of sequences
via RepeatMasker version 3.1.3 [4] using a library of repeat elements from Rep-
Base [20], using the lowest sensitivity for the “full” genomes and standard sen-
sitivity for the encode regions. We generated multiple alignments for single
repeat classes (e.g. Alu, L1) from pairwise alignments of each repeat instance to
a single RepBase consensus sequence (e.g Alu Sx, HAL1#LINE/L1) as follows:
Consensus sequences for repeat classes were created by Clustal W [21] mul-
tiple alignment of all constituent RepBase consensus sequences. Eleven SINE
consensus sequences that aligned poorly to the others were excluded. Positions
corresponding to gaps in the pairwise instance alignments were removed, and
the aligned instances were threaded into the repeat class multiple alignment to
yield a multiple alignment of instances. Interior gaps were treated as a separate
symbol, leading and trailing gaps as missing data.

3.3 Novel Repeat Subfamilies

Table 1 compares the number of subfamilies we find to the number identified in
RepBase. To ensure the correlation test’s validity, rats was constrained to test
only subfamilies of more than 200 elements for L1, and more than 1000 for Alu

Table 1. Numbers of repeats in various families found in RepBase and by our method.
Alu and L1 repeats are from the full Human and Chimpanzee genomes, while SINE
repeats are from the encode database of orthologous regions.

Family RepBase rats Elements Source

Alu 35 1519 2 309 150 primate
L1 102 134 24 249 primate
SINE 197 308 381 248 encode
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and SINE. All runs used a p-value of 10−3 with a Bonferroni correction for testing
multiple positions. The relatively small number of L1 subfamilies discovered may
be due to the small number of available elements, and further L1 subfamilies may
exist that cannot be statistically validated. The results, especially those for Alu,
suggest that repeat phylogeny may exhibit much more fine-grained structure
than is currently known.

3.4 SINE Phylogeny

Figure 5 presents a phylogeny of 381,248 SINE elements matching RepBase SINE
elements found in 61 encode species. Subfamilies are assigned a repeat subfamily
(color) if at least 70% of their elements belong to that RepBase subfamily (further
detail is available in the electronic version). These labels may partly reflect vari-
ation in encode’s coverage between species. However a phylogeny constructed
from more complete data, while it may have higher resolution, will still be con-
sistent with the one presented here. Representative subfamilies are labeled with
the average percent divergence of their elements from the subfamily consensus.
The phylogeny is taken from a single run of rats. To show that the results are
consistent between runs, we ran rats 10 times on the Alu data, using the pair-
wise adjusted Rand index to measure consistency between runs [22]. The number
of subfamilies ranged from 274 to 300 with a mean of 286, and the Rand index
ranged from 0.154 to 0.193 with a mean of 0.173 and a p-value less than 10−8.

Although our predicted phylogeny contains 111 novel repeat subfamilies, it
still reflects many known aspects of SINE phylogeny. We recover the basic rela-
tionship between the oldest Alu J, intermediate Alu S, and recent Alu Y clades.
Ages estimated from subfamily divergences are roughly in agreement with esti-
mated family ages [6]. The Alu Jo subfamily is an ancestor of Alu Jb (Fig. 5,
label 7). The 11%-diverged Alu Sx branch reported by Price [11] appears at
(Fig. 5, label 6).

Our results are also consistent with primate clades: for example, the Alu Jo
branch at (Fig. 5, label 1) separates strepsirrhins from the new- and old-world
monkeys. Additionally, the large group of Galago-specific subfamilies we observe
is consistent with the sequence analysis of Zietkiewicz et al. [23]. The Alu Y sub-
family is (as expected) confined to old-world primates (Fig. 5, label 2), though
without human sequence data only a subset of the currently-known Alu Y fami-
lies are found. Finally, the divergence of the baboon-specific families dates them
to after the divergence of old-world monkeys.

Further up the tree we find additional validation of our repeat phylogeny.
Repeats from platypus and echidna, both monotremes, are concentrated in a
subtree of MIRm elements at (Fig. 5, label 3). Similarly, the marsupial-specific
MIR Mars elements are correctly identified at (Fig. 5, label 4). Our analysis
does not find a clade among marsupial, monotremic, and placental repeat ele-
ments. Monotremes diverged before marsupials, and Gilbert et al. [24] argue that
the Ther-2 repeat family is found only in marsupials and placental mammals.
However, while the species phylogeny is well-understood, there remains some
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disagreement about MIR repeat phylogeny, and in some ways the marsupial
genome is more similar to the monotreme than to the placental genome [25].

4 Discussion

We have described rats, a randomized clustering algorithm for rapidly finding
repeat subfamilies and a procedure for reconstructing phylogenies from sets of
subfamilies. Because the divisions between subfamilies rats finds are statisti-
cally validated, and because simulations show that it estimates the number of
subfamilies conservatively, we can be confident that real substructure is being de-
tected. We have applied our approach to SINE repeat data, yielding a phylogeny
consistent with known repeat and species relationships both among and beyond
primates. Our results demonstrate that mobile elements display complex family
substructure and history, and suggest a number of areas for further exploration.

There remain a number of directions for algorithmic refinement. First, as
noted above, inferring the phylogeny and clustering simultaneously would yield a
more powerful model; an analogous randomized approach could again yield an ef-
ficient approximation. Second, including species phylogeny and repeat orthology
information would improve sensitivity. Finally, large- and small-scale phylogeny
could be handled simultaneously using an iterative approach combining cluster-
ing on inferred subfamilies with refinement of the guiding multiple alignment.

These methodological improvements, particularly the last, open up a num-
ber of experimental avenues. Multi-scale clustering would make it possible to
distinguish clades among primates, while fine-grained distinctions between fam-
ilies would enable the detection of repeat homoplasy and the analysis of repeat
insertion hotspots. Large-scale repeat phylogeny therefore has the potential to
contribute in a number of ways to our understanding of evolutionary processes
and history.
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Center for Bioinformatics (ZBIT), Tübingen University,
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Abstract. Reticulate networks are a type of phylogenetic network that
are used to represent reticulate evolution involving hybridization, hori-
zontal gene transfer or recombination. The simplest form of these net-
works are galled trees, in which all reticulations are independent of each
other. This paper introduces a more general class of reticulate networks,
that we call galled networks, in which reticulations are not necessarily
independent, but may overlap in a tree-like manner. We prove a Decom-
position Theorem for these networks that has important consequences
for their computation, and present a fixed-parameter-tractable algorithm
for computing such networks from trees or binary sequences. We provide
a robust implementation of the algorithm and illustrate its use on two
biological datasets, one based on a set of three gene-trees and the other
based on a set of binary characters obtained from a restriction site map.

1 Introduction

Phylogenetic networks are graphs used for representing phylogenetic relation-
ships between different taxa, and are usually employed when a tree representa-
tion does not suffice. There are many different types of phylogenetic networks
and it is useful to distinguish between two main classes: implicit phylogenetic
networks that provide tools to visualize and analyze incompatible phylogenetic
signals, such as split networks [1, 2], and explicit phylogenetic networks that
provide explicit scenarios of reticulate evolution, such as hybridization net-
works [3, 4, 5, 6, 7], HGT networks [8] and recombination networks [9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19].

Although the latter three types of networks apply to quite different evolution-
ary scenarios, they share the common feature that they all contain reticulation
nodes at which new sequences arise as a combination of sequences from two dif-
ferent predecessor sequences. Such networks are mathematically similar to each
other and are collectively referred to as reticulate networks, which are the focus
of this paper.

The different types of input to methods that compute these networks also
share similarities and can be generally considered as splits, that is, bipartitionings
of the underlying dataset, defined either by the edges of the input trees, in the
case of hybridization or HGT networks [6], or by the non-constant columns of
the alignments of binary sequences in the case of recombination networks [17].

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 211–225, 2007.
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Gusfield et al. [12,16] introduce the term galled tree, that can be defined as a
reticulate network in which no two reticulation nodes are contained in a common
unoriented cycle, and provide an algorithm for computing this type of networks.
To be precise, their definition requires all cycles to be node-disjoint. However,
the combinatorial analysis of galled trees also works if we require cycles to be
only edge-disjoint, and so we prefer to require only the latter property.

Interest in galled trees is based on the fact that they are computationally
tractable. However, there is little reason to believe that reticulate networks have
this simple structure in practice and so an understanding and treatment of retic-
ulate networks of a more general nature is desirable. In [6] we provide an algo-
rithm for computing reticulate networks that goes slightly beyond galled trees
and accommodates reticulate networks in which reticulations may overlap along
paths. The goal of this paper is to introduce a more general class of reticulate
networks that go substantially beyond galled trees.

Given an input dataset, such as a collection of trees, or a multiple align-
ment of binary sequences, the computational goal is to determine a reticulate
network that “explains” the given dataset, in terms of mutations, speciations
and reticulate events, such as recombinations, HGT or hybridizations. For any
given dataset, many different networks may exist that can explain it. Always,
at least one exists, as shown in [20]. Considering reticulations to be expensive
evolutionary events, one will prefer a most parsimonious solution. In the context
of phylogenetic trees and hybridization networks, one may attempt to minimize
the number of reticulation nodes. In the context of recombination networks,
an alternative optimization goal is to minimize the number of recombination
cross-overs, but we do not address this here.

The associated computational problem is NP-complete in full generality [21,7]:

Problem 1 (Most Parsimonious Reticulate Network). For a given input
set Δ (consisting of trees, binary characters or splits, depending on the concrete
application), determine a reticulate network N that explains Δ using a minimum
number of reticulation nodes.

Decomposition Theorems, which aim at dividing the task into independent sub-
problems that can be identified by the pattern of incompatibilities in the in-
put [16, 6], are an important tool for addressing Problem 1.

This paper makes five theoretical and practical contributions in the area of
phylogenetic networks. Firstly, we introduce a natural generalization of galled
trees, which we call galled networks, that go substantially beyond galled trees.
This generalization allows for quite complicated configurations of reticulations,
as present in real data. Secondly, we prove a Decomposition Theorem for galled
networks that settles an open conjecture posed by Dan Gusfield at RECOMB
2005 [16] for this class of networks. Thirdly, we provide a fixed-parameter-
tractable algorithm for computing galled networks from real data. Fourthly, we
provide an implementation of our algorithm as a plug-in for SplitsTree4 [2], thus
making the algorithm easily available to the community. Finally, we illustrate
our results on two published datasets, one that uses three different gene trees
to study the evolution of a set of fungal species [22] and the other that uses
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binary sequences from a restriction site map to study the evolution of a set of
mosquitoes [23].

2 Splits, the Incompatibility Graph and Reticulate
Networks

In this section we introduce a number of basic concepts.
Let X = {x1, x2, . . . , xn} be a set of taxa. A split S = A

B = B
A of X is a

bipartitioning of X into two parts A �= ∅ and B �= ∅, with A ∩ B = ∅ and
A ∪B = X . In the context of hybridization or HGT networks, the input usually
is a set of phylogenetic trees, each leaf-labeled by X . Any edge e of such a tree
T defines a split S = A

B in which A and B are the label sets of the two subtrees
TA and TB separated by e. The set Σ(T ) of all splits obtainable from T is called
the split encoding of T . In the context of recombination networks, the input is
usually a multiple alignment M of binary sequences, and any distinct (up to
switching of the roles of 0 and 1), non-constant column i is said to induce a split
A
B in which all taxa whose i-th character has state 0 are placed in A, say, and
all others are placed in B.

Usually, we will consider rooted trees and networks. To facilitate this, we will
assume that the input contains an outgroup taxon o that attaches directly to the
root node. As usual, we define two splits S = A

B and S′ = A′

B′ as compatible, if
and only if one of the four possible intersections of split parts is empty: A ∩ A′,
A ∩ B′, B ∩ A′, or B ∩ B′. Otherwise, they are called incompatible. For a set of
splits Σ we define the incompatibility graph IG(Σ) as the graph with node set Σ
in which any two nodes S, S′ ∈ Σ are connected by an unoriented edge {S, S′},
if and only if they are incompatible. We will refer to the connected components
of IG(Σ) as incompatibility components of Σ. If X ′ ⊂ X , then we use Σ|X′ to
denote the set of all splits induced by X ′, i.e. obtained by removing X ′ from
both parts of each split and then removing any split that has a empty part.

Definition 1. Let X be a set of taxa. A (rooted) reticulate network N on X
is a connected, directed acyclic graph (V, E, φ) with node set V and edge set E,
together with a labeling φ : X → V , such that:

– precisely one node of indegree 0 exists, called the root and usually denoted
by ρ;

– all other nodes are tree nodes of indegree 1 or reticulation nodes of indegree
2, and have arbitrary outdegrees ≥ 0;

– every edge is either a tree edge incident to precisely two tree nodes, or a
reticulation edge leading to a reticulation node; and

– the set of leaves (nodes of outdegree 0) labelled by X.

In the following we need to distinguish between oriented and unoriented paths
and cycles. In the oriented case, all edges must be oriented in the same direction
when traversing the path or cycle, whereas in the unoriented case, the orientation
of the edges is irrelevant. We say that a node w is reachable from a node v, if
there exists an oriented path from v to w in the network N .
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It follows from the definition that each reticulation node (or reticulation, for
short) r with reticulate edges p and q is contained in one or more unoriented cy-
cles of the form C =(r, p, v1, e1, . . . , ej−1, vj , q, r), C = (r, p, v1, e1, . . . , ej−1, vj , r)
or C = (r, v1, e1, . . . , ej−1, vj , q, r), with vi ∈ V and ei ∈ E \ {p, q} for all i. Any
such unoriented cycle C is called a reticulation cycle and we define its backbone
as B(C) = (v1, e1, . . . , ej−1, vj). Note that a reticulation r ∈ R possesses at most
one reticulation cycle C whose backbone B contains only tree edges and in this
case we call C a tree cycle.

Following [12], we say that a reticulation r is a gall, if it is contained in pre-
cisely one unoriented cycle C, which then must be a tree cycle. If all reticulations
in N are galls, then N is called a galled tree.

Reticulate networks are employed to explain a given set of observed data in
terms of evolutionary events that include speciation, mutation and reticulation
events. A precise definition of what an explaination is, depends on the nature of
the input data.

First, we consider the situation that arises in the context of gene trees and
hybridization. Let N be a reticulate network. We define T (N) as the set of all
trees that can be sampled from N . A tree is sampled from N as follows: For each
reticulation r with reticulation edges p and q, we select one reticulation edge and
delete the other. After making a complete set of selections, superfluous nodes
and edges are removed from the remaining network and the result is a sampled
tree T . (For example, a node of outdegree 2 will become superfluous, if one of its
outedges is a reticulation edge that is deleted.) In this way, a reticulate network
with t reticulation nodes will give rise to ≤ 2t different trees. If we are given a
set of phylogenetic trees Δ = {T1, . . . , Tt} on X , then we say that a reticulate
network N explains Δ, if and only if Δ ⊆ T (N). In this context, N is called
a hybridization network and the reticulate nodes of N correspond to speciation
events via hybridization. We treat HGT similarly to hybridization, but in this
case reticulate nodes correspond to instances of horizontal gene transfer. (Note
that throughout the paper we use Δ to denote the current input set, be it a set
of trees, binary characters or splits.)

Second, we consider the situation that arises in the context of binary sequences
and recombination [12]. Let N be a reticulate network on X and let M be a mul-
tiple alignment of binary sequences of length m on X . For a reticulate network
to be able to explain a dataset such as M , we attach additional information to N
and thus obtain what is called a recombination network. More precisely, we label
each node of N by a binary sequence of length m such that each leaf v obtains
the row of M that corresponds to the taxon that is associated with v. Moreover,
each tree edge e is labeled by the set of columns in M at which the character
states differ between the two sequences that label the source and target nodes of
e. We say that N , together with these two labelings, explains M , if and only if
each column occurs at most once as an edge label and the sequence at any given
reticulation node r can be obtained by recombination of the ancestral sequences.
The condition that mutations are allowed to occur at most once is known as the
“infinite sites model” [24] and is necessary to avoid trivial solutions. (Without
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this condition, any set of sequences can be produced by the star phylogeny by
inserting appropriate mutations along each of the leaf edges.)

Whether the initial input is a set of trees or a set of binary sequences, in both
cases it is useful to consider the set of splits associated with the input. If the
input is a set of phylogenetic trees {T1, . . . , Tt}, then the associated set of input
splits is Δ =

⋃t
i=1 Σ(Ti), where Σ(Ti) denotes the split encoding of Ti. On the

other hand, if the input is a multiple alignment M of binary sequences, then the
associated set of input splits Δ consists of all splits induced by distinct, non-
constant columns of M . Note, however, that the set of splits does not contain all
relevant input information. For example, in the case of a multiple alignment of
binary sequences, the order of the splits along the alignment is lost, whereas in
the case of trees, we do not know whether two different splits ever occur together
in the same tree or not.

For a reticulate network N on X , we define Σ(N) as the set of all splits that
can be sampled from N as follows: For each reticulation node r, select one of
the two reticulation edges leading to r and delete the other, and then remove
all superfluous nodes and edges. Any tree edge e contained in the remaining
network N ′ separates two components N ′

A and N ′
B, defining a split A

B . The set
of all splits generated for any fixed tree edge e is denoted by Σ(e).

In graph theory, a 2-connected component of a graph G is any maximal sub-
graph G′ with the property that any two nodes v and w of G′ are connected by
two paths P and P ′ that are node-disjoint except for v and w. (In [6], we refer
to these as netted components and [16] introduced the term blob.)

3 Loose Galls and Galled Networks

Our goal is to go beyond galled trees and thus we introduce the following defi-
nition:

Definition 2. Let N be a reticulation network. We say that a reticulation r in
N is a loose gall, if it has a tree cycle. If all reticulations in N are loose galls,
then N is called a galled network (or loose galled tree).

Galled networks are substantially more general than galled trees. In contrast to
the situation in galled trees where reticulation cycles are edge-disjoint, multiple
reticulation cycles in a galled network may overlap along a common tree (see
Figures 3 and 4).

To avoid configurations that may cause technical difficulties, we will assume
that all galled networks N considered are non-degenerate in the sense that for
each tree node v, an oriented path of tree edges exists which connects v to some
leaf w of N .

A useful property of galled trees that is also valid for galled networks is the
following result:

Lemma 1 (Isolation lemma). Let N = (V, E, φ) be a galled network and r a
reticulation in N . Let R ⊂ V be the set of all nodes reachable from r. Then any
unoriented path from any node v ∈ V \ R to any node w ∈ R must pass through r.
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Proof. By the properties of directed, acyclic graphs, any path leading from a
node in V \ R to a node in R must contain a reticulation edge p′ leading to a
reticulation node r′ ∈ R. But then, any unoriented cycle through r′ will pass
through p′ and one of the two reticulation edges of r, or through a reticulation
edge of some other reticulation connecting V \R and R. In either case, the cycle
is not a tree cycle, contradicting the assumption that N is a galled network. �

The following property is useful because it implies that we can build a galled
network by first producing a phylogenetic tree and then adding reticulations to
the tree by attaching them to existing tree nodes or to the mid-points of tree
edges.

Lemma 2 (Node-attachment lemma). Let N be a reticulate network that
explains a set of splits Δ. For any reticulate node r, we can assume that each of
the two attachment nodes (source nodes of the reticulate edges leading to r) are
either the root node, or an internal tree node that is the source of at least two
tree edges, or lies directly below such a node and lies directly above this type of
a node or a leaf node.

Proof. Assume that a path P = (v, e1, v1, e2, . . . , ej, w) exists so that each end
node v, w is either the root node, a leaf or an internal tree node that is the source
of at least two tree edges. Furthermore, assume that all other nodes in the path
are tree nodes of degree three, each incident to precisely one reticulation edge.
Let R denote the set of all such reticulation edges. The splits generated by any
node in the path separates the set of all taxa below w (and a selection of the
reticulate nodes attached to internal nodes of the path) from the outgroup o
and other taxa. We can generate the same set of splits after replacing P by a
new path P ′ = (v, e, u, f, w) and attaching all reticulate edges in R to the node
u. Now, any split sampled from an edge in P that does not separate any of the
reticulation nodes from o can be sampled from e, whereas all other splits can
be sampled from f , using an appropriate selection of the reticulation edges. (see
Figure 1.) �

As mentioned above, the set of splits Δ derived from an input set of trees T
does not contain the full information present in the input. In Lemma 2, we

x1 x3x2

r4
r3

x4

r2
r1

e4
ej

e2
e3

e1

x1 x3x2

r4
r3

x4

r2
r1

f

e

(a) (b)

Fig. 1. (a) An unmodified path P , and (b) its modification P ′. Any split obtainable
from an edge in (a) can also be obtained from some edge in (b).
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can make the modification displayed in Figure 1 because the set of splits does
not provide any information about the ordering of the reticulations along the
path P . However, T may have trees that contain more than one of the depicted
reticulation edges simultaneously, in which case a contraction of the path P to
the two edges e, f may not be allowed, if the goal is to find a network N with
T ⊆ T (N), rather than with Δ ⊆ Σ(N).

4 The Decomposition Theorem for Galled Networks

Decomposition Theorems for reticulate networks aim at dividing Problem 1 into
independent subproblems that can be identified by the pattern of incompatibil-
ities in the input. Two very similar results of this type were presented at RE-
COMB 2005. In [16], a Decomposition Theorem is proven that can be phrased
as follows:

For any set of splits Δ, a reticulate network N exists that explains Δ
so that each 2-connected component of N contains all and only the
splits contained in one connected component of the incompatibility graph
IG(Δ).

In [6], we prove the following:

Let N be a reticulate network and let Δ = Σ(N) be the set of all splits
that can be sampled from the network. Each 2-connected component of
N contains all and only the splits contained in one connected component
of IG(Δ).

In the former result, it remains unresolved whether a minimal network of this
type exists. In the latter result, the existence of a minimal network N with the
specified properties is guaranteed only for a dataset Δ that equals the full set of
splits that can be sampled from the network N . Hence, the following claim is of
interest (adapted from a conjecture formulated by Dan Gusfield at RECOMB
2005 [16]):

Conjecture 1. Given an input set of splits Δ, a minimal reticulation network
N exists that explains Δ so that for any two tree edges e and f of N we have
the following: Any two splits S ∈ Δ ∩ Σ(e) and S′ ∈ Δ ∩ Σ(f) are contained in
the same connected component of IG(Δ), if and only if e and f are contained
in a common unoriented cycle of N .

Gusfield et al. [16] proved that this is true for galled trees. The following result
implies that this conjecture is also true for a more general class of reticulate
networks, namely galled networks.

Theorem 1 (Decomposition Theorem for Galled Networks). Let Δ be
an input set of splits and let N be a (non-degenerate) galled network that explains
Δ. Assume that N is minimal in the sense that it uses a minimum number of
reticulations, and, among all such networks, minimizes the number of splits that
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are sampled from edges that lie within reticulation cycles and then the total
number of edges. For any two tree edges e and f in N we have that any two
splits S ∈ Δ ∩ Σ(e) and S′ ∈ Δ ∩ Σ(f) are contained in the same connected
component of IG(Δ) if and only if e and f are contained in an unoriented cycle
of N .

Proof. “⇒”: This direction is easy and was shown in [6].
“⇐”: Let N be a minimal galled network that explains a given set of splits Δ on
a taxon set X . Consider the subgraph G of N consisting of all nodes and edges
that are connected to the root ρ of N by some path containing only tree edges. It
follows from the assumed non-degenerancy of N that G is a rooted phylogenetic
tree on a subset of taxa. Consider a reticulate node r that is attached to two
nodes a and b by reticulation edges p and q. Because N is a galled network,
either both a and b are contained in G, or neither is. By Lemma 1, we need to
consider only the former case and can assume that r is a leaf node, labeled by a
single taxon r.

Assume that a is an ancestor of b and let P = (a, e1, v1, e2, v2, . . . , vj−1, ej , b)
be the path from a to b (see Figure 2(a)). Consider the set of splits Δ(e1) :=
Δ ∩ Σ(e1) �= ∅ associated with edge e1. (Note that a given split S ∈ Δ may
be obtainable from more than one edge in N . In this case, we remove S from
the split sets of all but one edge.) None of the splits Σa ∈ Δ(e1) separate r
from o, because any such split can be “pushed up” in the network and out of
the reticulation cycle associated with r (after placing a in the middle of e1,
if necessary), contradicting minimality. By the non-degenerancy property and
the node-attachment lemma, every Sa ∈ Δ(e1) separates some taxon x from o,
where x is reached from v1 by a path that is disjoint from P . Now, consider
the set of splits Δ(ej) := Δ ∩ Σ(ej) �= ∅. Note that all of the splits in Δ(ej)
separate r from o because any split that does not do so can be “pushed down”
in the network (after placing b in the middle of ej , if necessary), contradicting
minimality. Hence, all splits Sb ∈ Δ(ej) separate both r and some other taxon
y from o. The latter follows from the non-degenerancy property and the node-
attachment lemma. Now, every split Sa also separates y from o by construction.
In summary, every Sa separates x, y from o, r and every Sb separates x, o from
y, r. Thus, all pairs of Sa and Sb are incompatible. Now, consider some edge
ei with 1 < i < j − 1. We must have Δ(ei) := Δ ∩ Σ(ei) �= ∅, or otherwise
we can contract ei, contradicting the minimality of N . Consider S ∈ Δ(ei). By
non-degenerancy, a taxon z exists that can be reached from vi by a path that is
disjoint from P . If S separates r from o, then S separates y, z, r from x, o, and
is thus incompatible with every Sa, or else S separates y, z from x, r, o, and is
thus incompatible with every Sb, as Sb separates o, x, z from y, r.

Second, we now assume that neither is a an ancestor of b, nor vice versa (see
Figure 2(b)). Let P = (a, e1, v1, . . . , ej, b) be the path joining the two attachment
nodes. By the same argument used above, we can assume that the edge e1 gives
rise only to splits Sa that separate o, y from taxa x, r, and we can assume that
ej gives rise only to incompatible splits Sb that separates o, x from y, r, where
x and y are two taxa located below a and b, respectively. Thus, any split S
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Fig. 2. (a) This shows the situation in the proof of Theorem 1 when a reticulation r
attaches to two nodes a and b, where a is an ancestor of b. (b) The other possibility is
that neither is a an ancestor of b, nor vice versa.

sampled from an edge in the interior of the path with be incompatible with all
Sa or all Sb, depending on whether S separates r from o or not, and whether it
lies between a and ρ or between ρ and b.

We have shown that the claim holds for any pair of edges contained in the same
tree cycle. Now, if two edges e and f are contained in a common unoriented cycle,
then a chain of tree cycles C1, C2, . . . , Ch must exist so that e is contained in C1,
f is contained in Ch, and any two adjacent tree cycles Ci, Ci+1 (i = 1, . . . , h−1)
share a mutual tree edge. Hence, the full claim holds. �

5 Computation of Galled Networks

In this section, we present an algorithm that takes a set of splits Δ on a given
taxon set X and a parameter K ≥ 0 as input and produces a minimal galled
network N that explains Δ using at most K reticulations in any 2-connected
component of N . As we will see, the problem is fixed-parameter-tractable, as the
run-time of the algorithm is polynomial in the size of Δ and X , for any fixed
value of K. In practice, the choice of K determines the amount of complexity
that one is willing to endure to explain a part of the network, which will usually
be quite small.

By Theorem 1, we can restrict our attention to the case that the incompat-
ibility graph IG(Δ) has precisely one component and the resulting network N
will consist of exactly one 2-connected component. To formulate our algorithm,
we need a further definition. Let Δ be a set of splits on X and suppose that T
is a tree on a subset of taxa X ′ � X with Σ(T ) ⊂ Δ|X′ . We say that a node
r ∈ X \ X ′ bridges an edge e of T , if for the split S = A

B associated with e we
have

{A∪{r}
B , A

B∪{r}
}

⊆ Δ|X′∪{r}.
The main idea of the algorithm is to first select a subset of taxa R ⊂ X

such that the set of splits Δ|X′ induced by the remaining taxa X ′ = X \ R is
compatible and thus gives rise to a tree T . We then attempt to attach each taxon
r ∈ R to the tree T by a pair of reticulate edges in such a way that all bridged
edges are encompassed.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



220 D.H. Huson and T.H. Klöpper

Algorithm 1 (Construct Galled Network from Splits).
Input: Set of splits Δ on X
Output: Minimal galled network N that explains Δ, if one exists, or fail.

for k = 1 . . .K do
for each possible choice of a subset R ⊂ X of cardinality k do

if Σ′ := Σ|X\R is compatible then
Build a rooted backbone tree T that represents Σ′

for each putative reticulation node r ∈ R do
Let B be the set of all edges in T that are bridged by r
if B is contained in a path in T then

attach r to the mid-points of the two end edges of
a shortest such path

else we can’t attach R, try next choice of R
if all r ∈ R were successfully attached and the resulting network N

generates Δ then return N
return fail.
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Fig. 3. (a) Split network representing all splits present in the three gene trees taken
from [22]. (b) Galled network computed by our algorithm. A number of the reticulations
overlap in this network and are thus loose galls, rather than galls. For example, the
two taxa Embellisia proteae and E. novae zelandiae arise from two overlapping loose
galls. Reticulation edges are shown as arrows pointing toward their reticulation node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Beyond Galled Trees - Decomposition and Computation of Galled Networks 221

Lemma 3. Given an input set of splits Δ and a parameter K ∈ N, Algorithm 1
computes a minimal galled network that explains Δ using at most K reticulations
per 2-connected component, if one exists, or returns fail, in polynomial time.
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Fig. 4. (a) An alignment of binary sequences obtained from the restriction maps of
the rDNA cistron (length ≈ 10 kb) of twelve species of mosquitoes using eight 6 bp
recognition restriction enzymes [23]. (b) The corresponding split network [2]. Edges of
incompatible splits are labeled by the corresponding mutation positions. (c) The re-
combination network computed using our algorithm. The edges involved in a possible
recombination are labeled by the corresponding mutations in the alignment. (d) The
same network, with nodes involved in the possible recombinations labeled by the cor-
responding inferred sequences.
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Proof. The algorithm considers each connected component of IG(Δ) separately,
by virtue of Theorem 1. For a fixed value of K, the number

∑K
k=1

(|X|
k

)
of subsets

of X of size k ≤ K is polynomial in the size |X | of X . For each putative reticula-
tion r, we compare all splits with the set of splits associated with the backbone
tree T , which takes time that is polynomial in |X | and |Δ|. All possible galled
networks with up to K reticulations per 2-connected component are generated
in ascending order and the first (and thus minimal) one found that explains the
input data is returned. �

As discussed above (see Figure 1), because the algorithm is based on splits,
it cannot resolve the ordering of multiple reticulations along a tree edge. We
have developed an additional algorithm that does this sorting when the original
input is a set of trees. However, due to space constraints this will be discussed
elsewhere.

We have implemented Algorithm 1 as a plugin-in for the program Split-
sTree4 [2] and it is available as of version 4.7. Our implementation first divides
a given set of splits Δ into its incompatibility components Δ1, . . . , Δt, with in-
duced taxon sets X1, . . . , Xt, respectively. For each component Δi, our software
considers all minimal subsets Ri of Xi for which Δi|Xi\Ri

is compatible, and
computes the corresponding trees Ti. For each element r in Ri the algorithm
marks those edges in the tree Ti that are bridged by r. If the set of marked
edges is contained in a path in Ti, then we have found the backbone of the tree
cycle for r; otherwise r cannot be attached and the algorithm moves to the next
minimal set.

Finally, the algorithm constructs a split network for Δ using the algorithms
described in [25] and modifies each 2-connected component for which it was able
to find a solution, so as to display all reticulations explicitly. For additional anal-
ysis, our implementation can label nodes by the corresponding binary sequences
and label edges by the corresponding mutations, when the input is binary se-
quences, and can highlight different input trees embedded in the network, when
the input is a set of trees. Figures 3 and 4 show networks computed by our code.

From a practical point-of-view, an attractive feature of our implementation is
that it processes each incompatibility component separately and produces the
picture of a mixed network as output in which those incompatibility components
that have an explanation in terms of a galled network are drawn as such, whereas
the others that cannot be explained in this way are represented by a visualization
of the contained splits in terms of a split network (not shown here).

6 Application to Real Data

We now demonstrate our approach using two different examples. The first ex-
ample illustrates the computation of hybridization networks. The input data
consists of three gene trees relating different fungal species, published in [22]
and downloaded from TreeBASE [26]. They are based on the mitochondrial
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small subunit ribosomal DNA, a nuclear internal transcribed spacer and on a
part of the glyceraldehyde-3-phosphate gene. We extracted the set of all splits
Δ and then ran our algorithm on this input. The dataset has seven non-trivial
incompatibility components and it turns out that each can be explained in terms
of a galled network. Our implementation required about 15 seconds to compute
the galled network shown in Figure 3.

The second example illustrates the computation of recombination networks.
In [23], a set of binary characters for 16 species of the mosquito subfamily Culic-
inae and an outgroup Anopheles albimanus is presented, obtained from the anal-
ysis of a restriction map of the rDNA cistron (see Figure 4(a)). The data consists
of 26 sites, of which 18 are polymorphic. In the original publication, this dataset
was analyzed using a number of different tree-reconstruction methods with in-
conclusive results. Using a previous algorithm for computing galled trees, we
were only able to obtain a result for a partial dataset [17]. Our new algorithm
can explain the complete dataset in terms of a galled network. In Figure 4(b),
we display the split network (see [2] for details) representing all splits in the
input. The recombination network computed using our new algorithm is shown
in Figure 4(c–d). Here, the computation took less than 5 seconds.

7 Conclusion

In this paper, we introduce a new class of reticulate networks, galled networks,
that are a natural generalization of galled trees and we provide an algorithm
and implementation that computes these networks from a set of trees or from
binary sequences. Like similar algorithms (e.g. [16, 5, 19, 6, 17]), our approach
solves a purely combinatorial puzzle: given a set of input data Δ, find a minimal
network N that explains all incompatibilities in the data by reticulation events.
However, incompatible signals in real biological data may have many causes and
the main challenge is to develop network construction methods that can tolerate
such noise in the data. In a recent paper [27], we describe a filtering technique
that aims at removing incompatible signals that cannot easily be explained by
reticulation events. However, much remains to be done before we will have a
widely applicable tool that robustly produces meaningful reticulation networks
from noisy data.
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Abstract. Probabilistic phylogenetic models which relax the site independence
evolution assumption often face the problem of infeasible likelihood computa-
tions, for example for the task of selecting suitable parameters for the model. We
present a new approximation method, applicable for a wide range of probabilistic
models, which guarantees to upper bound the true likelihood of data, and apply
it to the problem of probabilistic phylogenetic models. The new method is com-
plementary to known variational methods that lower bound the likelihood, and
it uses similar methods to optimize the bounds from above and below. We ap-
plied our method to aligned DNA sequences of various lengths from human in
the region of the CFTR gene and homologous from eight mammals, and found
the upper bounds to be appreciably close to the true likelihood whenever it could
be computed. When computing the exact likelihood was not feasible, we demon-
strated the proximity of the upper and lower variational bounds, implying a tight
approximation of the likelihood.

1 Introduction

Most organisms share a great deal of their genetic code with other forms of life. Phy-
logenetic tree models are used to associate the genetic makeup of different organisms
according to their genetic variation. A node on phylogenetic trees corresponds to a piece
of genetic code in a single organism, and the branches and the relative branch lengths
measure the relative distance from each organisms’ genes to the others. The greater the
distance, the more the gene sequence has changed between one organism and the other.

The classical phylogenetic models of Neyman (1971) and Felsenstein (1981) make
several assumptions regarding how evolution occurs in the trees, from which the most
stringent assumption is that evolution takes place independently in different sites. Over
the years more complex probabilistic phylogenetic models have been proposed, which
relax the site independence evolution assumption. These complex models that are more
biologically realistic, such as the one by Siepel and Haussler (2003), often face the prob-
lem of infeasible likelihood computations, for example for the task of selecting suitable
parameters for the model. To overcome this problem Jojic et al. (2004) suggested to
use variational approximations that lower bound the likelihood of data, and showed that
such bounds tend to be close to the true likelihood.

In this paper, we develop tight upper bounds on the likelihood of a given data, that
are close to lower bounds so that good estimates of the likelihood become available.
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Our new approximation method is applicable for a wide range of probabilistic models,
including the discussed phylogenetic models. The method assumes a simple distribu-
tion Q which approximates the target distribution P of the model, and using Jensen’s
inequality it upper bounds the likelihood of data with a function of Q and P . The sim-
plicity of Q yields a bound that can be computed efficiently.

Our method is complementary to known variational methods that lower bound the
likelihood (e.g. Jordan et al., 1999), and can use an approximating distribution Q sug-
gested by these methods to bound the likelihood also from above.

We applied our method to aligned DNA sequences of various lengths from human
in the region of the CFTR gene and homologous from eight mammals, and found the
upper bounds to be appreciably close to the true likelihood whenever it could be com-
puted. When computing the exact likelihood was not feasible, we demonstrated the
proximity of the upper and lower variational bounds, implying a tight approximation of
the likelihood.

The rest of the paper is organized as follows: Section 2 briefly describes phylo-
genetic HMM models in terms of Bayesian networks or DAG models, and provides
a quick overview regarding variational techniques that lower bound the likelihood of
data. Section 3 develops our main contribution which are variational upper bounds for
probabilistic models such as Bayesian networks. The experimental results are described
in Section 4. Finally, we discuss the limitations of variational methods.

2 Preliminaries

We provide background information regarding phylogenetic HMM trees, to which the
variational upper bounds suggested herein are applied (Section 2.1), and outline known
variational lower bounds of the likelihood of data, which turn out to be close to our
upper bounds (Section 2.2).

2.1 Phylogenetic HMM Model

We consider the Phylogenetic HMM model described by Siepel and Haussler (2003).
Since the model is given in terms of conditional probabilities, it is convenient to describe
it as a DAG model, as done by Jojic et al. (2004). We repeat the description of the model
from there with minor changes.

Given a domain of interest having a set of finite variables s = (s1, . . . , sn) with
a positive joint distribution p(s), a DAG model for s is a pair (G, P ) where G is a
directed acyclic graph and P is a set of conditional probability distributions. A DAG
model is also often called a Bayesian network (e.g. Pearl 1988, Jensen 2001). Each
node si in G corresponds to a variable in s, and to a distribution p(si|pa(si)), called
a local probability distribution, where pa(si) are the parents of si in the graph. The
joint distribution is given by p(s) =

∏n
i=1 p(si|pa(si)). Consequently, the assumed

independence relationships between random variables are represented through absence
of edges in the model.

A DAG model structure that assumes that evolution takes place independently at
each nucleotide site is illustrated in Figure 1a for a simple tree with five species. The
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(a)

(b)

Fig. 1. Probabilistic phylogenetic trees expressed as DAG models. (a) The Neyman-Felsenstein
tree model that assumes independent evolution in sites. (b) The dinucleotide phylogenetic HMM
model suggested by Siepel and Haussler (2003).

unknown nucleotide in an ancestor species i at site j is denoted as hi
j , and the observed

nucleotide of an existing species i′ at site j′ is denoted as yi′

j′ . This is the usual model
for which Felsenstein’s algorithm for computing likelihood of data is readily applicable.
The model of Siepel and Haussler (2003) does not assume that sites are independent,
and therefore, edges that connect variables of adjacent sites are added (Figure 1b). This
figure illustrates the phylogenetic HMM model of Siepel and Haussler (2003). In this
model, a nucleotide of species i at site j depends on the nucleotide of that species at site
j − 1, and its ancestor’s nucleotides at sites j − 1 and j. This model is also called the
dinucleotide HMM model, since the two nucleotides of species i and k at site j, where k
is the ancestor species of i, are dependent only on the two nucleotides of that species at
site j−1. Additional more complex models are discussed in Siepel and Haussler (2003).

The local probability distributions of this model are determined by a continuous-time
Markov matrix Q of base substitution rates. The matrix Q is of size 16 × 16, and given
evolutionary time t, which is the branch length in the tree, the conditional probabilities
p(si

j , s
i
j−1|sk

j , sk
j−1) are obtained from Q, where k is the ancestor species of i. This

distribution then determines the desired probabilities p(si
j|si

j−1, s
k
j , sk

j−1). Let P (t) be
the matrix of substitution probabilities for branch length t. Then P (t) is given by the
solution to the differential equation d

dtP (t) = P (t)Q with initial conditions P (0) = I ,
which is P (t) = eQt. With Q being diagonalizable as Q = SΛS−1, the matrix P (t)
can be computed as P (t) = SeΛtS−1, where eΛt is the diagonal matrix obtained by
exponentiating each element on the main diagonal of Λt.

A standard criterion to choose between two DAG models is to prefer a model with
higher log-likelihood of the data. However, for the phylogenetic HMM model described
here, computing the log-likelihood of data is not feasible, and therefore approximations
are needed. In the next section we review known approximations that give lower bounds.
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2.2 Variational Lower Bounds

The problem of computing the likelihood, P (Y = y) =
∑

h P (Y = y, H = h)), in
DAG models is NP-hard (Cooper, 1990; Dagum & Luby, 1993), and although there are
many DAG models where exact algorithms are feasible, there are others in which the
time and space complexity makes the use of such algorithms infeasible. In these cases
fast yet accurate approximations are desired. Herein, we call the task of computing the
likelihood by the term inference.

Variational techniques such as the ones suggested by Jordan et al. (1999) are a pow-
erful tool for efficient approximate inference that offers guarantees in the form of lower
bounds. In particular, let P (X) be a joint distribution over a set of discrete variables
X with the goal to compute the marginal probability P (Y = y), where Y ⊆ X . Fur-
ther assume that this exact computation is not feasible. The idea is to replace P with
a distribution Q for which exact inference is feasible, and compute a lower bound for
P (Y = y) by using Jensen’s inequality:

log P (y)=log
∑

h

Q(h)
P (y, h)
Q(h)

≥
∑

h

Q(h) log
P (y, h)
Q(h)

=−D(Q(H) || P (Y=y, H))

where H = X \ Y and D(· || ·) denotes the KL divergence between two probability
distributions.

To obtain tight lower bounds several variational algorithms were devised that try
to find an approximating distribution Q which minimizes the KL divergence between
Q and the target distribution P ( [15,8,17,1,7]). Variational approaches such as the
mean field, generalized mean field, and structured mean field differ only with respect to
the family of approximating distributions that can be used. Such variational techniques
were applied by Jojic et al. (2004) to find lower bounds for the phylogenetic HMM
models. The lower bounds computed in the results section herein use a newer algorithm
for finding tighter lower bounds suggested by Geiger et al. (2006).

3 Variational Upper Bounds

We denote distributions by P (x) and Q(x), where Q is not necessarily a normalized
distribution. Let X be a set of variables and x be an instantiation of these variables.
Let P (x) =

∏n
i=1 Ψi(di) and Q(x) =

∏n
i=1 Φi(di) where di is the projection of the

instantiation x to the variables in Di ⊆ X , the subsets {Di}n
i=1 can overlap, and n is

the number of sets Di. Consider the marginal probability P (Y = y) =
∑

h P (y, h) =
∑

h

∏
i Ψi(di) where X = Y ∪ H . We assume throughout that Q(x) is tractable in the

sense that the marginal probability Q(Y = y) is feasible to compute, while P (Y = y)
is not feasible to compute.

We now develop an upper bound for P (Y = y) as summarized in Theorems 1 & 2.
According Jensen’s inequality, if f is a concave function and Z = {z1, . . . , zn} is

a set of real numbers then f(
∑n

i=1 wizi) ≥
∑n

i=1 wif(zi), where each wi ≥ 0 and∑n
i=1 wi = 1. By using the concavity of the log function and Jensen’s inequality for

concave functions, we get the following upper bound:

P (Y = y) =
∑

h

elog
∏

i Ψi(di) =
∑

h

e
∑

i wi(h) log Ψi(di)(1/wi(h))
(1)
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≤
∑

h

elog
∑

i wi(h)Ψi(di)(1/wi(h))
=

∑

h

∑

i

wi(h)Ψi(di)(1/wi(h))

where
∑

i wi(h) = 1 for every instantiation h. Note that this bound can be obtained also
by using the weighted power means inequality1. Eq. 1 holds with equality regardless of
the values of potentials Ψ if and only if

wi(h) =
log Ψi(di)
log P (h, y)

. (2)

Given a tractable distribution Q(x) =
∏n

i=1 Φi(di) we set wi(h) = log Φi(di)
log Q(h,y) , which

approximates the optimal but intractable choice given by Eq. 2.
With these values for wi(h), and using the identity x

logy
z = y

logx
z , Eq. 1 can be

written as:

P (Y = y) ≤
∑

h

∑

i

log Φi(di)
∑

k log Φk(dk)

∏

m

Φm(dm)
log Ψi(di)
log Φi(di) (3)

The upper bound in Eq. 3 holds with equality if Q equals P , because by replacing
all occurrences of Φi(di) with Ψi(di) we get

P (Y = y) ≤
∑

h

∑

i

log Ψi(di)
∑

k log Ψk(dk)

∏

m

Ψm(dm) =
∑

h

∏

m

Ψm(dm) = P (Y = y)

Eq. 3 remains hard to compute until the sum over h is divided into smaller
sums. To obtain a tractable bound we use the arithmetic-geometric means inequality,
1
n

∑
k log Φk(dk) ≥

∏
k log Φk(dk)1/n, where log Φk(dk) > 0. To use this inequality

we set all potentials Φi(di) to be greater than 1. The resulting tractable upper bound
stemming from Eq. 3 is the following:

P (Y = y) ≤ 1
n

∑

h

n∑

i=1

log Φi(di)
∏

m

Φm(dm)
log Ψi(di)
log Φi(di)

log Φm(dm)1/n
(4)

Consequently, the following theorem holds.

1 The weighted power mean Mr
w(Z) of a series of real numbers Z = {z1, . . . , zn} is defined

for every real r ∈ R as

Mr
w(z1, . . . , zn) =

⎧
⎨

⎩

[∑n
i=1 wiz

r
i

]1/r
if r �= 0

∏n
i=1 zwi

i if r = 0

where w1, . . . , wn are positive real numbers such that
∑n

i=1 wi = 1. Note that Mr
w(Z)

r→0−→
M0

w(Z).
The power mean inequality states that for two real numbers s, t, the relation s < t im-

plies Ms
w < M t

w , and the upper bounds are obtained by setting s = 0, t = 1, and
zi = Ψi(di)

(1/wi).
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Theorem 1 (upper bound). Let H and Y be two disjoint sets of variables such that
H ∪ Y = X , and let P (x) and Q(x) be distributions that factor according to P (x) =∏n

i=1 Ψi(di) and Q(x) =
∏n

i=1 Φi(di) where di is the projection of the instantiation x
to the variables in Di ⊆ X . Then the following is an upper bound on P (Y = y),

P (Y = y) ≤ 1
n

∑

i

∑

Di

log Φi(di)

⎡

⎣
∑

h\Di

∏

m

Φm(dm)
log Ψi(di)
log Φi(di)

log Φm(dm)1/n

⎤

⎦ (5)

Proof: The proof is immediate from Eq. 4 where we replace the sums over i and h, and
divide the sum over h such that first we sum over variables in Di and then over the rest
of the variables in H . �

Assuming that M = maxi{|Di|} is at most a given constant, the time needed to com-
pute the bound given in Eq. 5 is linear in the number of variables in the model and pro-
portional to the time needed to compute Q(y). Therefore, the tractability of this bound
is a direct consequence of the assumption of tractable inference on distribution Q.

Since the maximal size M of the sets in the model can sometime be large enough to
significantly slow computations of the upper bound, we develop a more efficient method
to compute the upper bound that does not depend on M . To do so, we use the following
lemma.

Lemma 1. Given two sets of positive real numbers X = {x1 . . . , xn} and Y =
{y1 . . . , yn} and a positive real number r, the following inequalities hold.
If 0 < r ≤ 1, then

n∑

i=1

xr
i

yi
≤

(
n∑

i=1

xi

yi

)r

·
(

n∑

i=1

y−1
i

)1−r

.

If 1 ≤ r < 2, then

n∑

i=1

xr
i

yi
≤

(
n∑

i=1

xi

yi

)2−r

·
(

n∑

i=1

x2
i

yi

)r−1

.

For r = 1 equalities hold.

Proof: We use the Euclidean case of Hölder’s inequality, stating that for two sets of pos-
itive real numbers X = {x1 . . . , xn} and Y = {y1 . . . , yn}, and for two real numbers
p, q ≥ 1 such that 1

p + 1
q = 1,

n∑

i=1

xi · yi ≤
(

n∑

i=1

xp
i

)1/p

·

⎛

⎝
n∑

j=1

yq
j

⎞

⎠

1/q

.

For 0 < r ≤ 1, we get using Hölder’s inequality,

n∑

i=1

xr
i

yi
=

n∑

i=1

(
xi

yi

)r

· yr−1
i ≤

(
n∑

i=1

(
xi

yi

)r·p)1/p

·
(

n∑

i=1

y
(r−1)·q
i

)1/q

.
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Setting p = 1
r and q = 1

1−r we get

n∑

i=1

xr
i

yi
≤

(
n∑

i=1

xi

yi

)r

·
(

n∑

i=1

y−1
i

)1−r

.

Similarly, for 1 ≤ r < 2, we get using Hölder’s inequality,

n∑

i=1

xr
i

yi
=

n∑

i=1

(
xi

yi

)2−r

·
(

x2
i

yi

)r−1

≤
(

n∑

i=1

(
xi

yi

)(2−r)·p)1/p

·
(

n∑

i=1

(
x2

i

yi

)(r−1)·q)1/q

.

Setting p = 1
2−r and q = 1

r−1 we get

n∑

i=1

xr
i

yi
≤

(
n∑

i=1

xi

yi

)2−r

·
(

n∑

i=1

x2
i

yi

)r−1

.

�

Theorem 2 (Efficient upper bound). Let H and Y be two disjoint sets of variables
such that H ∪ Y = X , and let P (x) and Q(x) be distributions that factor according to
P (x) =

∏n
i=1 Ψi(di) and Q(x) =

∏n
i=1 Φi(di) where Ψi > 1, Φi > 1 and log Ψi

log Φi
< 2

for every i = 1, . . . , n, and where di is the projection of the instantiation x to the
variables in Di ⊆ X . In addition, let Ui denote the set of instantiations of Di for which
Φi(di) ≤ Ψi(di), and let Li denote the rest of instantiations of Di. Then the following
is an upper bound on P (Y = y),

P (Y = y) ≤ 1
n

∑

i

[
∑

di∈Li

log Φi(di)ΛLi +
∑

di∈Ui

log Φi(di)ΛUi

]

(6)

where

ΛLi =

⎛

⎝
∑

h\Di

∏

m

Φm(dm)
log Φm(dm)1/n

⎞

⎠

log Ψi(di)
log Φi(di)

·

⎛

⎝
∑

h\Di

∏

m

1
log Φm(dm)1/n

⎞

⎠

1− log Ψi(di)
log Φi(di)

and

ΛUi=

⎛

⎝
∑

h\Di

∏

m

Φm(dm)
log Φm(dm)1/n

⎞

⎠

2− log Ψi(di)
log Φi(di)

·

⎛

⎝
∑

h\Di

∏

m

Φm(dm)2

log Φm(dm)1/n

⎞

⎠

log Ψi(di)
log Φi(di)

−1

Proof: Lemma 1 implies that when Φi(di) ≥ Ψi(di) > 1, we can replace every brack-

eted term
∑

h\Di

∏
m

[

Φm(dm)
log Ψi(di)
log Φi(di) / logΦm(dm)1/n

]

in Eq. 5 with ΛLi and when

1 < Φi(di) < Ψi(di), we can replace it with ΛUi , since log Ψi(di)
log Φi(di)

< 2. �

Computing each term, ΛUi or ΛLi , involves only two sums of products, where each sum
factors according to distribution Q. These computations can be performed by using any
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algorithm such as bucket elimination algorithm or the sum-product algorithm described
by Dechter (1999) and Kschischang, Frey & Loeliger (2001) . According to Eq. 6 only
a linear number of calls to such procedures are needed to obtain the upper bound.

If each potential Ψi and Φi is multiplied by a large factor α, all the terms log Ψi

log Φi

approach one as α grows. This reduces the accuracy gap when using Hölder’s inequality
in Eq. 6 with r = log Ψi

log Φi
. In addition, note that multiplying the potentials Φi by α also

serves the tightness of the arithmetic-geometric inequality used to obtain Eq. 5, since
for each pair of potentials Φj and Φk, the ratio log Φj

log Φk
approaches one as α grows. A

large enough α guarantees that log Ψi

log Φi
< 2 for all sets Di and thus the applicability of

Theorem 2. In our experiments we use ln α = 300.

4 Approximations for Phylogenetic HMM Models

The dinucleotide phylogenetic HMM model of Siepel and Haussler (2003), described
in Section 2.1, lead to improvements over previous models in several biological tasks
such as gene finding. But, despite its enhanced power, it also requires evaluating an
intractable likelihood for the purpose of finding optimal parameters for the model. Jojic
et al. (2004) used variational techniques, similar to the ones described in Section 2.2 to
lower bound the likelihood of data, and showed that when the exact likelihood can be
computed (although with much effort), the approximations were tight.

We use the upper bounds suggested in Section 3 to compute the likelihood of phy-
logenetic trees with a small error, by bounding it tightly from above and below. First,
we show the upper bounds are close to the true likelihood when this can be computed.
Then, for larger phylogenetic trees, where computing the exact likelihood is infeasible,
we show the proximity of the lower and upper bounds. To set a tractable approximating
distribution Q, we use a parameter k which determines its topology: sets that contain
variables from sites ck and ck+1, for c = 1, 2, 3, . . ., are split into two disjoint subsets,
Di1 and Di2, where Di1 contains only variables in Di from site ck and Di2 contains the
rest of the variables in Di. Their respective potentials Φi(di) therefore factor according
to Φi(di) = Φi1(di1)Φi2(di2). In our experiments we used k = 10 when computing
the exact likelihood was feasible and k = 5 when the likelihood computation was in-
feasible. The lower bounds were obtained by using a recent variational algorithm called
VIP* (Geiger et al., 2006).

We repeat each upper bound computation twice, with the difference of the way po-
tentials Φi are chosen. The first choice is what we call non-informative (NI), where
each potential Φi(di) =

∏mi

j=1 Φij(dij) is a product of mi sub-potentials of sets
Dij ⊆ Di. A sub-potential Φij(dij) is set to be the 1/mi power of the average
value of Ψi(di) of all instantiations di consistent with dij . More formally, Φij(dij)

=
(

1
|Cdij

|
∑

di∈Cdij
Ψ(di)

)1/mi

where Cdij is the set of instantiations di consistent

with dij .
The second choice of potentials, called variational-based (VB), is based on varia-

tional algorithms, such as VIP*, that optimize the approximating distribution Q in order
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to set tight lower bounds on the likelihood. If the topology of Q given for these algo-
rithms follows the factorization suggested in Section 3 (i.e. every potential Ψi in P has
its corresponding potential Φi in Q), the potentials found by these optimization algo-
rithms to lower bound the likelihood can also serve to upper bound it using the method
proposed herein.

We ran the tests on data used by Siepel and Haussler (2003) that contains sequences
from human in the region of the CFTR gene and homologous from eight mammals:
chimp, baboon, cow, pig, cat, dog, mouse and rat. The sequences are aligned, and we
used portions of this alignment to obtain our results. The substitution probabilities in all
models were computed from the dinucleotide substitution matrix obtained by Jojic et al.
(2004), and the branch lengths in each tree were randomly chosen, normally distributed
around predetermined means. The first tests used two data sets, similar to those used
by Jojic et al. (2004), where each set consisted of three sequences. The sequences in
set A were taken from the cow, mouse and human genomes and were of length 30Knc,
and the sequences in set B were taken from the cow, pig and dog genomes and were of
length 20Knc. Figure 2a and 2b plot the upper bounds versus the exact log-likelihoods
of trees with different branch lengths. Lower bounds are also shown in the figure to
demonstrate the tightness level of these bounds. The average differences for the trees in
set A between the upper bounds and the exact likelihoods were 1% for the NI method

Fig. 2. Upper and lower bounds on the likelihood of data of phylogenetic HMM models for sets A,
B and C with different branch lengths. (a) & (b) Bounds versus the exact likelihood for models
of sets A and B. (c) Bounds for models of set C, for which computing the exact likelihood is
infeasible.
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(a) (b)

Fig. 3. Accuracy and run-time as a function of parameter k of decomposing the model. Accu-
racy as a function of k. Run-time as a function of k.

Fig. 4. The difference in accuracy between upper bounds computed via Eq. 5 and bounds com-
puted via Eq. 6

and 0.95% for the VB method, and for trees in set B the average differences were 0.97%
(NI) and 0.9% (VB).

The upper and lower bounds for an additional set of aligned sequences that contained
sequences of length 30Knc from all nine organisms (Set C) are illustrated in Figure 2c.
For this set it is infeasible to compute the exact likelihood, but the proximity of the
upper and lower bounds allows us to predict the likelihood with a small error. The NI
method yielded an average of 1.64% difference from the lower bounds and the VB
method yielded an average of 1.52% from the lower bounds for the models in this set.

As shown in Figure 2, both choices of potentials (NI and VB) performed similarly,
with a small advantage of the VB method over NI in most experiments. In other exper-
iments we performed, we found that arbitrary choice of potentials often lead to signifi-
cant decrease in the tightness of the bounds (up to 45%), and therefore an algorithm is
desired to find potentials that lead to tight bounds.

The parameter k used for decomposing the tree model into parts of k sites is a trade-
off between run-time and accuracy: the larger k is the more time consuming it is to
compute the upper bounds, however, the bounds computed are also more accurate. The

(b)
(a)
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default value of k was set to 10 for trees in Set A. Figure 3 shows the results for these
trees as a function of k in terms of accuracy and in terms of run-time.

Finally, we tested the difference in accuracy between upper bounds computed via
Eq. 5 and those computed via Eq. 6. The expected run-time ratio between these two
methods is the average probability table size in the model. Since no preprocessing such
as summing over some variables was executed, the expected ratio was 81.25. As shown
in Figure 4, the differences in accuracy of the upper bounds were negligible, less than
0.05% of their log value, when applied to phylogenetic trees in data set A. This implies
that when the size of the probability tables is large, Eq. 6 is an attractive and efficient
alternative to Eq. 5.

5 Discussion

Computing the likelihood of many probabilistic models is infeasible and calls for ef-
ficient approximations. Our results on phylogenetic models show that the suggested
upper bounds are appreciably tight and together with other variational methods allow
to compute the likelihood almost exactly in feasible time. We have also started using
the upper bounds to approximate other probabilistic models and believe that they can
be applied to a wide range of models and for various tasks. One additional task we ex-
plore is bounding the MAP assignment probability in order to set optimal parameters
for models where finding the exact MAP assignment is infeasible. The goodness of the
bounds heavily depends on the choice of an approximating distribution Q, and more
work on choosing useful Q functions is desired, as indicated by Xing et al. (2004).

As with variational methods that offer lower bounds on the likelihood, if the de-
pendence of variables under Q largely differs from their dependence under the target
distribution P , these methods yield loose bounds. When exploring probabilistic mod-
els to genetic linkage analysis, as used by Fishlson and Geiger (2002), we found that
the variational methods we used did not offer sufficiently good approximating distri-
butions for these models, and therefore did not give tight enough bounds. Geiger et al.
(2006) provided results of variational techniques on genetic linkage analysis problems
and showed that although the lower bounds followed the shape of the likelihood func-
tion, the difference from the true log-likelihood reached 20%. The difficulty in finding
good approximations to this model may lie in the level of determinism of the model: re-
laxing deterministic dependence relationships between variables reduced accuracy far
more than when relaxing mild dependence relationships. When computing the upper
bounds suggested herein for genetic linkage analysis, the results were within 10% from
the true log-likelihood.
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Abstract. The gene-duplication problem is to infer a species supertree
from a collection of gene trees that are confounded by complex histories
of gene duplications. This problem is NP-hard and thus requires efficient
and effective heuristics. Existing heuristics perform a stepwise search of
the tree space, where each step is guided by an exact solution to an in-
stance of a local search problem. We show how this local search problem
can be solved efficiently by reusing previously computed information.
This improves the running time of the current solution by a factor of n,
where n is the number of species in the resulting supertree solution, and
makes the gene-duplication problem more tractable for large-scale phy-
logenetic analyses. We verify the exceptional performance of our solution
in a comparison study using sets of large randomly generated gene trees.
Furthermore, we demonstrate the utility of our solution by incorporating
large genomic data sets from GenBank into a supertree analysis of plants.

1 Introduction

The rapidly increasing amount of available genomic sequence data provides an
abundance of potential information for phylogenetic analyses. Most phylogenetic
analyses combine genes from presumably orthologous loci, or loci whose homol-
ogy is the result of speciation. These analyses largely neglect the vast amounts of
sequence data from gene families, in which complex evolutionary processes such
as gene duplication and loss, recombination, and horizontal transfer generate
gene trees that differ from species trees. One approach to utilize the data from
gene families in phylogenetics is to reconcile their gene trees with species trees
based on an optimality criterion, such as the gene-duplication model introduced
by Goodman et al. [1]. This problem is a type of supertree problem, that is,
assembling from a set of input gene trees a species supertree that contains all
species found in at least one of the input trees. The decision version of the gene-
duplication problem is NP-complete [2]. Existing heuristics aimed at solving the
� During this research, O.E. and M.S.B. were supported in part by NSF grant no.
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gene-duplication problem search the space of all possible supertrees guided by
a series of exact solutions to instances of a local search problem [3]. The gene-
duplication problem has shown much potential for building phylogenetic trees
for snakes [4], vertebrates [5, 6], Drosophia [7], and plants [8]. Yet, the run time
performance of existing heuristics has limited the size of such studies. We im-
prove on the best existing solution for the local search problem asymptotically
by a factor of n, where n is the number of species from which sequences in the
gene trees were sampled (that is the number of nodes in a resulting supertree).
To show the applicability of our improved solution for the local search problem,
we implemented it as part of standard heuristics for the gene-duplication prob-
lem. We demonstrate that the implementation of our method greatly improves
the speed of standard heuristics for the gene-duplication problem and makes it
possible to infer large supertrees that were previously difficult, if not impossible,
to compute.

For convenience, the term “tree” refers to a rooted and full binary tree, and
the terms “leaf-gene” and “leaf-species” refer to a gene or species that is rep-
resented by a leaf of a gene or species tree respectively throughout this work
(unless otherwise stated).

Previous Results: The gene-duplication problem is based on the gene-dup-
lication model from Goodman et al. In the following, we (i) describe the gene-
duplication model, (ii) formulate the gene-duplication problem, and (iii) describe
a heuristic approach of choice [3] to solve the gene-duplication problem.

Fig. 1. (a) Gene tree G and species tree S are comparable, as the mapping from the
leaf-genes to the leaf-species indicates. M is the lca-mapping from G to S. (b) R is the
reconciled tree for G and S. In species X of R gene x duplicates into the genes x′ and
x′′. The solid lines in R represent the embedding of G into R.

Gene-duplication model: The gene-duplication (GD) model [9,10,11,12,13,14,15,
16] explains incompatibilities between a pair of “comparable” gene and species
trees through gene duplications. A gene and a species tree are comparable, if
a sample mapping, called s-mapping, exists that maps every leaf-gene to the
leaf-species from which it was sampled. Fig. 1 depicts an example. Gene tree
G is inferred from the leave-genes that were sampled from the leaf species of
the species tree described by the s-mapping. However, both trees describe in-
compatible evolutionary histories. The GD model explains such incompatibilities
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by reconciling the gene tree with postulated gene duplications. For example, in
Fig. 1 a reconciled gene tree R can be theoretically inferred from the species tree
S by duplicating a gene x in species X into the copies x′ and x′′ and letting both
copies speciate according to the topology of S. In this case, the gene tree can be
embedded into the reconciled tree. Thus, the gene tree can be reconciled by the
gene duplication x to explain the incompatibility. The gene duplications that are
necessary under the GD model to reconcile the gene tree can be described by the
lca-mapping M, which is an extension of the given s-mapping. M maps every
gene in the gene tree to the most recent species in the species tree that could
have contained the gene. To make the definition precise, M maps each gene to
the least common ancestor of the species from which the leaf-genes of the subtree
rooted at the gene were sampled (given by the s-mapping). A gene in the gene
tree is said to be a gene duplication if it has a child with the same lca-mapping.
In Fig. 1 gene h and its child t map under the lca-mapping to the same species
X . The reconciliation cost for a gene tree and a comparable species tree is mea-
sured in the number of gene duplications in the gene tree induced by the species
tree. The reconciliation cost for a given set of gene trees and a species tree is the
sum of the reconciliation cost for every gene tree in the set and the species tree.
The lca-mapping is linear time computable on a PRAM [13] through a reduction
from the least common ancestor problem [17,18]. Hence, the reconciliation cost
for a set of gene trees and a species tree is computable in linear time.

Gene-duplication problem and heuristic: The gene-duplication problem is to find,
for a given set of gene trees, a comparable species tree with the minimum recon-
ciliation cost. The decision variant of this problem and some of its characteriza-
tions are NP-complete [2, 19] while some parameterizations are fixed parameter
tractable [20, 21]. Therefore, in practice, heuristics are commonly used for the
gene-duplication problem even if they are unable to guarantee an optimal solution.
However, GeneTree [22], an implementation of a standard local search heuristic
for the gene-duplication problem, demonstrated that the gene-duplication prob-
lem can be an effective approach for inferring species phylogenies. While the local
search heuristic for the gene-duplication problem performs reasonablywell in com-
puting smaller sized instances, it does not allow the computation of larger species
supertrees. In this heuristic, a tree graph, representing the tree space, is defined
for the given set of gene trees and some fixed tree edit operation. The nodes in
the tree graph are the species trees which are comparable with every given gene
tree. An edge is drawn between two nodes exactly if the corresponding trees can
be transformed into each other by the tree edit operation. The reconciliation cost
of a node in the graph is the reconciliation cost of the species tree represented by
that node and the given gene trees. Given a starting node in the tree graph, the
heuristic’s task is to find a maximal-length path of steepest descent in the recon-
ciliation cost of its nodes and to return the last node on such a path. This path
is found by solving the local search problem for every node along the path. The
local search problem is to find a node with the minimum reconciliation cost in the
neighborhood of a given node. The time complexity of the local search problem
depends on the tree edit operation used. An edit operation of interest is the rooted
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subtree pruning and regrafting (rSPR) operation [23,24]. Given a tree S, an rSPR
operation can be performed in three steps: (i) prune some subtree P from S, (ii)
add a root edge to the remaining tree S, (iii) regraft P into an edge of the remain-
ing tree S. The resulting tree graph is connected and every node has a degree of
Θ(n2), where n is the size of a species tree comparable to the given gene trees. As-
suming, for convenience, similar gene tree and species tree sizes, the local search
problem for the rSPR edit operation can be solved naively in Θ(n3) time per gene
tree. If there are k gene trees then this gives a total time bound of O(kn3). This is
the best-known algorithm to solve the local search problem for rSPR operations.
In practice, the cubic run time typically allows only the computation of smaller
supertrees [3]. A common approach to overcome this limitation is to consider only
an O(n) cardinality subset of the rSPR neighborhood at each node by using the
rooted nearest neighbor interchange (rNNI) edit operation. The local search prob-
lem for the rNNI edit operation can be solved in O(kn2) time. We solve the local
search problem for the rSPR edit operations within the same O(kn2) time bound.

Contribution of the Manuscript: First we introduce an algorithm that, ir-
respective of the sizes of the gene trees, improves the run time of the current
solution by Θ(n), where n is the size of any species tree resulting from the given
gene trees. To support typical input gene trees, our algorithm also allows multiple
leaf-genes from the same gene tree to map to a single leaf-species. This algorithm
was implemented as part of a standard heuristic for the gene-duplication prob-
lem, and we compared the run times of our implementation and the program
GeneTree, which can infer species trees using the same local search heuristic. Fi-
nally, we demonstrate the ability of our heuristic to utilize gene-family sequences
to construct large subtrees of the Tree of Life.

Organization of the Manuscript: Section 2 introduces basic terminology and
problem definitions. In Sect. 3 we formally introduce the local search problem for
the rSPR tree edit operation and our approach for solving it. To solve this refined
local search problem we study gene duplication properties when a tree is modified
using rSPR operations in Sect. 4. In Sect. 5 we introduce our algorithm for the
(refined) local search problem, show its correctness and analyze its run time.
Experimental results are presented in Sect. 6 and concluding remarks appear in
Sect. 7. In the interest of brevity we shall omit the formal proofs for the lemmas
and theorems presented herein.

2 Basic Notation and Preliminaries

Recall that throughout this work the term tree refers to a rooted full binary tree,
unless otherwise stated. Given a tree T , let V (T ) and E(T ) denote the node and
edge sets of T respectively. Root(T ) denotes the root node of T , and Le(T ) the
leaf set of T . Given a node v ∈ V (T ): (i) PaT (v) is the parent node of v, (ii)
ChT (v) denotes the set of children of v, (iii) Tv denotes the complete subtree of
T rooted at node v, and (iv) a node u ∈ V (Tv)\{v} is a (proper) descendant of
v. Two nodes with the same parent are called siblings of each other. The least
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common ancestor of a set L ⊆ Le(T ) in T is defined to be the node v ∈ V (T )
such that L ⊆ Le(Tv) and L �⊆ Le(Tu) for any descendant u of v ∈ V (T ).

A species tree and a gene tree are full binary trees that represent the evolu-
tionary relationships between species and genes (of a gene family) respectively.
In the following we define the gene-duplication problem and the terms necessary
for its definition. Let G be a gene tree and S be a species tree.

Comparability: The trees G and S are comparable if Le(G) ⊆ Le(S). A set of
gene trees G and S are comparable if Le(S) =

⋃
G∈G Le(G).

Gene duplication: The (lca-)mapping MG,S : V (G) → V (S) is defined for com-
parable trees G and S such that MG,S(v) is the least common ancestor of Le(Gv)
in S. A node v ∈ V (G) is a gene duplication if there exists a child u of v ∈ V (G)
such that MG,S(v) = MG,S(u).

Reconciliation cost: (i) The reconciliation cost for G and S is Δ(G, S) = |{v : v ∈
V (G) and v is a gene duplication }|. (ii) The reconciliation cost for a set of gene
trees G and S is Δ(G, S) =

∑
G∈G Δ(G, S). (iii) The reconciliation cost for a set

of gene trees G is Δ(G) = minS∈S Δ(G, S), where S is the set of all species trees
that are comparable with G.

The gene-duplication problem
Instance: A set G of gene trees.
Find: A species tree SOPT such that Δ(G) = Δ(G, SOPT ).

3 Refining the Local Search Problem

The gene-duplication problem is heuristically approached by repeatedly solving
the local search problem for the rSPR edit operation. In this section we first
give definitions for the rSPR operation and the local search problem that were
motivated in the introduction. Then we observe that the local search problem
can be solved by dividing it into problem instances of the restricted local search
problem, which we will introduce here. Finally, we present our central idea for
solving the restricted local search problem efficiently.

The rSPR operation: The rSPR operation for a tree S is defined as cutting
any edge, say {u, v}, where u = PaS(v), and thereby pruning a subtree, Sv, and
then regrafting the subtree by the same cut edge in one of the following ways:

1. Regrafting Sv into an edge e ∈ S\Sv: Creating a new node u′ which subdi-
vides e and regrafting the subtree by the cut edge at node u′. Then, either
suppressing the degree-two node u or, if u is the root of S, deleting u and
the edge incident with u, making the other end-node of this edge the new
root.

2. Regrafting Sv above Root(S): Creating a new root node u′ and a new edge
between u′ and the original root. Then regrafting the subtree by the cut edge
at node u′ and suppressing the degree-two node u.
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Note that the rSPR operation involves deleting a node in the original tree and
creating a new one where the subtree is regrafted. Throughout this text we
assume that the new node created is given the same label as the node removed.
This forms a new tree whose leaf set is the same as the original tree.

Consider an rSPR operation on the tree S that prunes the subtree Sv. We de-
fine rSPR(S, v, u) to be the tree obtained by regrafing Sv in one of the following two
ways: (i) if u �= Root(S), then Vs is regrafted into the edge (u, PaS(u)), and (ii) if
u �= Root(S), then Sv is regrafted above Root(S). The set of trees into which S can
be transformed by regrafting only Sv is rSPR(S, v) =

⋃
w∈V (S)\V (Sv) rSPR(S, v, w).

The set of trees into which S can be transformed by one rSPR operation is
rSPR(S) =

⋃
v∈V (S)\{Root(S)} rSPR(S, v).

The specific local search problem defined for rSPR operations is called the neigh-
borhood search problem.

The neighborhood-search (NS) problem
Instance: A gene tree set G, and a comparable species tree S.
Find: The reconciliation cost for every tree in rSPR(S).

Restricting the NS Problem: We will show that the NS problem can be
solved without computing the reconciliation cost for every tree in the neighbor-
hood of S separately. Therefore we divide the NS problem into subproblems,
called restricted neighborhood search problems, that can be solved efficiently by
reusing previously computed information.

The restricted-neighborhood-search (RNS) problem
Instance: A triple (G, S, P ), where G is a set of gene trees, S a comparable

species tree, and P is a subtree of S.
Find: The reconciliation cost for every tree in rSPR(S, Root(P )).

Observation 1. The ns problem on S can be solved by solving the rns problem
for each subtree of S.

Our Idea to solve the RNS Problem: To solve the RNS problem instance
(G, S, P ) we first determine the reconciliation cost Δ(G, �) for a particular tree
� ∈ rSPR(S, Root(P )). � is the tree obtained after pruning and regrafting P to the
root of S (see Fig. 2(a)). After this initial step the reconciliation cost Δ(G, S′)
for each tree within S′ ∈ rSPR(S, Root(P )) can be determined in amortized O(|G|)
time by following a particular order. Beginning with � the subtree P is stepwise
“moved down” in the tree S using rSPR operations (see Fig. 2(a)). We define
the move-down operation for the pruned subtree P of the tree S as the rSPR
operation which produces a tree rSPR(S, Root(P ), w), where w ∈ ChS(v) for the
sibling v of Root(P ).

The set movedownS(P ) consists of all species trees that can be obtained by
performing successive move-down operations starting from � with a fixed pruned
subtree P .

Observation 2. rSPR(S, Root(P )) = movedownS(P )
⋃

{�}.
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Fig. 2. (a): The tree � is obtained from S after pruning and regrafting P to the
root. Each tree in rSPR(S, Root(P )) can be obtained by starting from � and successively
performing move-down operations. (b): The subtree on the right, S′, is obtained from
S by moving x and P to the right subtree of y.

In Sect. 4 we show how the reconciliation cost is affected by move-down oper-
ations. These properties allow the design of an efficient algorithm for the RNS

problem as shown in Sect. 5.

Naming Convention for this work: We establish the following notation
throughout this work. The pruned subtree under study is denoted by P , its
root node by p, and the parent of p by x. In the tree �, the sibling of p is q, and
the subtree rooted at q is Q (see Fig. 2(a)). Note, Root(�) is always x.

The sibling of p is always denoted by y. Note, q and y refer to the same node
in the tree �. A general situation is dipicted in Fig. 2(b). In general, g is used
to refer to a node in a gene tree, and s to refer to a node in the species tree.

4 Structural Properties

Let G be a gene tree and S a species tree. In this section we study first the effect
of move-down operations on the mapping MG,S and the gene duplication status
of genes in G. Finally, we describe the effect on the mapping after a sequence of
move-down operations for a fixed pruned subtree.

A Single Move-down Operation: Consider a move-down operation that
changes tree S into tree S′ = rSPR(S, p, z), where z ∈ ChS(y). Fig. 2(b) shows
an example for a move-down operation. Further, let M−1

G,S(v) denote the set of
nodes in G that map to node v ∈ V (S) under the mapping MG,S. In the fol-
lowing we study the effects of the move-down operation on the mapping MG,S

and the gene duplication status.

Relating MG,S and MG,S′ :

Lemma 1. M−1
G,S(v) = M−1

G,S′(v), for all v ∈ V (S)\{x, y}.

Lemma 2. M−1
G,S′(x) ⊆ M−1

G,S(x) and M−1
G,S(y) ⊆ M−1

G,S′(y).

Effects on the gene duplication status: Based on the observations from Lem-
mas 1 and 2, the following three lemmas characterize the possible change in
the gene duplication status of nodes in G.
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Lemma 3. The gene duplication status for any node in G that does not map to
x under mapping MG,S remains unchanged.

Lemma 4. If a node g ∈ M−1
G,S(x) is not a gene duplication under mapping

MG,S, then it becomes a gene duplication under mapping MG,S′ if and only if
one of the children of g maps to node y in S.

Lemma 5. Let g ∈ M−1
G,S(x) be a gene duplication under mapping MG,S and

z′ be the sibling of z in S. Under the mapping MG,S′ the node g will lose its
gene duplication status if and only if both of the following hold:

1. Under MG,S one of the two children b ∈ ChG(g) maps to x and the other
child maps to a node in the subtree Sz′ .

2. Under MG,S′ node b maps to x.

A Sequence of Move-down operations: We describe changes in the mapping
MG,� when move-down operations for a subtree P rooted at a child of Root(�)
are successively performed to obtain a tree S′ ∈ movedownS(P ).

The following proposition follows from Lemmas 1 and 2.

Proposition 1. MG,�(g) may only differ from MG,S′(g), if g ∈ M−1
G,�(x).

Based on Proposition 1 we are left to characterize the differences between
MG,�(g) and MG,S′(g) for all g ∈ M−1

G,�(x). For this, we determine the nodes
in G that can change in their mapping or that can be responsible for such a
change.

The mapping of a node g ∈ M−1
G,�(x) can change caused by a change in the

mapping of its children. Such children would then be elements in M−1
G,�(x) by

Proposition 1. However, a change in the mapping can also be caused by other
children, called supporting nodes, whose mapping does not change.

Definition 1 (Supporting nodes). A node g ∈ V (G) is a supporting node,
if (i) MG,�(g) ∈ V (Q) and (ii) PaG(g) ∈ M−1

G,�(x).

Definition 2 (Partial Gene Tree Γ ). The partial gene tree Γ is the subgraph
of G induced by the set {g ∈ V (G) : g ∈ M−1

G,�(x) or g is a supporting node}.

Note, Γ is a binary tree (not necessarily full binary), and all its leaf nodes are
supporting nodes.

The nodes in Γ induce a subtree in G and identify exactly the nodes whose
mapping can change or that are responsible for such a change. The supporting
nodes in Γ map to nodes in Q under mapping MG,�. Let this define an initial
mapping from the leaves of Γ to the nodes in Q. This initial mapping can be
extended to the (lca-)mapping MΓ,Q. All the internal nodes in Γ map to the
root node of �, because they have at least one descendant in G that maps to a
node in P under mapping MG,�. The mapping MΓ,Q shows where those nodes
would map under mapping MG,� if all nodes in M−1

G,�(s), for all s ∈ V (P ), are
removed from G.

Based on the mapping MΓ,Q, we have the following lemma.
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Lemma 6. Let s = MΓ,Q(γ) where γ is an internal node of Γ , and let S′ ∈
movedown�(P ). The location of node MG,S′(γ) depends on the edge e in E(Q)
into which P is regrafted, as follows:

1. MG,S′(γ) = x, if e is on the path from q to node s in V (Q).
2. MG,S′(γ) = s, if e is an edge in E(Qs).
3. MG,S′(γ) is a node on the path from q to s, but not q or s, otherwise.

5 Solving the RNS Problem

Based on the results obtained in the previous section we will first design an
efficient algorithm, called ReconciliationCostTree (RCT), which solves
the RNS problem for one input gene tree. Algorithm FastRNS then makes use
of RCT to solve the RNS problem. We then show the correctness and analyze
the run time of FastRNS.

Algorithm RCT(G, S, P ): The input for RCT is a gene tree G, a comparable
species tree S, and subtree P to be pruned. The first step in the algorithm is to
obtain the tree � (see Fig. 2(a)). Recall that x = Root(�), p = Root(P ), q denotes
the sibling of p, and Q = �q.

The output Q̃ is a W : V (Q̃) → N0 node weighted version of tree Q, where
W (s) = Δ(G, S′) for S′ = rSPR(S, p, s).

Initialization: Create � and initialize two counters g(s) and l(s) with 0, for each
node s ∈ V (Q). Then, compute the mapping MG,�, the tree Γ , and the mapping
MΓ,Q.

Computing the values for g and l: For each leaf γ ∈ Le(Γ ) that has no sibling we
do the following: If MΓ,Q(γ) = MΓ,Q(PaΓ (γ)), then we increment g(MΓ,Q(γ))
by 1. Similarly, for each leaf γ ∈ Le(Γ ) that has a sibling, we do the following:
Let α = PaΓ (γ), σ be the sibling of γ, a = MΓ,Q(α), and ChQ(a) = {b, c}. If σ
maps into Qb and γ into Qc under mapping MΓ,Q, then increment the counter
l(b) by 1. Further, if σ maps into Qc and γ into Qb, then increment the counter
l(c) by 1.

The value g(s), represents the number of additional nodes from G that will
become gene duplications when P is regrafted onto the edge {s, t}, t ∈ ChQ(s),
from the edge {PaQ(s), s}. The value l(s) represents the number of nodes from
G that will lose their gene duplication status when P is regrafted onto the edge
{PaQ(s), s} from the edge {PaQ(PaQ(s)), PaQ(s)}.

Computing Q̃: The tree Q̃ is initialized to be Q and its node weights are set
to 0. Set d = Δ(G, �). For each node s in a preorder traversal on the tree Q̃,
we calculate the weight of that node as follows: If s = Root(Q) then W (s) = d.
Otherwise, set d = d + g(PaQ(s)) − l(s) and W (s) = d. Note, that the weight at
the root node of Q̃ represents the value Δ(G, �).
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Algorithm FastRNS(G, S, P ): Typically, the RNS problem needs to be solved
for several input gene trees. In this case we execute RCT for each gene tree
separately. We call this algorithm FastRNS. Note that the tree Q̃ obtained for
each gene tree is identical except for the weights on the nodes. The output of
FastRNS is a tree Φ with topology identical to tree Q and the weight of each
node equal to the sum of the weights at the corresponding node in each Q̃ tree.

By Observation 1 the NS problem can be solved through solutions to the
RNS problem. Each edge in the given species tree S, defines a subtree that can
be pruned. To solve the NS problem we keep calling the algorithm described
above for each of these subtrees that can be pruned in S. This produces a node
weighted tree Φ for each pruned subtree, which solves the NS problem.

Correctness: Now we show the correctness of our algorithm for the NS problem.
To do this it is sufficient to show that the RNS problem is correctly solved by
FastRNS.

Lemma 7. RCT(G, S, P ) computes W (s) = Δ(G, S′) for all S′ ∈ rSPR(S, p).

Proof (Sketch). A node in Γ is called feasible if it is the parent of a supporting
node. The following statements hold.

– Values g(s) and l(s) are only computed for s = MΓ,Q(γ), if γ ∈ V (Γ ) is
feasible . This is because all other internal nodes in Γ will maintain their
gene duplication status as P is regrafted into edges in Q (see Lemma 1).

– Consider a feasible node γ ∈ V (Γ ) whose gene duplication status changes
when subtree P is regrafted into an edge {s, PaQ(s)} in Q. If P is then
regrafted into any edge in the subtree Qs, the gene duplication status of γ
is preserved.

– If a feasible node γ ∈ V (Γ ) has only one child and MΓ,Q(γ) = s, then it will
gain gene duplication status if and only if P is regrafted into the subtree Qs.

– If a feasible node γ ∈ V (Γ ) has two children, α and β, then one of them, say
α, must be a non-supporting node. Suppose α maps to the subtree rooted at
a child t of MΓ,Q(s) in Q, and β maps to the subtree rooted at the sibling
of t in Q. Then, if P is regrafted into Qt, node γ loses its gene duplication
status.

From the above statements and Lemmas 4, 5 and 6 it follows that the values for
g and l, and hence the node weights of Q̃, are computed correctly for each node.

Lemma 8 follows from Lemma 7 and the definition of reconciliation cost.

Lemma 8. The weight of a node s in tree Φ is Δ(G, S′) where S′ =
rSPR(S, p, s).

Observation 3. Each tree in rSPR(S, p) can be obtained by starting at � and
regrafting P into an edge in the subtree Q.

The node weights on the tree Φ thus provide all the information needed to solve
the RNS problem.
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Theorem 1. The RNS problem is correctly solved by FastRNS.

Time Complexity: The major component of our algorithm to solve the NS

problem is FastRNS that solves the RNS problem. Therefore we first analyze
the complexity of FastRNS. Note, to simplify our analysis we assume that all
G ∈ G have approximately the same size. Even if this does not hold true, our
algorithm shows the same improvement in complexity over the current solution.

The input for FastRNS is a set G of gene trees, a species tree S, and the
pruned subtree P of S. Let n = | Le(S)|, and k = |G|. FastRNS calls RCT k
times and then constructs the tree Φ.

Complexity of RCT(G, S, P ): Let m = | Le(S)|+ | Le(G)|. The overall time com-
plexity of RCT(G, S, P ) is bounded by O(m). A step-by-step analysis of the
complexity follows:

1. Initialization in O(|V (S)| + |V (G)|): The initial tree � and the counters g
and l for each node in Q can be setup in O(|V (Q)|) time. Computing the
mapping MG,� takes O(|V (S)| + |V (G)|) time, and the tree Γ can then
be constructed in O(|V (Γ )|) time. The mapping MΓ,Q can be computed in
O(|V (Γ )|+ |V (S)|) time. Hence, the time for the initialization costs is bound
by O(|V (S)| + |V (G)|), which is O(m).

2. Computing g and l in O(|V (G)|) + O(|V (Q)|): The values for g and l can
be computed by traversing through the tree Γ once. To update the values
for l we have to check whether MΓ,Q(γ) ∈ V (Qa) and MΓ,Q(σ) ∈ V (Qb)
or MΓ,Q(σ) ∈ V (Qa) and MΓ,Q(γ) ∈ V (Qb). This check can be done in
O(1) time as follows: Initially, we perform an inorder traversal of the tree
Q and label the nodes with increasing integer values in the order in which
they are traversed. This preprocessing step takes O(|V (Q)|) time. Based on
the resulting order we can check whether a given node is in V (Qa) or V (Qb)
in O(1). O(|V (Γ )|) updates for g and l are necessary, and each update can
be performed in O(1) time. Hence, computing g and l can be done in time
O(|V (G)|) + O(|V (Q)|), which is O(m).

3. Computing Q̃ in O(|V (G)|) + O(|V (Q)|) Computing W for each node in Q̃
from the g and l values involves first computing the value Δ(G, �), then
traversing the tree Q̃ in preorder and spending O(1) time at each node. The
time complexity of this step is O(|V (G)|) + O(|V (Q)|), which is O(m).

Complexity of FastRNS(G, S, P ): Computing the final tree Q̃ involves travers-

ing each of the Q̃ trees produced in preorder. This step takes O(n) time per
tree and hence O(kn) time overall. Thus, the time complexity of FastRNS is
bounded by O(km + kn), which is O(km).

Complexity of the NS problem: The time complexity of our algorithm for the
NS problem is thus O(n) × O(km) ≡ O(kmn) (based on Observation 1). The
brute force algorithm to solve the NS problem requires O(kmn2) time. Our
algorithm for the NS problem improves on this by a factor of n. Also observe
that this speed up does not come at the expense of higher space complexity.
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6 Experimental Results

In order to study the performance of our algorithm we implemented it as
part of a standard local search heuristic for the gene-duplication problem.
This program is called FastGeneDup. We first analyzed the performance and
scalability of FastGeneDup using simulated input data and then focused on
an analysis of large empirical data sets.

Table 1. GeneTree vs. FastGeneDup

Taxa size GeneTree FastGeneDup Taxa size GeneTree FastGeneDup

50 9m:23s 1s 400 – 9m:19s
100 3h:25m 6s 1000 – 3h:20m
200 108h:33m 58s 2000 – 38h:25m

Performance and Scalability: We first compared the run time performance
of FastGeneDup against the program GeneTree [3]. GeneTree currently is
the only publicly available program that can build species supertrees based on
the same local search heuristic. We measured the run time of each program
to compute its final species supertree for the same set of input gene trees and
the same randomly generated starting species tree. The input gene trees for
each run consisted of a set of 20 randomly generated gene trees, all with the
same set of taxa. We conducted 6 such runs, each with a different number
of taxa (50, 100, 200, 400, 1000, and 2000) in the input trees. All analyses
were performed on a 3 Ghz Intel Pentium 4 CPU based PC with Windows
XP operating system. FastGeneDup shows a vast improvement in run time
and scalability compared to GeneTree(Table 1). We could not run GeneTree
on input trees with more than 200 taxa. Also, the memory consumption of
FastGeneDup was less than the memory consumption of GeneTree. Note that
even though both FastGeneDup and GeneTree implement the same local
search heuristic, they may produce different supertrees, which may also have
different reconciliation costs. This happens because during a local search step,
more than one neighboring node may have the smallest reconciliation cost.
In this case the node to follow is chosen arbitrarily, and this may cause the
programs to follow different paths in the search space. In practice we noticed
little or no difference in the final reconciliation costs, though FastGeneDup

inferred supertrees with smaller reconciliation cost more often than GeneTree.

Empirical Example: The abundance of protein sequence data from many
taxa makes it possible to perform large-scale analyses of the gene-duplication
problem that require fast heuristics. We demonstrated the feasibility of such
phylogenomic analyses using FastGeneDup on plant gene trees. The gene
trees were derived from the set of all plant (Viridiplantae) sequences in Gen-
Bank (http://www.ncbi.nlm.nih.gov) downloaded on April 13, 2006. In total,
this included 390, 230 amino acid sequences. The amino acid sequences were
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clustered into sets of homologs, representing gene families, using the NCBI
BLASTCLUST program [25], which performs single linkage clustering of the
sequences based on pairwise BLAST scores. We used a 60% identity cutoff
value for the single-linkage clustering and the BLASTCLUST default align-
ment length. We then identified a set of clusters containing at least 4 sequences
from at least 3 taxa and containing only sequences from taxa that are found in
10 or more such clusters. We found 3, 978 clusters containing sequences from 624
taxa (or technically 624 GenBank taxon ids, most of which represent distinct
taxa) that met this criterion. From this set of clusters, we made three data sets
that were used to produce the input trees for gene duplication analysis. The
first set, the small data set, consisted of the 94 clusters (or gene families) that
each had sequences from at least 40 different taxa. This set contained a total
of 18, 402 protein sequences. The second set, the medium data set, consisted
of the 599 clusters that each had sequences from at least 10 different taxa and
contained a total of 48, 156 sequences. Finally, the large data set consisted of
all 3, 978 clusters and contained a total of 100, 914 sequences, over 25% of the
available plant protein sequences. To our knowledge, the large data set contains
by far the most sequences ever incorporated into a single phylogenetic analysis
of plants.

The sequences from each of the chosen clusters were aligned using the de-
fault options in ClustalW [26]. To obtain the gene trees from our data set, we
built neighbor-joining trees [27] using PAUP* [28]. Since the gene-duplication
problem requires binary, rooted gene trees, zero length branches were randomly
resolved, and the trees were rooted with midpoint rooting. We tested the perfor-
mance of FastGeneDup using the local search heuristic starting from a random
species tree. The analyses of the small and medium data sets were performed on
a Macintosh power PC laptop computer with a 1.5 GHz G4 processor and Mac
OS X 10.4 operating system.

The small data set took 3 h. 15 m. 12 s. and found a species tree with a score
of 13, 393 gene duplications. The medium data set took 24 h. 55 m. 41 s. and
found a species tree with a score of 36, 080 gene duplications. The analysis of
the large data set was performed on a 3 GHz Intel Pentium 4 based PC with
Windows XP. It took 62 h. 35 m. 29 s. and found a species tree with 75, 621
gene duplications. This purpose of this experiment was to demonstrate that
large genomic data sets could be incorporated into phylogenetic analyses using
FastGeneDup. Like other attempts to build large plant trees from genome-scale
data sets [29], the resulting species trees contain some anomalous relationships
as well as some expected relationships. The presence of anomalous relationships
is not surprising since the supertree analyses consisted only of a single run of
the simple heuristic starting from a random tree. Also, the input trees were built
using a simple neighbor-joining, and their quality can be improved with more
thorough phylogenetic methods. Finally, mid-point rooting assumes that the
sequences are evolving according to a molecular clock, which is a questionable
assumption for many gene families.
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7 Outlook and Conclusion

Despite the inherent complexity of the gene-duplication problem, it has been an
effective approach for incorporating data from gene families into a phylogenetic
inference [4,5,6,7]. Yet, existing local search heuristics for the problem are slow
and thus cannot utilize the vast quantities of newly available genomic sequence
data. We introduced an algorithm that speeds up the stepwise search procedure
of local search heuristics for the gene-duplication problem. Our algorithm elim-
inates redundant calculations in computing the reconciliation cost for all trees
resulting from pruning a given subtree and regrafting it to all possible positions.
We implemented our algorithm as part of standard local search heuristics, and
the resulting program, FastGeneDup, greatly improves upon the performance
of GeneTree, a previous implementation to solve the gene-duplication problem.
Furthermore, FastGeneDup made it possible to compute a supertree with 624
leaves from 3,978 input gene trees, representing over 25% of all available plant
protein sequences, in less than three days on a desktop computer. This speed
up also allows searching a much larger portion of the solution space within the
same time, and hence can be used to obtain better solutions.
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Abstract. Sequence to structure alignment is an important step in
homology modeling of protein structures. Incorporation of features like
secondary structure, solvent accessibility, or evolutionary information im-
prove sequence to structure alignment accuracy, but conventional gener-
ative estimation techniques for alignment models impose independence
assumptions that make these features difficult to include in a principled
way. In this paper, we overcome this problem using a Support Vector
Machine (SVM) method that provides a well-founded way of estimating
complex alignment models with hundred-thousands of parameters. Fur-
thermore, we show that the method can be trained using a variety of loss
functions. In a rigorous empirical evaluation, the SVM algorithm outper-
forms the generative alignment method SSALN, a highly accurate gen-
erative alignment model that incorporates structural information. The
alignment model learned by the SVM aligns 47% of the residues correctly
and aligns over 70% of the residues within a shift of 4 positions.

Keywords: Machine learning, Pairwise sequence alignment, Protein
structure prediction.

1 Introduction

Sequence to structure alignment is a crucial step in building accurate three-
dimensional protein models in homology modeling. Most alignment methods are
based on dynamic programming on a linear cost model. In the simplest cases,
such as alignment with the BLOSUM matrices, the linear model specifies costs
for substituting one amino acid with another and for inserting a gap. The choice
of these costs greatly determines the quality of alignments. While it is well under-
stood how to estimate the substitution costs for such simple models, sequence
to structure alignment requires more complex cost models to take advantage
of the structural information available. For these complex cost models, conven-
tional generative estimation techniques like Hidden Markov Models (HMM) are
difficult to use due to the independence assumptions they make, for example, in
assuming that the amino acid sequence and the secondary structure labels of a
protein are generated by independent processes.

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 253–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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This paper explores a Support Vector Machine (SVM) method for learning
an application specific cost model from training data for sequence to structure
alignment. The advantages of this SVM method over conventional generative
techniques are threefold. First, unlike conventional generative estimation tech-
niques, the SVM method does not require independence assumptions among
features and therefore provides a well-founded way to learn cost models where
each aligned position is described not only by its amino acid identity, but by
a potentially high-dimensional feature vector. This feature vector may describe
additional properties of the aligned position (e.g. predicted secondary structure)
as well as properties of surrounding aligned positions (e.g. the previous amino
acid is hydrophobic). This provides great flexibility in building expressive mod-
els. Second, the SVM method inherits the benefits of conventional classification
SVMs, in particular its robustness to overfitting for high-dimensional and sparse
data. Third, the SVM method allows optimizing for different loss functions. This
allows accounting for uncertainty in the training data, as well as specifying which
types of alignment errors are more costly than others.

The work reported in the following shows that the SVM algorithm can be used
to learn highly accurate alignment models for sequence to structure alignments.
It also provides the first large-scale implementation and empirical validation of
this SVM alignment algorithm, extending the basic algorithm first proposed in
[1,2] to include loss functions. We show that this SVM algorithm can effectively
learn alignment models with hundreds of thousands of features, outperform-
ing the accuracy of state-of-the-art generative estimation techniques [3]. Finally,
we show that loss functions can be incorporated into the SVM training prob-
lem while maintaining polynomial runtime guarantees. We find that the use of
application-dependent loss functions during training, in particular by only count-
ing alignment errors if the shift from the correct residue is more than 4, is effective
in modeling the uncertainty in the training data. The training and alignment pro-
gram of this work is available for download at http://svmlight.joachims.org.

2 Related Work

Conventional estimation techniques for alignment models (see e.g. [4,5,6,7,8])
take the view of a generative probabilistic model. A generative alignment model
(e.g. HMM) aims to model the process that generates the data as the joint
probability distribution P (S, T, Y ), where s = (s1, ..., s|s|) and t = (t1, ..., t|t|)
are two sequences and y is the alignment. We denote the length of a sequence
with |.|. If P (S, T, Y ) (or a good estimate thereof) is known,

argmaxy P (S = s, T = t, Y = y) (1)

predicts an alignment y from two sequences s and t. To make estimation of
P (S, T, Y ) tractable, it is decomposed by making independence assumptions on
the process that generates s and t. While this leads to efficient and simple esti-
mation problems, the independence assumptions restrict the interactions within
the sequences s and t that we could model.
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Machine learning research over the last decade has provided substantial evi-
dence that discriminative learning (e.g. SVMs, MaxEnt classifiers) typically pro-
duces more accurate rules than generative learning (e.g. näıve Bayes classifiers,
HMMs) (see e.g. [9,10,11]). This can be explained as follows. Since P (Y |S, T ) is
already sufficient for making an optimal prediction

argmaxy P (Y = y|S = s, T = t), (2)

modeling the joint distribution of the input sequences S and T is not necessary,
and generative methods might be wasting effort in trying to do so. Discriminative
learning applied to the alignment problem would directly estimate P (Y |S, T )
or a related discriminant function, thus focusing on the relevant part of the
estimation problem.

Only few approaches to discriminative training of alignment models exist to
date. While not motivated from this learning theoretical perspective, work on
inverse alignment is closely related, since our SVM method can be viewed as
solving an inverse alignment problem. Inverse alignment is the task of finding a
cost model under which a given alignment algorithm outputs a desired alignment
y for sequences s and t. This problem was first formulated in [12]. They discuss
inverse alignment in the context of parametric sequence alignment and identify
geometric properties of the space of cost model. In more detail, the work in [13]
analyzes the space of models and shows that some aspects of its complexity grow
only polynomially.

The first concrete algorithm for inverse sequence alignment was proposed in
[14]. While they prove that their algorithm finds a consistent cost model in
polynomial time, their algorithm is limited to particular cost models with at
most 3 parameters.

The work presented in this paper follows the Structural SVM algorithm first
proposed in [1,2] for sequence alignment and later generalized to a wide class
of multivariate prediction problems [15,10]. In this paper we present the first
large-scale empirical evaluation of this type of algorithm for alignment. We also
extend the algorithm to optimize particular loss functions, and show how the
resulting optimization problems can be solved in polynomial time.

Related to our SVM approach are Conditional Random Fields (CRFs), which
have recently been proposed for sequence alignment as well [16,17]. While CRFs
share with SVMs the benefits of discriminative training, they do not allow the
use of application-dependent loss functions.

Independent of the work on Structural SVMs in the machine learning com-
munity, recently an algorithm for inverse alignment was proposed in [18]. Their
formulation of the problem is similar to a Structural SVM and the algorithm re-
sembles the cutting-plane method used for training Structural SVMs. However,
their approach is based on a linear programming formulation instead of the qua-
datric programming formulation used in SVMs. Furthermore, their approach to
handling infeasibilities in the resulting optimization problem is different and it is
unclear how it relates to an intuitively meaningful loss function. While they give
empirical results, they are on a scale of 10 training examples and 212 features.
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In the following, we will explore models trained over thousands of examples and
hundred-thousands of features.

3 Sequence Alignment

We begin by introducing the class of alignment models considered in this paper.
Since we focus on the problem of sequence to structure alignment, we will de-
scribe the model in these terms. However, the methods can obviously be used for
other applications as well. Let (s, t) be a pair of target and template sequence
that we wish to align. For an alignment y of (s, t), we write y as a sequence of
alignment operations (y1, y2, ..., y|y|). Each yk is an alignment operation of the
form (i, j), where i, j are positions of characters in s and t respectively, or a
special gap symbol ‘−’.

We consider alignment algorithms (e.g. [19]) that optimize a linear scoring
function Dw(y, s, t) = w · Ψ(y, s, t), where Ψ is a function that maps an align-
ment y of s and t to a feature vector, and w is a given cost vector. Note that
w contains the parameters of the alignment model that we will learn. We re-
quire that Ψ(y, s, t) be linear in the individual alignment operations yk within
y, written in terms of equations,

Ψ(y, s, t) =
|y|∑

k=1

φ(yk, s, t), (3)

where φ is a function that maps each individual alignment operation onto a
feature vector. Note that this feature vector can be any function that depends on
the operation yk and the full target and template sequences, not just the current
positions that are aligned by yk. In general, alignment algorithms compute

argmax
y∈Y

[w · Ψ(y, s, t)] = argmax
y∈Y

⎡

⎣
|y|∑

k=1

w · φ(yk, s, t)

⎤

⎦ (4)

to determine the alignment, where Y is the set of all possible (local or global, as
desired) alignments between s and t. This is typically computed using dynamic
programming (e.g. [19]). Note that our setting includes the common scenarios
of alignment with substitution matrices such as BLOSUM as a special case,
where the function φ(yk, s, t) return a sparse vector with exactly one ‘1’ that
corresponds to the particular substitution or gap score in w. However, we will
consider richer feature mappings φ that go beyond amino-acid identity and that
include structural information of the template sequence.

4 Discriminative Training of Alignment Models

In the above section, the vector w parameterizes the scoring function D and has
crucial influence on the quality of alignments between s and t. In the following,
we aim to learn w from a set of training examples

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Support Vector Training of Protein Alignment Models 257

S = ((s1, t1,y1), (s2, t2,y2), ..., (sn, tn,yn)) (5)

of sequence pairs (si, ti) for which the (approximately) correct alignment yi is
known. This training set is assumed to be generated independently and iden-
tically distributed (i.i.d.) according to some unknown distribution P (S, T, Y ).
Thinking of a sequence alignment algorithm as a function,

hw(s, t) = argmaxy∈Y [w · Ψ(y, s, t)] (6)

maps a given sequence pair (s, t) to an alignment y. Our goal is to find a pa-
rameter vector w so that the predicted alignment hw(s, t) matches the correct
alignment on new test data as well as possible. In particular, we want to find a
w that minimizes the expected loss (i.e. risk)

RP (hw) =
∫

Δ(y, hw(s, t)) dP (S, T, Y ), (7)

where Δ(y,y′) is a user defined (non-negative) loss function that quantifies how
“bad” it is to predict y′ when y is the correct alignment. For example, one may
choose Δ(y,y′) to be 1 minus the Q-score (Q-score is the fraction of match
operations from y that are also contained in y′).

Following the principle of (Structural) Empirical Risk Minimization [20], find-
ing a w that predicts well on new data can be achieved by minimizing the empir-
ical loss (i.e. the training error) RS(hw) =

∑n
i=1 Δ(yi, hw(si, ti)) on the training

set S. This leads to the computational problem of finding the w which minimizes
RS(hw) as follows.

5 Structural SVMs for Sequence Alignment

In the framework of structural SVMs [10], we formulate the problem of finding
the parameters w that minimizes the empirical loss RS(hw) of the sequence
alignment algorithm as the following optimization problem:

min
w,ξ

1
2
‖w‖2 +

C

n

n∑

i=1

ξi (8)

s.t. ∀i ∈ {1, .., n} ∀ŷ ∈ Yi\{yi} : w · (Ψ(yi, si, ti) − Ψ(ŷ, si, ti))≥Δ(yi, ŷ) − ξi

The objective is the conventional regularized risk used in SVMs. The constraints
state that the score w · Ψ(yi, si, ti) of the correct alignment yi must be greater
than the score w·Ψ(ŷ, si, ti) of all alternative alignments ŷ. Note that Yi (i.e. the
set of all possible alignments for example i) depends on whether the alignment is
local or global. However, the optimization problem is well-formed in either case.

Unlike the formulation in [2], our new formulation includes a loss function
Δ(yi, ŷ) that scales the desired difference in score. Intuitively, the larger the loss
of an incorrect alignment ŷ, the further should the score be away from that of the
correct alignment yi. This method for including a loss function is analogous to
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proposals for other structured prediction problems [21,10]. ξi is a slack variable
shared among constraints from the same example, since in general the constraint
system is not feasible. Following the proof in [10], it is easy to see that following
result holds.

Theorem 1. If (w∗, ξ∗) is the solution of the optimization problem in (8), the
sum of the slack variables ξ∗i is an upper bound on the training loss, RS(hw) ≤
∑n

i=1 ξ∗i .

This shows that our formulation minimizes training loss, while the SVM-style
regularization with the norm of w in the objective provides protection against
overfitting for high-dimensional w. The parameter C allows the user to control
the trade-off between training error and regularization.

5.1 Efficient Training Algorithm

While it is easy to see that the optimization problem in (8) is convex, it unfor-
tunately has an exponential number of constraints. This results from the fact
that there are exponentially many “wrong” alignments Yi\{yi} for each given
pair of sequences (si, ti). Any attempt to solve this type of optimization problem
using standard methods that require enumerating all constraints is obviously not
tractable for sequences and training sets of interesting size.

Despite the exponential size, however, it has been shown that cutting-plane
algorithms can be used to efficiently approximate the optimal solution of this
type of optimization problem [10]. An adaptation of this algorithm to the prob-
lem of sequence alignment is given in Fig. 1. The algorithm iteratively constructs
a subset of all constraints from (8) until this subset constrains the feasible region
enough to ensure an ε-accurate solution. The desired precision ε is provided by
the user. In particular, the algorithm starts with an empty set K of constraints.
It then adds the most violated constraint among the exponentially many for
each example. If no constraint exists that is violated by more than ε, the algo-
rithm terminates. Otherwise, it solves the optimization problem over the current
set K and repeats. Adapting the result from [10], it can be proved that only a
polynomial number of constraints will be added before the algorithm converges.

Theorem 2. For any ε > 0, C > 0, and any training sample S = ((s1, t1,y1),
. . . , (sn, tn,yn)), the algorithm in Fig. 1 converges after adding at most
max

{
2nΔ̄/ε, 8CΔ̄R2/ε2

}
constraints to K, where R = maxi,y ||Ψ(y, si, ti)|| and

Δ̄ is an upper bound on the loss function Δ(yi, ŷ).

One crucial aspect of the algorithm, however, is the use of an oracle (often
called a separation oracle in optimization theory) that can find the most violated
constraint among the exponentially many in polynomial time. This is equivalent
to the argmax problem in the algorithm. The following section shows that this
argmax can be computed efficiently for a large class of loss functions.
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Input: sequence pairs (s1, t1), ..., (sn, tn), correct alignments y1, ..., yn, tolerated error
ε ≥ 0.

K = ∅, w = 0, ξ = 0
repeat

– Korg = K
– for i from 1 to n

• ŷ = argmaxŷ∈Yi\{yi} [Δ(yi, ŷ) + w · (Ψ(ŷ, s, t) − Ψ(yi, si, ti))]
• if w · (Ψ(yi, si, ti) − Ψ(ŷ, s, t)) < Δ(yi, ŷ) − ξi − ε

∗ K = K ∪ {w · (Ψ(yi, si, ti) − Ψ(ŷ, s, t)) ≥ Δ(yi, ŷ) − ξi − ε}
∗ (w, ξ) = argminw,ξ

1
2‖w‖2 + C

n

∑n
i=1 ξi subject to K.

until (K = Korg)
Output: w

Fig. 1. Cutting-plane algorithm for solving the SVM optimization problem

5.2 Loss Functions

We first introduce the Q-loss function, which we denote as ΔQ(yi, ŷ) for the
loss between a correct alignment yi and a predicted alignment ŷ. The Q-loss
measures the proportion of incorrect matches in a predicted alignment, which
we want to minimize. Writing ŷ as a sequence of alignment operations ŷ =
(ŷ1, ŷ2, ..., ŷ|ŷ|), we can decompose the Q-loss ΔQ(yi, ŷ) into a sum of losses on
individual alignment operations ΔQ(yi, ŷ) = 1 −

∑|ŷ|
k=1 δQ(yi, ŷ

k). The function
δQ(yi, ŷ

k) returns 1/M when ŷk is a match contained in the correct alignment
yi, and 0 otherwise. M is the number of matches in yi. With this decomposition,
we can rewrite the computation of the most violated constraint in the cutting
plane algorithm as:

argmax
ŷ∈Yi\{yi}

⎡

⎣
|ŷ|∑

k=1

(w · φ(ŷk, si, ti)) − δQ(yi, ŷ
k)

⎤

⎦ + 1 − w · Ψ(yi, si, ti). (9)

Since the non-constant term in the argmax decomposes into a sum over individ-
ual alignment operations ŷk, we can apply dynamic programming similar to (4)
with operation costs modified to w · φ(ŷk, si, ti) − δQ(yi, ŷ

k) for each ŷk. Note
that δQ can be computed efficiently using table lookup.

Another interesting loss function that we would like to consider is the Q4-
loss function, where we count a match as correct even if it is slightly shifted, in
particular, shifted by not more than 4 positions. Suppose we have an alignment
operation ŷk = (i, j) in ŷ. The shift of ŷk is less than 4 if there is some match op-
eration yl = (u, j) in y with |i−u| ≤ 4. Similar to the Q-loss, we can decompose
Q4 linearly in its alignment operations as ΔQ4(yi, ŷ) = 1 −

∑|ŷ|
k=1 δQ4(yi, ŷ

k),
where δQ4(yi, ŷ

k) is 1/M if ŷk is a match operation contained in y with a shift of
4 or less, and 0 otherwise. The same dynamic programming algorithm applies to
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the computation of most violated constraint with Q4-loss, since Q4-loss decom-
poses in the same way as the Q-loss. Again, note that δQ4 can again be computed
efficiently by table lookup of matched characters in the range (i−4, j), ..., (i+4, j)
within the correct alignment.

6 Experiments

The following experiments evaluate the SVM alignment algorithm on a sequence
to structure alignment task. We evaluate whether the algorithm can effectively
and efficiently learn complex alignment models with hundred-thousands of fea-
tures, how optimizing to different loss functions might help, and how the algo-
rithm compares to conventional methods.

In all our experiments, we train the algorithm on a training set, select any pa-
rameters and models based on a validation set, and then report performance on
an independent test set. Beyond the choice of model φ(yk, si, ti) and loss function
Δ(y,y′), our method has only a single parameter to tune, namely the regulariza-
tion parameter C. We train alignment models with C ranging from 1 to 215, in
powers of 2, all to precision ε = 0.01. We then pick the best model based on the
performance on the validation set, and report its performance on the test set.

The training and validation sets are the same as those used in [3]. The data
set contains 1379 target sequences, and each target sequence s has one or more
template structures t associated with it. Structural alignments between target
and template are generated using the CE program [22], and one example (s, t,y)
is generated whenever the structural alignment y between the structure of s and
t has a CE Z-score of at least 4.5. The data set is randomly split into two sets,
namely a training set with examples from 690 targets and a validation set with
examples from 689 targets. The resulting training set contains 5119 examples
(i.e. pairwise alignments) while the validation set contains 5169 examples.

The test set is based on a database of protein structures that is used by the
modeling program LOOPP (http://cbsuapps.tc.cornell.edu/loopp.aspx).
We select 4185 structures from the new PDB structures released between June
2005 and June 2006 via clustering. These structures serve as target sequences
in our test set and none of them appear in the training or validation sets since
they were developed earlier. Each of these 4185 structures is aligned against all
other structures using the structural alignment program TM-align [23]. Pairs
that score 0.5 or better are considered homologous and are added to the test set.
The selected pairs are then aligned by the structural alignment program CE.
Only alignments that have CE Z-score higher than 4.5 are included in the final
test case, providing a total of 29764 alignments to consider.

As described in the following, we use structural annotations as features in our
alignment models. The structural annotations of all the target sequences, i.e.,
the secondary structure and the relative exposed surface area, are predicted by
the SABLE program [24]. There are 3 types of secondary structure predicted
and the relative exposed surface areas are binned into 4 types. The structural
annotations used in the template structures are computed by the program DSSP

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Support Vector Training of Protein Alignment Models 261

[25]. The secondary structures are binned into 5 types while the exposed surface
areas are binned into 6 types.

6.1 Can the SVM Algorithm Learn Complex Models Effectively?

In our first set of experiments we evaluate models φ(yk, s, t) of increasing com-
plexity and number of features. Our focus is on exploring how far we can push
the complexity of the model and still be able to train them efficiently and
effectively.

We use Ri
s, S

i
s, A

i
s to denote the residue, predicted secondary structure, and

predicted exposed surface area at the ith position of the target sequence, and
Rj

t, S
j
t , A

j
t to deonte the residue, actual secondary structure, and actural exposed

surface area at the jth position of the template structure. We also use R,S,A
to denote the set of possible values for residue, secondary structure, and exposed
surface area.

Substitution Cost Models. For the substitution costs, we consider the follow-
ing six models for φ(yk, s, t). Since the length of alignments of different examples
varies greatly, we normalize each φ by dividing with |s| + |t|.

Simple: In this alignment model we only consider the subsitution cost of single
features. Let yk = (i, j) be a match operation. We define φ(yk, s, t) to be

φSimple(yk, s, t)

=
∑

r1,r2∈R

I[Ri
s =r1, R

j
t =r2] +

∑

r1∈R,s2∈S

I[Ri
s =r1, S

j
t =s2] +

∑

r1∈R,a2∈A

I[Ri
s =r1, A

j
t =a2]

+
∑

s1∈S,r2∈R

I[Si
s =s1, R

j
t =r2] +

∑

s1,s2∈S

I[Si
s =s1, S

j
t =s2] +

∑

s1∈S,a2∈A

I[Si
s =s1, A

j
t =a2]

+
∑

a1∈A,r2∈R

I[Ai
s =a1, R

j
t =r2] +

∑

a1∈A,s2∈S

I[Ai
s =a1, S

j
t =s2] +

∑

a1,a2∈A

I[Ai
s =a1, A

j
t =a2],

where I[ρ] is a function that returns a vector with ‘1’ in the position designated
to ρ if the boolean expression ρ is true, and returns ‘0’ otherwise and in all
other positions. For example, I[R3

s = ‘A’, S7
t = ‘α’] returns ‘1’ in the particular

dimension corresponding to I[Ri
s = ‘A’, Sj

t = ‘α’], if yk = (3, 7) aligns the residue
alanine ‘A’ in s with an alpha helix ‘α’ in t. Otherwise, it returns ‘0’ in this
dimension. For all other dimensions it always returns ‘0’. Note that each such
dimension corresponds to a particular position in cost vector w. Note also that
each feature vector φSimple(yk, s, t) has exactly 9 ‘1’s corresponding to the 9
terms in the sum, and is zero elsewhere.

Anova2: In this more complex feature vector we take the interactions between
pairs of structural annotations at the same position in the sequence into account.
We define φ(yk, s, t) to be
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φAnova2(y
k, s, t) =

∑

r1,r2∈R,s1,s2∈S

I[Ri
s =r1, S

i
s =s1, R

j
t =r2, S

j
t =s2]

+
∑

r1∈R,a2∈A,
s1,s2∈S

I[Ri
s =r1, S

i
s =s1, S

j
t =s2, A

j
t =a2] +

∑

r1,r2∈R,s1∈S,
a2∈A

I[Ri
s =r1, S

i
s =s1, A

j
t =a2, R

j
t =r2]

+
∑

r2∈R,a1∈A,
s1,s2∈S

I[Si
s =s1, A

i
s=a1, R

j
t =r2, S

j
t =s2] +

∑

s1,s2∈S,
a1,a2∈A

I[Si
s =s1, A

i
s =a1, S

j
t =s2, A

j
t =a2]

+
∑

r2∈R,s1∈S,
a1,a2∈A

I[Si
s =s1, A

i
s =a1, A

j
t =a2, R

j
t =r2] +

∑

r1,r2∈R,s2∈S,
a2∈A

I[Ai
s =a1, R

i
s =r1, R

j
t =r2, S

j
t =s2]

+
∑

r1∈R,s2∈S,
a1,a2∈A

I[Ai
s =a1, R

i
s =r1, S

j
t =s2, A

j
t =a2] +

∑

r1,r2∈R,
a1,a2∈A

I[Ai
s =a1, R

i
s =r1, A

j
t =a2, R

j
t =r2].

For example, the term I[Ri
s = r1, S

i
s = s1, R

j
t = r2, S

j
t = s2] returns ‘1’ in the

appropriate position, if yk = (i, j) aligns residue of type r1 in secondary structure
s1 in the target with residue of type r2 in secondary structure s2 in the template.
These features capture pairwise interaction of structural annotations within the
same sequence.

Tensor: In this even more complex alignment model we consider the interaction
of all three structural annotations. Note that there is only one non-zero feature
in this feature vector.

φTensor(yk, s, t) =
∑

r1,r2∈R,s1,s2∈S,a1,a2∈A

I[Ri
s = r1, S

i
s = s1, A

i
s = a1, R

j
t = r2, S

j
t = s2, A

j
t = a2]

Simple+Anova2: This alignment model is the union of the features in the Simple
and the Anova2 alignment models, i.e. φSimple(yk, s, t) + φAnova2(yk, s, t).

Simple+Anova2+Tensor: This alignment model is the union of all features
in the first three alignment models, i.e. φSimple(yk, s, t) + φAnova2(yk, s, t) +
φTensor(yk, s, t).

Window: On top of the Simple+Anova2+Tensor feature vector, we add several
terms involving the substitution score of a sliding window of features centered
around positions i and j.

φWindow(yk, s, t) = φSimple(yk, s, t) + φAnova2(yk, s, t) + φTensor(yk, s, t)

+
∑

r1,r2,r3∈R,r4,r5,r6∈R

I[Ri−1
s =r1, R

i
s=r2, R

i+1
s =r3, R

j−1
t =r4, R

j
t=r5, R

j+1
t =r6]

+
∑

s1,...,s5∈S,s6,...,s10∈S

I[Si−2
s =s1, ..., S

i+2
s =s5, S

j−2
t =s6, ..., S

j+2
t =s10]

+
∑

a1,...,a7∈A,a8,...,a14∈A

I[Ai−3
s =a1, ..., A

i+3
s =a7, A

j−3
t =a8, ..., A

j+3
t =a14]
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The first sliding window term counts the occurence of substituting a triplet of
residues (r1, r2, r3) in the target with another triplet (r4, r5, r6) in the template.
The other two terms counts the occurence of substitution of two windows of
secondary structures of length 5, and the occurence of substitution of two win-
dows of surface area type of length 7 respectively. To reduce dimensionality of
these features, we bin the residues into 7 groups ({A,G,P,S,T}, {C}, {D,E,N,Q},
{F,W,Y}, {H,K,R}, {I,L,M,V}, {X}, where X stands for missing value and ends
of sequences), and the surface area into 2 values, exposed or buried.

Gap Cost Model. All alignment models above share the following gap model.
Consider the cost of opening a gap between position i and i + 1 in the target
sequence s against position j in the template structure t, as depicted by the
following diagram

Target si – – · · · – si+1

Template · · · tj tj+1 · · · tj+k · · ·

We allow the cost of opening a gap to depend on the structural type at position
j in the template structure. It also depends on the structural type of the target
sequence immediately before the gap at position i as well as the structural type
immediately after the gap at position i + 1. Suppose yk is a gap operation that
opens a gap between position i and i + 1 in the target against position j in the
template sequence. The feature vector for this gap operation is:

φGap(yk, s, t) =
∑

r1∈R

G[Rj
t =r1] +

∑

s1∈S,a1∈A

G[Sj
t =s1, A

j
t =a1]

+
∑

s1,s2∈S,a1,a2∈A

G[Si
s =s1, A

i
s =a1, S

i+1
s =s2, A

i+1
s =a2]

G is analogous to I, but we use a different symbol to indicate that it maps to
a different set of dimensions. The first two terms create features for the residue
types and joint features of secondary structure with exposed surface area at tj .
The term G[Si

s = s1, A
i
s = a1, S

i+1
s = s2, A

i+1
s = a2] considers the structure

before and after the gap. For example, G[Si
s = ‘α’, Ai

s = ‘0’, Si+1
s = ‘α’, Ai+1

s =
‘1’] maps to the dimension for the cost of opening a gap between a position in
an alpha-helix of surface type 0 with a consecutive position in the alpha-helix
with surface type 1.

The case of opening a gap in the template involves exactly the same costs,
with the role of target and template reversed.

Results. Table 1 shows the Q-scores of the different alignment models trained
with the SVM algorithm using Q-loss. As decribed above, we report the results
for the value of C that optimizes performance on the validation set. The table
also shows the number of features in each model. Note that the training and
the validation set are composed of more difficult cases than the test set, which
explains the generally higher Q-scores on the test set. All performance differences
on the test set are statistically significant according to the paired Wilcoxon test,
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Table 1. Q-score of the SVM algorithm for different alignment models

# Features Training Validation Test

Simple 1020 26.83 27.79 39.89
Anova2 49634 42.25 35.58 44.98
Tensor 203280 52.36 34.79 42.81
Simple+Anova2 50654 42.29 35.34 44.74
Simple+Anova2+Tensor 253934 47.80 35.79 44.39
Window 447016 51.26 38.09 46.30

Table 2. Comparing training for Q-score with training for Q4-score by test set perfor-
mance

Anova2 test Q test Q4

train Q 44.98 67.20
train Q4 45.65 69.45

Window test Q test Q4

train Q 46.30 68.33
train Q4 47.65 70.71

except for the three closely related alignment models Anova2, Simple+Anova2,
and Simple+Anova2+Tensor.

Table 1 shows that the Simple alignment model is too simple to fit the train-
ing data, indicated by the low Q-score on the training set. This alignment model
perform considerably worse than the other alignment models. The more expres-
sive Anova2 model leads to substantial improvement in Q-score over Simple on
both the valiation and test sets, showing that considering pairwise interaction
between structural annotations is meaningful. The Tensor alignment model does
worse than Anova2. There are signs of overfitting in the relatively high Q-score
on the training set. However, the performance on the validation and test sets are
respectable nonetheless. Adding the substitution costs in the alignment models
together, as in Simple+Anova2 and Simple+Anova2+Tensor, does not give us
any gain in accuracy. Their performance on the validation and test sets are very
close to Anova2. Only when we incorporate structural information in the local
neighbourhood, as in the alignment model Window, do we see another jump in
the Q-score on the test set. The Q-score of 46.30 in the Window alignment model
is substantially better than the Q-score of 39.89 of the Simple alignment model
that we started with. To provide a baseline, the Q-score of BLAST is 23.88 on
the test set.

6.2 Is Training to Different Loss Functions Beneficial?

The SVM method allows the use of different loss functions during training. The
Q-loss used in the previous subsection is rather stringent and does not necessarily
summarize the quality of an alignment well. For example, if all the aligned posi-
tions are shifted by just 1, the Q-loss will jump from 0 to 1, which is roughly the
same Q-loss as that of a completely random alignment. Furthermore, the Q-loss
does not account for the approximate nature of the training alignments, since
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Table 3. Comparing training for Q-score with training for Q4-score by test set perfor-
mance

Q on test Q4 on test

SVM (Window, Q4) 47.65 70.71
SSALN 47.06 67.30
BLAST 23.88 28.44
TM-align 69.99 85.32

there is typically no single exact alignment in sequence to structure alignment
that is clearly correct.

Instead of Q-loss, we now consider the Q4-loss function. Q4-loss counts a
residue as correctly aligned if the shift from its position in the reference alignment
is no more than 4. The Q4-loss function captures our intuition that small shifts
in alignment could be tolerated, and such alignments should be differentiated
from alignments that are completely wrong. We repeat our experiments on two
alignment models from the last section, Anova2 and Window, but this time we
train them with Q4 as the loss function. The results on the test set are shown
in Table 2. For each table entry, we select C on the validation set with respect
to the performance measure that is reported.

Table 2 shows that the models trained on Q4 show better Q4 performance on
the test set. More surprisingly, the models trained on Q4 also show (statistically
significantly) better Q-score on the test set. This gives evidence that Q4 can
indeed effectively account for the inaccuracy of the training alignments, instead
of trying to model the noise. However, in situations where the alignments have
higher sequence similarity or we are more confident of the alignments, the use
of Q-loss or reducing the allowable shift of of 4 in Q4 to lower values could be
beneficial. The flexibility of the SVM regarding the selection of loss function
would cater either of these situations.

6.3 How Does the Accuracy of SVM Models Compare to
Conventional Methods?

As selected by validation performance, the best alignment model is Window
trained on Q4. Table 3 shows the test set performance of various other meth-
ods in comparison. SSALN [3] is one of the best current alignment algorithm
trained using generative methods, and it outperforms alignment and thread-
ing algorithms like CLUSTALW, GenTHREADER, and FUGUE on a variety
of benchmarks. It incorporates structural information in its substitution matri-
ces, and contains a hand-tuned gap model. SSALN was trained on exactly the
same training set and same set of structural annotations as our SVM model,
so a direct comparison is particularly meaningful. The SVM model substantially
outperforms SSALN with respect to Q4-score, and is slightly better than SSALN
on Q-score. The performance of BLAST is included to provide a baseline. The
performance of the structural alignment program TM-align [23] is reported here
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to show its agreement with the CE alignments, and demonstrates the rather high
inherent noise in the data.

7 Discussions and Conclusions

This paper explore an SVM method for learning complex alignment models for
sequence to structure alignment. We show that the algorithm can learn high-
dimensional models that include many features beyond residue identity while
effectively controlling overfitting. Unlike generative methods, it does not require
independence assumptions between features. The SVM method provides great
modeling flexibility to biologists, allowing the estimation of models that include
all available information without having to worrying about statistical dependen-
cies between features. Furthermore, we show that one can incorporate different
loss functions during training, which provides the flexibility to specify the costs
of different alignment errors. The empirical results show that the SVM algorithm
outperforms one of the best current generative models, and is practical to train
on large datasets.
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Abstract. It has recently been found that some RNA functions are de-
termined by the actual folding kinetics and not just the RNA’s nucleotide
sequence or its native structure. We present new computational tools for
simulating and analyzing RNA folding kinetic metrics such as popula-
tion kinetics, folding rates, and the folding of particular subsequences.
Our method first builds an approximate representation (called a map) of
the RNA’s folding energy landscape, and then uses specialized analysis
techniques to extract folding kinetics from the map. We provide a new
sampling strategy called Probabilistic Boltzmann Sampling (PBS) that
enables us to approximate the folding landscape with much smaller maps,
typically by several orders of magnitude. We also describe a new analy-
sis technique, Map-based Monte Carlo (MMC) simulation, to stochasti-
cally extract folding pathways from the map. We demonstrate that our
technique can be applied to large RNA (e.g., 200+ nucleotides), where
representing the full landscape is infeasible, and that our tools provide
results comparable to other simulation methods that work on complete
energy landscapes. We present results showing that our approach com-
putes the same relative functional rates as seen in experiments for the
relative plasmid replication rates of ColE1 RNAII and its mutants, and
for the relative gene expression rates of MS2 phage RNA and its mutants.

1 Introduction

Ribonucleic acid (RNA) performs diverse and important functions such as syn-
thesizing proteins, catalyzing reactions, splicing introns, and regulating cellular
activities [25,14,2]. It was once believed that an RNA’s functions are primarily
determined by its nucleotide sequence and native state. However, it has recently
been found that some RNA functions are determined by the folding process it-
self. For example, RNA folding kinetics may regulate the plasmid copy number,
e.g., accelerating the refolding speed of RNA II can increase the E. coli ColE1
plasmid copy number [9]. Similarly, the velocity of RNA folding can also regu-
late gene expression at the translational level. It has also been shown that the
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mRNA folding kinetics regulate the expression of phage MS2 maturation protein
[8,14,10]. The mRNA acts as a regulator only when a particular subsequence is
open. Since it is closed in the native state, this can only happen before folding
finishes. The longer the RNA stays in a open metastable state, the higher the
gene expression rate. Thus, it is imperative to have a computational method that
can study both the global properties of RNA folding and more detailed features
related to kinetics-based functions.

Our work provides computational tools to approximate the folding energy
landscape and extract global properties and detailed features of the folding pro-
cess. The key advantage of our approach over other computational techniques
is that it is fast and efficient while bridging the gap between high-level folding
events and low-level folding details. Our method builds an approximate repre-
sentation (called a map) of the RNA’s folding energy landscape, and then uses
specialized analysis techniques to extract folding kinetics from the map. We give
a new sampling strategy called Probabilistic Boltzmann Sampling (PBS) that ap-
proximates the folding landscape with much smaller maps, enabling us to handle
RNA with hundreds of nucleotides. We present a new analysis technique, Map-
based Monte Carlo (MMC) simulation, to stochastically extract folding pathways
from the map. These tools allow us to study population kinetics, folding rates,
and the folding of particular subsequences we could not study before.

We validate our methods against other computational methods (Monte Carlo
Simulation) and experimental data. We demonstrate that our maps efficiently
capture major features of much larger energy landscapes by comparing kinetics
metrics extracted from them with those computed using a complete energy land-
scape. We also show that our method scales well to large RNA with hundreds
of nucleotides. Finally, we present two case studies. First, we compare simulated
folding rates for ColE1 RNAII and its mutants against experimental rates and
show that we compute the same relative folding order as seen in experiment.
Second, we predict the gene expression rates of wild-type MS2 phage RNA and
three other of its mutants and and again we show that we predict the same
relative functional rates as seen in experiment.

2 Preliminaries

An RNA molecule is a sequence of nucleotide bases. There are four types of bases:
adenine (A), cytosine (C), guanine (G), and uracil (U). The complementary
Watson-Crick bases, C-G and A-U, form stable, hydrogen bonds (base pairs)
when they form a contact. The wobble pair, G-U, constitutes another strong
base pair. These are the three most commonly considered base pairings [29] and
are what we consider in our model.

RNA Structure. Tertiary structure is a 3D spatial RNA conformation of a set
of base pairs. Secondary structure is a planar representation of an RNA confor-
mation. Although there are several slightly different accepted definitions [3,11],
secondary structure is usually considered to be a planar subset of the base pair
contacts present. Non-planar contacts, often called pseudo knots, are not allowed
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in secondary structure. We adopt the definition in [11] that eliminates other types
of contacts that are not physically favored: (1) contacts must be separated by at
least 3 other bases, (2) each base cannot be involved in more than 1 contact, and
(3) contacts must be planar. Tertiary structure gives the most complete rep-
resentation of RNA structure. However, secondary structure is commonly used
[29,11] because in many cases it provides sufficient information to study many
aspects of folding while dramatically reducing the size of the conformation space
to explore. One justification for this simplification is that research has shown the
RNA folding process is hierarchical, i.e., secondary structure forms before ter-
tiary structure [25]. In this work, we focus on the first stage: secondary structure
formation.

Energy Calculations. To model the RNA folding energy landscape, we must
be able to calculate the energy of any conformation. We use a common energy
function called the Turner or nearest neighbor rules [29]. This method involves
determining the types of loops that exist in the molecule and looking up their
free energy in a table of experimentally determined values. Intuitively, adjacent
contacts typically form stable subunits called stacks or stems that have low
energy. Much work has been done to improve the accuracy of these rules.

3 Related Work

Computational research on RNA folding falls into two main categories: structure
prediction and folding kinetics. Structure prediction attempts to compute the
native state given only the nucleotide sequence. Folding kinetics, on the other
hand, is concerned with the folding process itself and not just the end result.

Structure Prediction. Structure prediction is commonly solved with dynamic
programming. Nussinov introduced a dynamic programming solution to find the
conformation with the maximum number of base pairs [18]. Zuker and Stiegler
[29] formulated an algorithm to address the minimum energy problem. Today,
Zuker’s MFOLD algorithm is widely used for structure prediction. McCaskill’s
algorithm [15] uses dynamic programming to calculate the partition function, i.e.,
the the sum of Boltzmann factors over all possible secondary structures, while
Chen [3] uses matrices to approximate the partition function over all possible
conformations. Eddy and Dirks et. al. [20,6] include pseudo-knots in their struc-
ture prediction algorithms. Partly due to the inaccuracy of the energy model,
the prediction of pseudo-knot structures is typically less accurate.

Folding Kinetics. Several approaches have been used to study RNA kinetics.
For example, [7,10,28] used Monte Carlo algorithms to find folding pathways
while Gultyaev and Shapiro et. al. [9,21] used genetic algorithms. Isambert [28]
extended the Monte Carlo method to consider pseudo-knots.

Some methods involve computations on the folding landscape. Dill [3] used
matrices to compute the partition function over all possible structures and ap-
proximate the complete folding landscape. Ding and Lawrence [5] extended
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McCaskill’s algorithm to generate statistical samplings of RNA structures based
on the partition function. Wuchty [27] modified Zuker’s algorithm to generate
all secondary structures within some given energy range of the native structure.
Flamm and Wolfinger [7,26] extended this algorithm to find local minima within
some energy threshold of the native state and connect them via energy barriers.
The resulting energy barrier tree represents the energy landscape. To calculate
the energy barrier, they used a flooding algorithm that is exponential in the
size of RNA. Thus, it is impractical for large RNA. Some statistical mechanical
methods are also used to study the RNA folding kinetics. For example, the mas-
ter equation is used to compute the population kinetics of the folding landscape.
It uses a matrix of differential equations to represent the transition probabil-
ities between conformations. Once solved, the dominate modes of the solution
describe the general folding kinetics [19,12,3].

RNA Folding with PRMs. Our approach is based on the probabilistic roadmap
(PRM) technique for motion planning [13]. Motion planning determines valid
paths to move objects from one conformation to another. PRMs build graphs
(roadmaps) that approximate the topology of the feasible planning space by
first sampling valid conformations (nodes) and connecting them with feasible
transitions (edges). Connections are only attempted to a conformation’s nearest
neighbors, as determined by some distance metric. In previous work, we used
PRMs to approximate the folding energy landscape and studied protein folding
[1,22,24] and RNA folding [23]. We obtained promising results that validated
against experimental data and were even able to observe subtle folding differences
between structurally similar proteins [24]. We were also able to validate the
population kinetics of several small RNA against experiment [23].

4 Computational Methods

Our method first constructs a roadmap to approximate the energy landscape.
Then we use our map-based tools to analyze the energy landscape. In our pre-
vious work, we presented two successful roadmap construction techniques: base-
pair enumeration (BPE) and stack-pair enumeration (SPE). While the results
were promising, they were limited to small RNA (less than 40 nucleotides). In
this work, we develop a Probabilistic Boltzmann Sampling (PBS) method to
build smaller (up to 10 orders of magnitude smaller than BPE) maps, and thus
enables us to study much larger RNA. We provide several map-based analysis
tools including a Map-based Master Equation (MME) and Map-based Monte
Carlo (MMC) simulation to extract folding kinetics. MME, introduced in our
previous work, can extract global properties such as folding rates and transi-
tion states, while MMC, introduced here, can extract microscopic features of
the folding process, e.g., subsequence formation order.

4.1 Using Roadmaps to Describe Energy Landscapes

The goal of roadmap construction is to approximate the energy landscape and
capture its important features. The quality of this approximation highly depends
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on the quality of the sampling and connection methods. We will describe each
sampling and connection method in more detail below.

Roadmap Node Sampling. Our method is general and thus can use conforma-
tions generated by any technique. In our previous work, we used three methods
for generating RNA conformations: complete base-pair enumeration (for small
RNA), stack-pair enumeration, and maximal-contact sampling. While stack-pair
enumeration approximated the energy landscape well, it is limited to small RNA
where enumeration is feasible (e.g., 40 nucleotides or less). Here we provide a
new sampling method for larger RNA.

Probabilistic Boltzmann Sampling (PBS). Wuchty [27] proposes a dynamic pro-
gramming algorithm to enumerate suboptimal (low energy) conformations within
a given energy threshold. However, as the size of the RNA or the threshold in-
creases, the number of generated nodes increases exponentially. Thus, it is diffi-
cult for this method to generate high energy nodes. In our method, we use these
suboptimal conformations as “seeds” and augment the sampling with additional
random conformations. Then, we use a probabilistic filter to retain a subset of
the conformations based on their Boltzmann distribution factors. For a given
conformation i with free energy Ei, the probability Pi to keep it is:

Pi =

{

e
−(Ei−E0)

kT if (Ei − E0) > 0
1 if (Ei − E0) ≤ 0

(1)

E0 is a reference energy threshold that we can use to control the number of
samples kept. In this way, we may generate more conformations probabilistically
with the Boltzmann distribution which prefers low energy conformations but will
allow some high energy conformations. Our results indicate that this sampling
method captures the important features of the energy landscape well.

Roadmap Node Connection. Once we have a set of samples, we connect them
using a so-called local planner to formanapproximatemapof the energy landscape.
It is impractical (and generally not necessary) to attempt all possible connections.
Instead, we attempt to connect a node with the k closest neighboring conforma-
tions according to some distance metric, where k is a user-specified constant.

To connect a given pair of conformations, we need to compute a transi-
tion path (i.e., intermediate conformations) between them and approximate
the Boltzmann transition probability which is stored as an edge weight in the
roadmap. Note that these two goals are not always the same. For example, when
conformations are close to each other, one single (most energetic) transition path
may dominate the transition probability. However, when conformations are far
apart, there might be many possible transition paths where none dominate.

In our previous work, we presented a simple greedy algorithm that generates
a single transition path and computes the transition probability from that path.
It works well when conformations are close to each other. However, as the size
of RNA increases and thus the feasible sampling density decreases, this method
fails. Here we present methods designed to compute transition probabilities and
to generate transition pathways that do not have these problems.
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Computing the Transition Probability. When an edge (qi, qj) is added to the
roadmap, it is assigned a weight Wij that reflects the Boltzmann transition
probability between its two end points qi and qj . First, we find the stable subunits
(stems) that are different between qi and qj . We calculate the nucleation cost for
each stem (which is the energy barrier to form each stem) and find the maximum
cost. This maximum cost is an energy barrier Eb the folding process must go over
to form all the stems. We use Eb to estimate the transition probability between
qi and qj . This strategy is widely used in Monte Carlo simulations [10,28] and
genetic algorithms for folding pathways [9,21].

We calculate the Boltzmann transition probability Kij (or transition rate) of
moving from qi to qj using Metropolis rules [4]:

Kij =
{

e
−ΔE

kT if ΔE > 0
1 if ΔE ≤ 0

(2)

where ΔE = max(Eb, Ej) − Ei, k is the Boltzmann constant, and T is the
temperature. Note that the same energy barrier Eb is also used to estimate the
transition probability Kji, so the calculation satisfies the detailed balance:

Kij

Kji
= e

−(Ej−Ei)
kT (3)

Thus, the edge weight Wij is:

Wij = −log(Kij)) =
−ΔE

kT
. (4)

(Negative logs are used since 0 ≤ Kij ≤ 1.) By assigning the weights in this
manner, we can easily extract the most energetically feasible path in our roadmap
using simple graph search algorithms.

Generating Transition Pathways. First, we find the stems between the start and
goal configurations and calculate their nucleation costs. Then we generate a
transition pathway connecting the start and the goal configuration by proba-
bilistically opening/closing the stems based on their nucleation cost.

4.2 Map-Based Analysis Tools

In this section, we describe several different map-based analysis tools to study
folding kinetics including Map-based Master Equation (MME) and Map-based
Monte Carlo (MMC) simulation. As implied by their names, MME and MMC are
variants of the master equation and Monte Carlo simulations that work on our
maps. Basically, the master equation calculates global properties of the folding
process while Monte Carlo simulations provide details on individual folding path-
ways. However, they can both produce population kinetics, one directly and the
other indirectly. Given an ensemble of Monte Carlo simulation pathways, we can
can compute the population kinetics of a particular conformation by summing
up its population in each pathway for every time step. This approach is less accu-
rate and will take more time and space than using the master equation directly.
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However, it does not have the same numerical limitations as the master equation
and can handle much larger RNA. In our experimental results (Section 5.1), we
empirically compare the population kinetics by the master equation, standard
Monte Carlo simulation (implementation of Vienna Package), and MMC.

Map-based Monte Carlo Simulation. The folding process is stochastic rather
than deterministic [12]. Transitioning from one conformation to another is proba-
bilistically biased by the transition probabilities. The Monte Carlo method [17,12]
simulates this random walk in the real (or complete) energy landscape. Kinfold is
a well-known implementation of Monte Carlo simulation in the ViennaRNA Pack-
age [7]. These simulations can be computationally intensive since at each step they
must calculate the local energy landscape to choose the next step.

In previous work, we simply extracted the most energetically feasible path
in the roadmap to study the folding process. However, this does not mirror the
stochastic folding process. Instead in this work, we apply Monte Carlo simulation
directly to our roadmaps, which are approximations of the energy landscape
where edge weights reflect Boltzmann transition probabilities. Similar to Monte
Carlo simulation, our method starts from a random node in the roadmap and
iteratively chooses a next node based on the transition probabilities. Because the
edge weight Wij encodes the transition probabilityKij between two endpoints i
and j (see equation 4), we can calculate Kij as K0e

−Wij where K0 is a constant
adjusted according to experimental results.

To generate the transitional conformations between two nodes, we use the
method described in Section 4.1. Results presented here are generated using a
fast variant of the standard Monte Carlo method [17].

Population Kinetics and Map-based Master Equation. Population ki-
netics give the time evolution of the population of different conformations and
provide information such as folding rate, equilibrium distribution, and transition
states, which can be correlated to experimental results. For completeness, we
sketch the Map-based Master Equation (MME) method we introduced in [23] to
analyze the population kinetics. Master equation formalism has been developed
for folding kinetics in a number of earlier studies [12,3] The stochastic folding
process is represented as a set of transitions among all n conformations (states).
The time evolution of the population of each state, Pi(t), can be described by:

dPi(t)/dt =
n∑

i�=j

(KjiPj(t) − KijPi(t)) (5)

where Kij denotes the transition rate (probability) from state i to state j. The
change in population Pi(t) is the difference between transitions to and from state
i. We compute transition rates from the roadmap’s edge weights: Kij = K0e

−Wij .
K0 is a constant adjusted according to experimental results.

If we use an n-dimensional column vector p(t) = (P1(t), P2(t), . . . , Pn(t))′ to
denote the population of all n conformational states, then we can construct an
n × n matrix M to represent the transitions, where
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{
Mij = Kji i �= j
Mii = −

∑
i�=j Kij i �= j

(6)

The master equation can be represented in matrix form:

dp(t)/dt = Mp(t). (7)

The solution to the master equation is:

Pi(t) =
∑

k

∑

j

NikeλktN−1
kj Pj(0) (8)

where N is the matrix of eigenvectors Ni for the matrix M in equation 6 and λi

is its corresponding eigenvalue. Pj(0) is the initial population of conformation j.
From equation 8, we see that the eigenvalue spectrum is composed of n modes.

If sorted by magnitude in ascending order, the eigenvalues include λ0 = 0 and
several small magnitude eigenvalues. Since all the eigenvalues are negative, the
population kinetics will stabilize over time. The population distribution p(t)
will converge to the equilibrium Boltzmann distribution, and no mode other
than the mode with the zero eigenvalue will contribute to the equilibrium. Thus
the eigenmode with eigenvalue λ0 = 0 corresponds to the stable distribution,
and its eigenvector corresponds to the equilibrium Boltzmann distribution.

By a similar argument, large magnitude eigenvalues correspond to fast folding
modes, i.e., those which fold in a burst. Their contribution to the population will
die away quickly. Conversely, small magnitude eigenvalues have a large influence
on the global folding process, and thus determine the global folding rates.

5 Results and Discussion

Here we present our simulation results and validate our methods against both an-
other computational method (Monte Carlo Simulation) and experimental data.
The computational validations show that our small roadmaps can capture the
major features of much larger complete energy landscapes efficiently. The road-
maps scale well with RNA length, which enables us to study larger RNA with
hundreds of nucleotides. The experimental validation shows that our methods
correctly computed the kinetics-based functions of two different RNA and their
mutants by studying two different properties of the folding kinetics.

In Section 5.1, we compare the population kinetics using our roadmaps against
other computational methods working on complete energy landscapes. We first
quantitatively compare the population kinetics computed from different maps
and show we can capture the major features of larger complete folding land-
scapes using much smaller roadmaps. Then, we empirically compare the scala-
bility of our methods on different RNA. We present population kinetics using
three different analysis methods: Map-based Master Equation (MME), Monte
Carlo (MC) simulation, and Map-based Monte Carlo (MMC) simulation. The
results show that the solutions of different methods are comparable to each other.
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Fig. 1. The population kinetics of the native state of 1k2g: (a) Kinfold Monte Carlo
simulation, (b) Our MMC simulation on a fully enumerated roadmap (12,137 confor-
mations), (c) Our MMC simulation on a PBS roadmap (42 conformations), and (d)
Master equation solution on the PBS roadmap (42 conformations). All analysis tech-
niques produce similar population kinetics curves and similar equilibrium distribution.
(e) Comparison of the eigenvalues of 1k2g by the master equation on a fully enumer-
ated roadmap (12,137 conformations) and new PBS roadmap (42 conformations). Both
eigenvalues are similar between the different roadmaps.

They also indicate that our roadmaps scale well for large RNA. In Section 5.2,
we present two case studies to demonstrate how we can use our method to study
kinetics-based functions. Our method correctly predicts (1) the relative plasmid
replication rates of ColE1 RNAII and its mutants, and (2) the relative gene
expression rates of MS2 phage RNA and its mutants.

5.1 Computational Validations

We demonstrate with two different RNA that the different analysis methods
(ME, MC, MMC) produce comparable results and can be used interchangeably.
This is important since some methods like the master equation do not scale as
well as others like Map-based Monte Carlo simulation with RNA size.

Comparison with other Simulation methods. Here we present the results
of 1k2g (CAGACUUCGGUCGCAGAGAUGG), a 22 nucleotide RNA. Figure 1
compares the population kinetics of the native state using (a) standard Monte
Carlo simulation (implemented by Kinfold [7]), (b) Map-based Monte Carlo sim-
ulation on a fully enumerated roadmap (12,137 conformations), (c) Map-based
Monte Carlo simulation on a roadmap with our new PBS sampling method (42
conformations), and (d) the master equation on a PBS roadmap (42 conforma-
tions). The fully enumerated roadmap is the most accurate model. However, it is
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Fig. 2. Comparison of population kinetics of a metastable state for Leptomonas Collo-
soma Spliced Leader RNA using (a) Kinfold Monte Carlo simulation and (b) our MMC
simulation on a PBS roadmap with 5453 conformations. We are able to capture the
same kinetics while only sampling a tiny fraction of the entire conformation space.

not feasible to enumerate RNA with more than 40 nucleotides. The statistical-
sampling roadmaps yield much smaller subsets of the entire conformation space
that effectively approximate the energy landscape. Note that numerical limita-
tions in computing the eigenvalues and eigenvectors limit the master equation
to small roadmaps (e.g., up to 10,000 conformations).

All population kinetics curves have similar features (see Figure 1). In each
figure, the population first increases quickly, then it gradually decreases and
eventually stabilizes to the equilibrium distribution. Note that the equilibrium
(final) distributions are very close to each other at 80%, even though the PBS
roadmap (c) and (d) contains less than 0.4% of all possible conformations. Thus,
these roadmaps capture the main features of the energy landscape. This data
indicates that these analysis methods are interchangeable.

Figure 1(e) compares the four smallest eigenvalues of the fully enumerated
(base-pair) roadmap and the statistical-sampling roadmap computed by the mas-
ter equation. All the eigenvalues, i.e., folding rates, are similar. This indicates
that our extremely sparse roadmaps not only capture the major features of the
equilibrium distribution, but also capture the major features of the kinetics.

Scalability of the Approximated Roadmaps. Here we compare our sim-
ulation results on a larger 56 nucleotide RNA. Leptomonas Collosoma Spliced
Leader RNA is known to have many metastable structures [5]. This RNA has
approximately 2.0 ∗ 1014 conformations, so it is not feasible to enumerate even
the stack-pair conformations, let alone the entire conformation space. Thus, we
are only able to compare kinetics from the Kinfold Monte Carlo simulation and
our Map-based Monte Carlo simulation using PBS roadmaps. For each simula-
tion technique, we compute 1000 different folding pathways. We combine these
pathways to calculate the population kinetics of a particular conformation.

Figure 2 shows that although we only use 5033 conformations in the roadmap,
our Map-based Monte Carlo simulation results in (b) have qualitatively similar
features with the Kinfold Monte Carlo simulation in (a). To qualitatively com-
pare the two simulations, we fit a two state kinetic curve to both plots. First,
kinetic parameters were derived for the Kinfold plot (hashed lines in Figure 2
(a)). Then, these parameters were used for the curve shown in Figure 2 (b).
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For the fits shown, the only kinetic parameter that was modified was the rate
at which the traces changed from unfolded to folded. These simulated rates
changed from 89 for Kinfold to 130 for MMC. The similarity in these plots
is striking because the MMC simulation approximates the entire conformation
space (2.0 ∗ 1014 conformations) with only a tiny subset (5.0 ∗ 103). In contrast,
such kinetic features are very different from other RNA, such as the population
kinetics of 1k2g shown in Figure 1. Again, this gives strong evidence that our
sparse roadmap captures the main features of the energy landscape. Another
benefit of our MMC simulation is that it requires fewer iterations to stabilize
(an order of magnitude fewer) and uses less space (1G versus 8G for Kinfold).

5.2 Experimental Validation: Kinetics Related Functions

Many RNA can perform a variety of functions such as regulating the gene expres-
sion rate or plasmid replication rate. It has been found that some functions are
not only determined by their native states but also by metastable states formed
during the folding process, where the functional units are active [8,14,10,16].
Thus these functions are based on the RNA’s folding kinetics. These functions
are studied experimentally by comparing the kinetics and functional rates of dif-
ferent mutants that share the same thermodynamic stability and native struc-
ture. Below we give two case studies that show how we can also study these
kinetics-based functions and compare to experimental data.

ColE1 RNAII: Predict Plasmid Replication Rates. ColE1 RNAII regu-
lates the replication of E. coli ColE1 plasmids through its folding kinetics [9,14].
The slower it folds, the higher the plasmid replication rate. A specific mutant,
MM7, differs from the wild-type (WT) by a single nucleotide out of the 200 nu-
cleotide sequence. This mutation causes it to fold slower while maintaining the
same thermodynamics of the native state. Thus, the overall plasmid replication
rate increases in the presence of MM7 over the WT.

We can study this difference computationally by computing the folding rates of
both WT and MM7 using the master equation and comparing their eigenvalues.
A similar study is performed in [9]. However, they solve the master equation on
a much more simplified energy landscape using a specific subsequence (130 of
200 nucleotides) and 9 stems hand-picked from 30 conformations. In contrast,
we simulate the kinetics of the entire sequence using around 4000 conformations.

Figure 3 shows the eigenvalues calculated using the master equation. Note that
the smallest non-zero eigenvalues correspond to the folding rate. All eigenvalues
of WT are larger than MM7 indicating that WT folds faster than MM7. Thus,
our method correctly estimated the functional level of the new mutant.

MS2 phage RNA: Predict Protein Expression Rate. MS2 phage RNA
(135 nucleotides) regulates the expression rate of phage MS2 maturation protein
[8,14] at the translational level. It works as a regulator only when a specific
subsequence (the SD sequence) is open (i.e., does not form base-pair contacts).
Since this SD sequence is closed in the native state, this RNA can only perform
this function before the folding process finishes. Thus, its function is based on
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Fig. 3. Comparison of the 10 smallest non-zero eigenvalues (i.e., the folding rates)
for WT and MM7 of ColE1 RNAII as computed by the master equation. The overall
folding rate of WT is faster than MM7 matching experimental data.

its folding kinetics and not the final native structure. Three mutants have been
studied that have similar thermodynamic properties as the wild-type (WT) but
different kinetics and therefore different gene expression rates. Experimental
results indicate that mutant CC3435AA has the highest gene expression rate,
WT and mutant U32C are similar, and mutant SA has the lowest rate [8,14].

Intuitively, the functional rate (e.g., gene expression rate in this case) is corre-
lated with the opening of the SD sequence. If the SD sequence is opened longer,
or has higher opening probability (i.e., having more nucleotides on the SD se-
quence open), then the mutant should have higher functional rate. We use our
simulation method to study this opening probability during the folding process.
In our study, we first simulate the folding process for each mutant by generating
1000 folding pathways for each mutant using Map-based Monte Carlo simula-
tion. Then we analyze the pathways for each mutant and calculate the opening
probability of the SD sequence. We calculate the opening probability as the per-
centage of open nucleotides in the SD sequence. In [10], Higgs performed a similar
study using a stem-based Monte-Carlo simulation. However, in that work, they
simulated the folding process only when the RNA sequence is growing. Their
results may depend on the selection of growth rate. If the growth rate was too
high or too low, the results may or may not be able to compare to experiment.
Our simulation results, on the other hand, do not require this growth rate pa-
rameter and thus can be used to quantitatively predict the functional level of a
new mutant in a more reliable way.

Figure 4 shows the time evolution of the SD opening probability for the WT
and the three mutants. Note that CC3435AA has the longest duration at a rela-
tively high level of opening probability while SA has the shortest duration. This
correlates with experimental data. The opening probability of U32C decreases
earlier but finishes later than WT, so it is not clear which one has a larger total
opening probability during folding, again matching experimental findings.

The gene expression rate is determined from two factors: (1) how high the
opening probability is at any given time and (2) how long the RNA stays in
the high opening probability state. To compare each RNA quantitatively, we
compute the integration of the opening probability (Figure 4) over the whole
folding process. Note that the RNA regulates gene expression only when the SD
opening probability is “high enough”. We used thresholds ranging from 0.2 to 0.6
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(a) CC3435AA (b) U32C

(c) WT (d) SA

Fig. 4. Comparison of the SD opening probability during the folding process

to estimate the gene expression rate. Thresholds higher than 0.6 will yield zero
opening probability on WT and most mutants and thus cannot be correlated
to experimental results. Similarly, thresholds lower than 0.2 are not considered
since mutant SA could be active in the equilibrium condition, contradicting
experimental results. Table 1 shows the results for the WT and for each mutant.
For most thresholds, mutant CC3435AA has the highest rate and mutant SA
has the lowest rate, the same relative functional rate as seen in experiment. In
addition WT and mutant U32C have similar levels (particularly between 0.4-
0.6), again correlating with experimental results. Aside from simply validating
our method against experiment, we can also use our method to suggest that the
SD sequence may only be active for gene regulation when more than 40% of its
nucleotides are open.

Table 1. Comparison of expression rates between WT and three mutants of MS2. It
shows that we can predict similar relative functional rates as seen in experiments.

Experimental Expression Rate Our Estimation
Mutant (order of magnitude) t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6

SA 0.1 0.1 0.04 0.03 0.03 0.08

WT 1 1.0 1.0 1.0 1.0 1.0

U32C 1 2.1 1.8 1.4 0.8 1.2

CC3435AA 5 7.2 8.4 3.8 3.5 9.8

6 Conclusion

We have proposed new sampling techniques and a new analysis tool called Map-
based Monte Carlo (MMC) simulation that can be used to study kinetics-based
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functions for RNA such as population kinetics, folding rates, and the folding of
particular subsequences. These new tools enable us to study larger RNA than
before – increasing from RNA with tens of nucleotides (e.g., 40) to those with
hundreds of nucleotides (e.g., 200+).

We validated our method against known experimental data and analyzed two
case studies in detail. For the first, we showed that our method identified the
same relative folding rates as those noted in experiment for ColE1 RNAII and
its mutant. In the second case study, we showed that our approach predicted the
same relative gene expression rates of wild-type MS2 phage RNA and three of its
mutants. We believe that our method will be a valuable tool for discovering such
relationships for other RNA that have not been characterized experimentally.
Although we only study secondary structure now, in the future, we plan to
include pseudo knots and tertiary structures using an appropriate energy model.
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Abstract. Despite considerable efforts, it remains difficult to obtain
accurate multiple sequence alignments. By using additional hits from
database search of the input sequences, a few strategies have been pro-
posed to significantly improve alignment accuracy, including the con-
struction of profiles from the hits while performing profile alignment, the
inclusion of high scoring hits into the input sequences, the use of interme-
diate sequence search to link distant homologs, and the use of secondary
structure information. We develop an algorithm that integrates these
strategies to further improve alignment accuracy by modifying the pair-
HMM approach in ProbCons to incorporate profiles of intermediate se-
quences from database search and utilize secondary structure predictions
as in SPEM. We test our algorithm on a few sets of benchmark multi-
ple alignments, including BAliBASE, HOMSTRAD, PREFAB and SAB-
mark, and show that it significantly outperforms MAFFT and ProbCons,
which are among the best multiple alignment algorithms that do not uti-
lize additional information, and SPEM, which is among the best multiple
alignment algorithms that utilize additional hits from database search.
The improvement in accuracy over SPEM can be as much as 5 to 10%
when aligning divergent sequences. A software program that implements
this approach (ISPAlign) is at http://faculty.cs.tamu.edu/shsze/ispalign.

1 Introduction

Although many algorithms have been proposed for multiple sequence alignment
(Thompson et al. 1994; Morgenstern et al. 1996; Stoye 1998; Notredame et al.
2000; Lee et al. 2002; Edgar 2004; Van Walle et al. 2004; Do et al. 2005; Katoh
et al. 2005; Lassmann and Sonnhammer 2005; Pei and Grishin 2006; Roshan
and Livesay 2006; Yamada et al. 2006), it remains difficult to obtain accurate
alignments. Common techniques to improve alignment accuracy include perform-
ing iterative refinements after the initial alignment is constructed (Gotoh 1996;
Edgar 2004; Do et al. 2005; Roshan and Livesay 2006; Yamada et al. 2006), us-
ing consistency-based pairwise alignments in progressive approaches (Notredame
et al. 2000; Do et al. 2005; Pei and Grishin 2006; Roshan and Livesay 2006), and
incorporating structural alignments (O’Sullivan et al. 2004; Van Walle et al.
2004). A few other strategies combine alignments from existing algorithms to
obtain an improved alignment (Bucka-Lassen et al. 1999; Wallace et al. 2006).

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 283–295, 2007.
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With the rapidly increasing number of sequences in biological databases, it
has been observed that the use of additional sequences from database search can
significantly improve alignment accuracy. Among the most successful approaches
that use this strategy are profile alignment algorithms that use database search
to find related sequences for each input sequence, construct a profile from the
hits, and then align the profiles instead of the sequences, including algorithms
that start from two sequences (Marti-Renom et al. 2004), and algorithms that
start from multiple sequences (Simossis et al. 2005; Zhou and Zhou 2005). Al-
ternatively, Heger et al. (2004) identified clusters of residues to form columns of
a multiple alignment by linking distant homologs through the hits.

We observe that instead of constructing a profile for each input sequence from
the hits, which only compares each hit to the input sequence that generates it,
it may be more accurate to perform a more extensive multiple alignment of the
hits together with the input sequences, which allows comparisons among all the
sequences involved. The usefulness of such a strategy has been demonstrated
during the construction of the PREFAB database (Edgar 2004), in which the
incorporation of additional hits from database search into the input sequences
significantly improves accuracy as opposed to aligning the input sequences alone.
One drawback of this approach is that the inclusion of hits that are not interme-
diate between the input sequences can introduce noise, since these hits do not
contribute to defining a better alignment between them. We will show that a
careful definition of intermediate sequences from database search in addition to
the computation of profiles for these sequences will significantly improve align-
ment accuracy.

By defining an intermediate sequence as a common hit from database search
that links two input sequences, an intermediate sequence search technique
has been used successfully to establish distant homologs (Park et al. 1997;
Gerstein 1998). The strategy was later generalized to multiple intermediate se-
quence search (Salamov et al. 1999; Li et al. 2000), in which chains of interme-
diate sequences found through iterative database search are used to link very
distant homologs. Bolten et al. (2001) used such transitive homologies to cluster
protein sequences for structure predictions. Heger et al. (2004) used a graph-
theoretic approach to link intermediate sequences through transitive homologies
to detect short active site motifs, while Margelevičius and Venclovas (2005) used
the intermediate sequence search strategy to distinguish between reliable and
unreliable regions in alignments. Instead of defining intermediate sequences as
common hits, we will develop a more relaxed definition to maximize the amount
of information that can be extracted from the hits.

Since the number of hits that are also intermediate sequences can be very
large, it is not practical to simply add them to the input sequences and perform
a multiple alignment on the combined sequence set. Motivated by the fact that
similar sequences are likely to contain redundant information, our algorithm uses
a greedy strategy to choose a small subset of intermediate sequences that are
far away from each other, which, together with the original sequences form a
combined set of input sequences. Instead of aligning these sequences directly, we
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construct a profile for each sequence in the combined set by incorporating infor-
mation from other intermediate sequences and aligning the profiles by modifying
the pair-HMM approach (Durbin et al. 1998) in ProbCons (Do et al. 2005). This
is in contrast with the strategy used in Simossis et al. (2005) and Zhou and Zhou
(2005) which constructs a profile from the hits of an input sequence. We will show
that our strategy of constructing profiles from intermediate sequences instead of
from the hits helps to prevent the introduction of excessive noise when aligning
closely related sequences. To further improve alignment accuracy, we obtain a
secondary structure prediction for each sequence in the combined set and incor-
porate these predictions into the pair-HMM alignment. While this strategy of
using secondary structure predictions is similar to the one employed in Zhou and
Zhou (2005), it is different from the technique used in Pei and Grishin (2006)
which employs secondary structure information during HMM training without
explicitly using secondary structure predictions in alignments.

We compare the performance of our algorithm to MAFFT (Katoh et al. 2005)
and ProbCons (Do et al. 2005), which are among the best multiple alignment
algorithms that do not utilize additional information, and SPEM (Zhou and
Zhou 2005), which is among the best multiple alignment algorithms that utilize
additional hits from database search, on benchmark multiple alignments from
BAliBASE (Thompson et al. 2005), HOMSTRAD (Mizuguchi et al. 1998), PRE-
FAB (Edgar 2004), and SABmark (Van Walle et al. 2004). We will show that
our algorithm outperforms MAFFT, ProbCons and SPEM in almost all situ-
ations, with very significant improvements when aligning divergent sequences.
Before presenting the algorithm in detail, we first describe the general strategies
employed in each stage in the next few sections.

2 Finding Intermediate Sequences

Although most intermediate sequence search strategies define an intermediate
sequence either as a common hit from database search that links two input
sequences (Park et al. 1997; Gerstein 1998), or as hits that form a chain linking
two input sequences (Salamov et al. 1999; Li et al. 2000), such a requirement
is very stringent since it may not be possible to link very divergent sequences
together even if the database search is performed iteratively. We consider the
following relaxed definition of an intermediate sequence which only requires that
it is intermediate between the two input sequences.

Definition 1. Given two sequences s1 and s2, and a distance score d(s1, s2)
between them, a sequence r is intermediate between s1 and s2 if d(r, s1) <
d(s1, s2) and d(r, s2) < d(s1, s2).

The problem of finding intermediate sequences between multiple input sequences
is defined as follows.

Definition 2. Given n input sequences s1, . . . , sn, and m hits r1, . . . , rm from
database search of these sequences, find all hits rk that are intermediate between
some pair of input sequences si and sj .
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Similar to previous approaches, our goal is to find an appropriate subset of se-
quences that contain useful information between the input sequences s1, . . . , sn.
We do not require that these intermediate sequences have a phylogenetic in-
terpretation or have an appropriate evolutionary relationship to the input se-
quences. Also, since any hit that is intermediate between some pair of input
sequences is potentially useful, it is included in the definition. Note that there is
no need to compute pairwise distances between the potentially very large num-
ber of hits. The number of pairwise distance score computations that are needed
to identify the intermediate sequences from among the hits is O(mn+n2), while
the number of score comparisons is O(mn2).

3 Choosing Intermediate Sequences

The next problem of choosing a small subset of intermediate sequences to add
to the input sequences is defined as follows. Our goal is to identify a combined
set of sequences that are as divergent as possible.

Definition 3. Given n input sequences s1, . . . , sn, m intermediate sequences
r1, . . . , rm, add k intermediate sequences from among r1, . . . , rm, denoted by
sn+1, . . . , sn+k, so that the minimum distance between sequences in the com-
bined set s1, . . . , sn+k is the largest possible when distances between the input
sequences s1, . . . , sn are ignored.

Figure 1 shows a greedy algorithm that iteratively adds an intermediate sequence
sn+j that is farthest away from the current sequence set s1, . . . , sn+j−1, in which
the minimum distance between sn+j and s1, . . . , sn+j−1 is the largest possible.
Although the greedy strategy does not guarantee optimum divergence of the
sequences s1, . . . , sn+k, they should be reasonably far away from each other. The
total number of pairwise distance score computations needed is O(m(n + k)),
and there is no need to compute distances between all pairs of the potentially
very large number of intermediate sequences.

Input: n input sequences s1, . . . , sn, m intermediate sequences r1, . . . , rm,
distance score d(r, s) between two sequences r and s.

Output: k intermediate sequences sn+1, . . . , sn+k added to s1, . . . , sn.

R ← {r1, . . . , rm};
for each ri in R do { di ← min1≤j≤n d(ri, sj); }
for j ← 1 to k do {

sn+j ← ri with the maximum di; remove ri from R;
for each ri in R do { di ← min(di, d(ri, sn+j)); } }

Fig. 1. Greedy algorithm to choose a small subset of intermediate sequences to add to
the input sequences
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4 Constructing Sequence Profiles

Instead of aligning the sequences s1, . . . , sn+k directly, a profile is constructed for
each of these sequences as follows: for each intermediate sequence ri from among
r1, . . . , rm, assign it to the sj from among s1, . . . , sn+k that is most similar to
ri. For each sequence sj with assigned sequences ri1 , . . . , rit , we combine all
the pairwise alignments between sj and each rip into a star alignment with
sj as the center (Gusfield 1993). For each column in the star alignment that
contains a residue of sj , the relative frequency of each residue within the column
is then used to construct a profile as a probability distribution of residues (gap
characters are ignored). Here the choice of scoring functions for the profile is
not very important since Edgar and Sjölander (2004) showed that most scoring
functions do not have significant performance differences. One caution is that we
need to make sure that the number of very closely related sequences assigned to
each sj is not excessively large to avoid over-contribution of these sequences to
the profile. This can be achieved by removing sequences from the original set of
intermediate sequences so that none of the remaining sequences are very similar
to each other before choosing the subset of intermediate sequences. In difference
from the approach in Simossis et al. (2005) and Zhou and Zhou (2005), hits that
are not intermediate sequences are not used to avoid noise from these hits.

5 Alignment Via Modified Pair-HMM

We modify the pair-HMM approach in Durbin et al. (1998) to incorporate profiles
and secondary structure predictions. The original model consists of three states:
M emits an aligned pair of residues (x, y) with probability e(x, y), X emits a
residue x in the first sequence that is aligned to a gap with probability e(x),
while Y emits a residue y in the second sequence that is aligned to a gap with
probability e(y) (Fig. 2). In addition to the original residue, each position is
now associated with a probability distribution of residues. Let p1(x, i) be the
probability of finding the residue x at position i in the first sequence and let
p2(y, j) be the probability of finding the residue y at position j in the second
sequence. We modify the model to incorporate profiles as follows: define the
emission probability of state M as e′(i, j) =

∑
x

∑
y p1(x, i)p2(y, j)e(x, y) if the

emission is at position i in the first sequence and at position j in the second
sequence, the emission probability of state X as e′(i) =

∑
x p1(x, i)e(x) if the

emission is at position i in the first sequence, and the emission probability of
state Y as e′(j) =

∑
y p2(y, j)e(y) if the emission is at position j in the second

sequence. These changes replace the original emission probabilities of the single
residues by the average emission probabilities over a distribution of residues so
that in the degenerate case when the profiles represent simple sequences, the
effect is the same as before.

We incorporate secondary structure predictions into the pair-HMM model as
follows: in state M , we introduce an additional parameter α and subdivide the
emission probability e′(i, j) into two cases to obtain a modified state M(α) with
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Fig. 2. The original and the modified pair-HMM models. In the original model, state
M emits an aligned pair of residues, states X and Y emit a residue in the first and the
second sequences respectively that is aligned to a gap, δ is the gap opening probability,
and ε is the gap extension probability (Durbin et al. 1998). In the modified model,
the state M(α) is obtained from M with emission probability e(x, y) by defining the
emission probability to be αe(x, y) if the paired residues (x, y) have the same secondary
structure type and (1 − α)e(x, y) otherwise. The factor β is applied to δ and ε to
compensate for the change. To incorporate profiles, the residue emission probabilities
are replaced by the average emission probabilities over a distribution of residues.

emission probability αe′(i, j) if the original paired residues (x, y) at position i in
the first sequence and at position j in the second sequence have the same sec-
ondary structure type, and with emission probability (1 − α)e′(i, j) otherwise.
Since this decrease in emission probability will tend to allow more gaps than be-
fore in the ideal case in which every aligned residue pair has the same secondary
structure type, we apply the factor β to the gap opening and extension probabil-
ities to compensate for it while keeping the ratio between the two probabilities
unchanged to preserve the affine gap model (Fig. 2). This modified pair-HMM
can then be utilized within a progressive alignment strategy to obtain a multiple
alignment (Do et al. 2005).

6 Detailed Algorithm

We now describe a procedure and the associated parameters that give very good
results for our algorithm. Note that this is only among one of the many possible
ways to implement the algorithm.

Following SPEM (Zhou and Zhou 2005), for each input sequence, we use PSI-
BLAST (Altschul et al. 1997) to perform database search on a filtered version of
the non-redundant protein database (NR) that excludes low complexity regions,
transmembrane regions and likely coiled-coil regions (Jones 1999), and retain
hits that have less than 98% identity to the input sequence and have e-value
less than 0.001. One advantage of using PSI-BLAST is that it performs iterative
database search automatically to look for distant homologs. Instead of keeping
the entire sequence of a hit, only the regions within a PSI-BLAST local alignment
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are retained to avoid the introduction of noise from unrelated regions. Note that
if there are more than one PSI-BLAST local alignment that satisfy the above
condition within a hit, they are considered to be separate hits.

We then extract intermediate sequences from among these hits according to
Definitions 1 and 2. To obtain an accurate distance score d(s1, s2) between two
sequence s1 and s2, we use SSEARCH (Smith and Waterman 1981) to obtain an
optimal alignment between s1 and s2 and define d(s1, s2) as the e-value of the
alignment. Note that the use of e-values here does not pose any problems since
no addition operations are performed.

To avoid over-contribution of very similar intermediate sequences in the later
profile construction step, we use CD-HIT (Li et al. 2002) to remove some of the
closely related sequences so that the identity between the remaining interme-
diate sequences is less than 85%. We then use Definition 3 and the algorithm
in Fig. 1 with k = 5 to add at most five intermediate sequences to the input
sequences to obtain s1, . . . , sn+k. We choose k = 5 so that the final multiple
alignment step will not become much slower than simply aligning the original
input sequences. The identity of a pairwise alignment from SSEARCH is used
to obtain an accurate distance score d(s1, s2) between two sequences s1 and s2
by defining d(s1, s2) as 1 − identity (note that this distance is different from
what we use above). Note that CD-HIT cannot be used for this purpose since
it initially uses counts of short tuples to estimate pairwise similarity, which is
inaccurate when the identity level between the sequences s1, . . . , sn+k is low.

We then construct profiles according to the algorithm in Section 4 in which
an intermediate sequence ri is assigned to the sequence from among s1, . . . , sn+k

that has the best SSEARCH alignment to ri. To obtain a secondary structure
prediction for each of the sequences s1, . . . , sn+k, we follow SPEM (Zhou and
Zhou 2005) and use PSIPRED (Jones 1999) to assign one of the three possible
types (helix, strand or coil) to each residue.

With the profiles and secondary structure predictions, we modify ProbCons
(Do et al. 2005) by changing its pair-HMM model according to Section 5. The
parameters in Fig. 2 are as follows: the original residue emission probabilities and
the transition probabilities δ and ε are from ProbCons. The parameter α that
modifies the emission probabilities is 0.65, while the parameter β that modifies
the transition probabilities is 0.75. These two parameters are determined by
testing a few combinations and choosing one that gives satisfactory performance
in PREFAB (Edgar 2004). We use the default setting in ProbCons that utilizes
two sets of gap states with the same modifying parameter β for both sets. There
is no change in the later progressive alignment or the iterative refinement steps
and the alignment on the original input sequences is returned.

7 Performance on Benchmark Sets

We test our algorithm (ISPAlign) on benchmark multiple alignments from
BAliBASE 3.0 (Thompson et al. 2005), HOMSTRAD (Mizuguchi et al. 1998),
PREFAB 4.0 (Edgar 2004), and SABmark 1.65 (Van Walle et al. 2004). We
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Table 1. Average SPS and CS scores (in %) on the full length sequence set in BAl-
iBASE 3.0. Reference 1 is further subdivided into two subsets: 1V1 (< 25% identity),
and 1V2 (20–40% identity). The number in braces denotes the number of alignments
in each subset. Within each subset, the best accuracy value is in bold. The values in
parentheses denote the p-values, with — indicating insignificant differences. Since most
of the subsets are very small, p-values are computed only for reference 1 and the entire
set. Twenty-two cases are omitted due to unavailability of results from SPEM.

SPS CS
MAFFT ProbCons SPEM ISPAlign MAFFT ProbCons SPEM ISPAlign

1V1 {38} 64.8 64.5 73.1 76.0 44.6 40.4 51.6 56.9
1V2 {42} 92.8 93.4 92.1 93.5 83.9 85.6 82.6 85.8
1 (V1–V2) {80} 79.5 79.7 83.1 85.2 65.2 64.2 67.9 72.1
(vs MAFFT) (4e–5) (5e–8) (0.01) (2e–7)
(vs ProbCons) (7e–4) (2e–6) (0.01) (2e–5)
(vs SPEM) (0.002) (9e–5)
2 {37} 91.8 89.7 88.0 91.9 46.0 40.8 47.1 53.8
3 {29} 81.4 78.8 82.8 83.5 56.8 54.3 51.4 59.9
4 {36} 89.2 86.8 87.5 90.3 67.9 60.9 55.4 63.3
5 {14} 88.2 87.5 87.0 90.3 57.6 59.4 55.9 63.9
All (1–5) {196} 84.5 83.3 85.0 87.5 60.3 57.3 58.3 64.6
(vs MAFFT) (0.005) (2e–11) (—) (2e–10)
(vs ProbCons) (5e–4) (2e–13) (—) (4e–10)
(vs SPEM) (3e–7) (5e–11)

compare our performance to MAFFT 5.8 (using the most accurate linsi strat-
egy, Katoh et al. 2005), ProbCons 1.10 (Do et al. 2005) and SPEM (Zhou and
Zhou 2005).

For BAliBASE, two score measures are used to perform accuracy assessment
of each multiple alignment on the original input sequences: the sum-of-pairs score
(SPS) evaluates the percentage of residue pairs that an algorithm can align cor-
rectly in the reference alignment, while the column score (CS) evaluates the
percentage of entire columns that an algorithm can align correctly (Thompson
et al. 1999). For PREFAB, evaluations are made on the original pairs of input
sequences using the Q score defined in Edgar (2004), which has the same mean-
ing as the SPS score. For BAliBASE and PREFAB, evaluations are made only
on the core regions that are assigned to the reference alignments. While we test
MAFFT and ProbCons both on the original pairs in PREFAB and on the full
set of sequences that includes random hits from database search, we test SPEM
and ISPAlign only on the original pairs since these algorithms utilize hits from
database search automatically. For SABmark, reference sequences are specified
in pairs and evaluations are based on the fD and the fM scores in Van Walle et al.
(2004), in which fD has the same meaning as SPS and fM evaluates the percent-
age of correctly aligned residue pairs in the test alignment. We define the fD score
and the fM score for each alignment as the average fD score and the average
fM score respectively over all these pairs. For each test set, we use the Wilcoxon
matched-pairs signed-ranks test (Wilcoxon 1947) over large enough subsets with
0.05 as the p-value cutoff for significance.

Table 1 shows performance comparisons on the full length sequence set in
BAliBASE 3.0. For both reference 1 and the entire set, ISPAlign improved over
MAFFT, ProbCons and SPEM very significantly, with the biggest improvements

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Multiple Sequence Alignment 291

Table 2. Average SPS and CS scores (in %) on HOMSTRAD. Each subset includes
all alignments with average pairwise identity within the specified range, with * indicat-
ing worse performance in p-value. Since ProbCons consistently performs better than
MAFFT, comparisons are made only between ProbCons, SPEM and ISPAlign. Only
the p-values for the CS scores are shown.

SPS CS SPEM ISPAlign ISPAlign

ProbCons SPEM ISPAlign ProbCons SPEM ISPAlign (vs ProbCons) (vs ProbCons) (vs SPEM)
0–20% {156} 49.7 67.2 68.5 43.1 61.0 62.7 (4e–23) (5e–24) (4e–5)
20–40% {459} 80.5 85.6 86.8 74.7 80.4 81.9 (2e–29) (2e–53) (7e–7)
40–70% {348} 94.8 94.9 95.5 92.2 92.3 93.2 (0.03) (2e–9) (0.003)
70–100% {69} 99.1 98.5 99.0 99.1 98.4 98.9 (0.007*) (—) (—)
All {1032} 81.9 86.8 87.8 77.4 82.7 84.0 (2e–46) (8e–87) (1e–12)

Table 3. Average Q scores (in %) on PREFAB 4.0. Each subset includes all structure
pairs with identity within the specified range, with * indicating worse performance in
p-value. Comparisons are made between MAFFT and ProbCons using two sequences
(MAFFT2, ProbCons2) and using all (at most 50) sequences (MAFFT50, ProbCons50),
SP2 (which is a specialized version of SPEM for two sequences), and ISPAlign2 (IS-
PAlign starting from two sequences). Since MAFFT50 has the best accuracy among
MAFFT and ProbCons, p-value comparisons are made only against MAFFT50.

SP2 ISPAlign2 ISPAlign2

MAFFT2ProbCons2MAFFT50ProbCons50 SP2 ISPAlign2(vs MAFFT50)(vs MAFFT50) (vs SP2)
0–20% {887} 36.2 38.9 56.7 55.6 64.6 64.8 (3e–36) (5e–46) (0.03)
20–40% {588} 81.0 82.8 87.1 87.2 89.7 90.1 (2e–16) (6e–28) (0.01)
40–70% {112} 96.2 96.4 96.0 95.4 95.3 97.6 (0.02*) (—) (—)
70–100% {95} 97.9 97.8 98.0 97.3 97.2 98.0 (6e–4*) (—) (0.005)
All {1682} 59.4 61.4 72.3 71.7 77.3 77.7 (1e–46) (7e–69) (2e–4)

in the 1V1 subset when identity is very low (improvement in the CS score was
over 5%). SPEM improved over MAFFT and ProbCons very significantly for
the SPS score. For the CS score, SPEM significantly improved over MAFFT
and ProbCons for reference 1, but the overall improvement was not significant
for the entire set.

Table 2 shows performance comparisons on HOMSTRAD. Except for 70 to
100% identity, all the p-values of ISPAlign over SPEM, ISPAlign over ProbCons,
and SPEM over ProbCons were highly significant. For 70 to 100% identity, SPEM
performed significantly worse than ProbCons, while the differences between IS-
PAlign and ProbCons or SPEM were not significant. In general, as identity
increases, less improvements were observed for both SPEM and ISPAlign.

Table 3 shows performance comparisons on PREFAB 4.0 using two versions
of MAFFT and ProbCons: MAFFT2 and ProbCons2 use the original input pair,
while MAFFT50 and ProbCons50 use the full sequence set that includes random
hits from database search and has at most 50 sequences. For 0 to 20% identity
and 20 to 40% identity, the improvements of SPEM or ISPAlign over MAFFT50

were highly significant, while the improvements of ISPAlign over SPEM were sig-
nificant but not as much. For 40 to 70% identity, SPEM performed significantly
worse than MAFFT50, while the differences between ISPAlign and MAFFT50
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Table 4. Average fD and fM scores (in %) on the Twilight and Superfamily sub-
sets of SABmark 1.65. Four cases are omitted in the Twilight subset and three cases
are omitted in the Superfamily subset since no reference alignments of sufficiently good
quality are available. None of these subsets include false positive sequences. Since Prob-
Cons consistently performs better than MAFFT, comparisons are made only between
ProbCons, SPEM and ISPAlign.

fD fM
ProbCons SPEM ISPAlign ProbCons SPEM ISPAlign

Twilight {205} 29.3 44.2 46.1 21.0 30.8 32.0
(vs ProbCons) (2e–26) (6e–29) (1e–27) (3e-29)
(vs SPEM) (0.01) (0.005)
Superfamily {422} 57.1 68.3 69.0 43.6 50.9 51.6
(vs ProbCons) (4e–49) (1e–51) (1e–48) (1e–51)
(vs SPEM) (0.02) (7e–4)

Table 5. Average CS scores (in %) on HOMSTRAD and average Q scores (in %) on
PREFAB 4.0 using a few methods that are of increasing levels of complexity. Method 1
constructs a profile from the hits of each input sequence and performs profile alignment
using the modified HMM model that incorporates profiles but not secondary structure
predictions. Method 2 removes the hits that are not intermediate sequences before
performing profile alignment. Method 3 adds intermediate sequences to the input se-
quences, constructs profiles based on the intermediate sequences and performs profile
alignment on the combined sequence set. Method 4 is the full ISPAlign algorithm that
also utilizes secondary structure predictions. For PREFAB, ProbCons uses the original
input pair while all the methods start from this input pair. The p-value comparisons
are made against the previous method to the left, with * indicating worse performance.

HOMSTRAD CS PREFAB Q
ProbCons Method1 Method2 Method3 Method4 ProbCons Method1 Method2 Method3 Method4

0–20% 43.1 59.1 59.2 59.4 62.7 38.9 58.2 58.6 61.3 64.8
(vs previous) (3e–22) (—) (0.04) (6e–8) (2e–103) (—) (6e–12) (7e–29)
20–40% 74.7 79.1 79.6 81.4 81.9 82.8 88.7 89.0 89.7 90.1
(vs previous) (2e–24) (0.003) (7e–14) (0.005) (9e–45) (—) (2e–4) (0.004)
40–70% 92.2 92.1 92.5 93.1 93.2 96.4 94.4 96.6 97.8 97.6
(vs previous) (—) (8e–4) (0.001) (—) (—) (0.002) (—) (0.008*)
70–100% 99.1 98.2 99.1 99.2 98.9 97.8 97.0 96.9 98.1 98.0
(vs previous) (6e–4*) (1e–4) (—) (0.003*) (0.04*) (0.02) (—) (—)
All 77.4 81.7 82.2 83.2 84.0 61.4 73.5 73.9 75.7 77.7
(vs previous) (5e–38) (1e–6) (1e–14) (1e–6) (7e–146) (—) (2e–15) (4e–28)

or SPEM were not significant. For 70 to 100% identity, ISPAlign performed
significantly better than SPEM but did not improve over MAFFT50, while SPEM
performed significantly worse than MAFFT50. For the entire set, all the p-values
of ISPAlign over MAFFT50, ISPAlign over MAFFT50 and SPEM over MAFFT50

were highly significant.
Table 4 shows performance comparisons on the Twilight and Superfamily

subsets of SABmark 1.65. While the improvements of SPEM or ISPAlign over
ProbCons for both subsets were highly significant, the improvements of ISPAlign
over SPEM were significant but not as much.
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In all the subsets that we have assessed, ISPAlign always performs at least as
well as ProbCons and SPEM and is much better in many cases, especially when
the input sequences are divergent in which the improvements are always signif-
icant and in many cases highly significant. Also, the improvements in the CS
scores are sometimes more significant than the improvements in the SPS scores.
In general, the contribution from utilizing additional sequences from database
search decreases as the input sequences become more closely related. When the
input sequences become very similar, while SPEM has significant accuracy de-
creases in many cases, ISPAlign still always performs at least as well. Since not
many intermediate sequences are added to the input sequences before performing
the profile alignment step, ISPAlign is efficient enough to perform an individual
multiple alignment of moderate size in a reasonable time. In most cases, ISPAlign
is only slightly slower than SPEM, with at most about a two times slowdown in
some cases.

To evaluate contributions from various components of the algorithm to the
alignment accuracy under different identity levels, we compare the performance
of a few methods that are of increasing levels of complexity on HOMSTRAD and
PREFAB 4.0 (Table 5). When the identity is low, the biggest improvements were
from the use of profiles, while significant improvements were obtained from the
addition of intermediate sequences to the input sequences and from the use of
secondary structure predictions. When the identity is high, improvements were
mainly from the removal of hits that are not intermediate sequences.

8 Discussion

While we have described a procedure for ISPAlign that gives very good perfor-
mance, there are still many opportunities to further improve its accuracy. Instead
of adding a fixed number of intermediate sequences to the input sequences, it
may be better to add more sequences as the number of input sequences increases.
Alternatively, intermediate sequences can be added until all the minimum dis-
tances between each of the remaining intermediate sequences and the current set
of sequences fall below a threshold. Also, instead of modifying the parameters
used by ProbCons by applying the factors α and β, it may be better to re-train
the pair-HMM using a set of confirmed secondary structures. This can be done
in a framework suggested by Do et al. (2006). It is also possible to use other
multiple alignment algorithms to perform the profile alignment step as long as
profiles and secondary structure predictions can be incorporated, which can lead
to further improvements as better multiple alignment algorithms become avail-
able. It may also be beneficial to utilize three-dimensional structures when they
are available.
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Abstract. Knowledge about protein function is often encoded in the
form of large and sparse undirected graphs where vertices are proteins
and edges represent their functional relationships. One elementary task
in the computational utilization of these networks is that of quantifying
the density of edges, referred to as connectedness, inside a prescribed
protein set. For instance, many functional modules can be identified be-
cause of their high connectedness. Since individual proteins can have
very different numbers of interactions, a connectedness measure should
be well-normalized for vertex degree. Namely, its distribution across ran-
dom sets of vertices should not be affected when these sets are biased for
hubs. We show that such degree-robustness can be achieved via an ana-
lytical framework based on a model of random graph with given expected
degrees. We also introduce the concept of connectedness profile, which
characterizes the relation between adjacency in a graph and a prescribed
order of its vertices. A straightforward application to gene expression
data and protein networks is the identification of tissue-specific func-
tional modules or cellular processes perturbed in an experiment. The
strength of the mapping between gene-expression score and interaction
in the network is measured by the area of the connectedness profile. De-
riving the distribution of this area under the random graph enables us
to define degree-robust statistics that can be computed in O (M), M
being the network size. These statistics can identify groups of microar-
ray experiments that are pathway-coherent, and more generally, vertex
attributes that relate to adjacency in a graph.

1 Introduction

Much knowledge about the interactome is now available [1,2]. Whether it is an
artifact of sampling or not [3], large graphs representing protein interactions
always display a marked heterogeneity of vertex degrees: a small number of
hubs and a majority of proteins having few interactions. Therefore, to avoid
bias towards or against hubs, computational work with protein networks often
requires a control that preserves vertex degrees. A commonly used control is the
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random graph with fixed degree sequence: edges are randomly paired and rewired
[4,5,6]. However, such numerical approach is time expensive and thus limits the
range of applications [7,8]. There is no easy analytical alternative in the case
of the random graph with fixed degree sequence, because it models edges as
dependent random variables [8,9,10,11,12]. Rendering edges independent yields
a model known as the Random Graph with Given Expected Degrees (RGGED)
[12,13]. Some of the analytical treatment becomes then much easier [14].

In this paper we show that the RGGED is a powerful framework to design
statistics that are not degree-biased and for which there exist good analyti-
cal approximations. This allows us to perform degree-robust yet fast compu-
tational work with protein networks. We focus on one quantity referred to as
connectedness: the density of interactions inside a prescribed protein set. For in-
stance, many protein functional modules can be identified because of their high
connectedness [15].

The connectedness of a protein set L is quantified by the probability PL (x)
of observing x or more edges inside L in the RGGED. The p-value PL can
be rapidly computed via an approximation based on the Poisson distribution.
We show that PL is robust with respect to vertex degrees in the sense that its
distribution across random sets of |L| proteins is not very sensitive to the degrees
represented in L. Also, we demonstrate that PL has a rather intuitive meaning:
it is a reasonable approximation of the p-value for higher connectedness when
selecting a random set of |L| proteins.

We then introduce the more general concept of a connectedness profile, which
characterizes the relation between adjacency in a network and a given order of
its vertices. An application to gene expression data and protein networks is the
identification of tissue-related functional modules or cellular processes perturbed
in an experiment. The strength of the mapping between gene expression score
and interaction in the network can be quantified by the area of the connect-
edness profile. Studying the distribution of this area under the RGGED yields
degree-robust statistics that can be computed in O (M), where M is the network
size. These statistics are useful to identify groups of microarray experiments that
are pathway-coherent, and more generally, vertex attributes that relate to adja-
cency in a network. The profile area is similar in spirit to the mixing coefficient
previously introduced by Newman [16]. The difference is that our statistics were
designed via a random graph model in order to be degree-robust. In addition,
not just its area but other features of a connectedness profile provide useful
information.

In the next sections, as mathematical results are derived, we provide examples
of application to the analysis of gene expression data with a network representing
known functional relationships between proteins. The microarray data was down-
loaded from the Gene Expression Omnibus resource of NCBI [17]. The protein
network represents protein interactions stored in the Human Protein Reference
Database (HPRD) [2] and adjacency of human enzymes in the metabolic path-
ways of the LIGAND database [18,19]. The full graph has 7,302 vertices, 36,344
edges, median degree 4 and maximal degree 165.
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2 Connectedness Profile

We start with the problem of quantifying the connectedness of a given protein
set and then introduce the concept of connectedness profile.

2.1 Quantifying Connectedness

The protein network is modeled with an undirected graph G (V, E), where the
vertex set V represents proteins and the edge set E their functional relationships.
We use the following notations: N = |V |, M = |E|, ki is the degree of vertex vi

and 〈k〉 the average vertex degree. Consider a prescribed order of the vertices:
LN = (v1, . . . , vN ). For instance, v1 is the most differentially expressed gene in
an experiment, v2 the second most and so on. We wish to test for a relation
between LN and E: are the first elements of LN closely related in the graph?
We call Li the restriction of LN to its first i elements. If the number of edges
xi of the subgraph induced by Li is large, then Li is well connected. To define
what a large xi means we need a control. An obvious one is a random set of i
vertices, i.e. a permutation of the elements of LN . The set of all permutations
defines a random variable xi and large values of xi correspond to small values
of Pr (xi ≥ xi). However, a small p-value based on xi might only reflect that
Li contains vertices of large degrees. We illustrate this with a numerical experi-
ment, where connectedness is perturbed by adding the network hub to random
protein sets.

We generated 105 random sequences LN of all proteins and, for each sublist
Li (i < N), estimated the threshold value Ti of xi for which Pr (xi ≥ Ti) ≤ 0.05.
One protein of each list Li was then replaced with the network hub (k = 165)
and the frequency F of induced sizes xi greater than Ti estimated. If xi were
a degree-robust measure, the values of F should stay close to 0.05. Instead, the
black circles of Fig. 1(a) show that F tends to be much higher. This is due to
the wide range of degrees in the network combined with the small proportion
of hubs.

A better connectedness measure should take into account the degrees of the
vertices in Li. Given k1, . . . , ki we can compute the largest possible value xm

i of
xi with an algorithm similar to that designed to test whether an integer sequence
is graphical or not [14,20,21]. We can then quantify connectedness with xi/xm

i .
Yet, the white circles of Fig. 1(a) show that xi/xm

i is still very degree sensitive.
Indeed, the relative increase of xm

i is small compared to that of xi upon the
addition of a hub in Li. Such sensitivity to degrees is problematic. The goal
of testing a list for its connectedness is to detect functional proximity, not the
presence of hubs.

A much better robustness to degrees is obtained for a connectedness measure
that we refer to as PL [14]. The squares of Fig. 1(a) show that the distribution
of PL across protein sets is barely affected when the network hub is added to
each set. PL (x) is the probability of observing x or more edges in L under a
null model of the network known as the Random Graph with Given Expected

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Connectedness Profiles in Protein Networks 299

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10  100  1000

F

i

C  = x i i

(a)
C  = x  / x i i i

m

C  = PL i i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy

PL

i = 50

i = 200
i = 1000

i = 5000

(b)

Fig. 1. (a) Sensitivity of different connectedness measures to vertex degree. A degree-
robust measure Ci should yield values of F close to 0.05. (b) Distributions of PLi across
random sets of i proteins.

Degrees (RGGED) [12,13]. In the RGGED all possible edges vivj are modeled
with independent Bernoulli random variables of parameters

pij = min (kikj/2M, 1) with 2M = N 〈k〉 . (1)

The RGGED tends to preserve vertex degrees in a sparse network. We will con-
sider two conditions of sparseness: strong: k2

i � N 〈k〉 , ∀i and weak: 〈k〉 /N � 1.
The strong condition implies the weak one and pij � 1. In the RGGED the size
X of the subgraph induced by L is the sum of independent Bernoulli variables
and PL can be easily computed [14]:

PL = Pr (X ≥ x) � α−1e−λ
m∑

y=x

λy/y!, α = e−λ
m∑

y=0

λy/y!, λ =
∑

i<j|L
pij , (2)

with m = |L| (|L| − 1) /2 and α � 1. Equation (2) is a good approximation for
strongly-sparse graphs [14], because error bounds scale as p2

ij and pij [22,23].
In addition to being degree-robust, PL has also an interesting meaning with

respect to the permutation control. Figure 1(b) displays a few distributions of PLi

across random protein orders LN . The important point is that for intermediate
list sizes (100 < i < 1000) the distributions are close to uniform. Therefore, for
such i values, PLi is a good approximation of the p-value for higher connectedness
when selecting a random set of i proteins. In summary, PL is a connectedness
measure that has a simple interpretation, is degree-robust and can be rapidly
computed.

2.2 PL Profile

Rather than limiting ourselves to one list Li, we can characterize the whole or-
dering LN with the sequence (log (PL1) , . . . , log (PLN )) that we call a PL profile.
The computation of all the required xi and λi values, as well as the variance σ2

i

of Xi, is performed as follows.
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(a) x1 = 0, λ1 = 0, σ2
1 = 0, km = k1, Σk = k1, Σk2 = k2

1 .
(b) xi+1 = xi + xai+1 , with xai+1 = |Li ∩ ν (vi+1)| , ν (v) = {u ∈ V |uv ∈ E}.
(c) pm = kmki+1/2M . If pm > 1 do (d) otherwise do (e)

(d) λai+1 =
∑i

j=1 pi+1,j , σ2
ai+1

=
∑i

j=1 pi+1,j (1 − pi+1,j).
(e) λai+1 = ki+1Σk/2M , σ2

ai+1
= λai+1 − k2

i+1Σk2/4M2.
(f) λi+1 = λi + λai+1 , σ2

i+1 = σ2
i + σ2

ai+1
, Σk += ki+1, Σk2 += k2

i+1.
(g) if ki+1 > km, km = ki+1.

All the steps are O (1), except for (b) which is O (ki) and (d) which is O (i).
For the network we use here, (d) is never executed because there is no pair of
vertices such that kikj > 2M . Consequently, the computation is O (M). More
generally, the number of vertices requiring step (d) is small compared to N for
large protein networks because they are weakly sparse: ξ = 〈k〉 /N � 1. Let H
stand for the set of vertices such that k2 > N 〈k〉 and H its complement in V .
The average degree over H is 〈k〉H =

√
N 〈k〉 + δ, with δ > 0. Let fH = |H | /N

denote the fraction of hubs. We have

〈k〉 = fH 〈k〉H + (1 − fH) 〈k〉H ⇒ fH =
ξ − 〈k〉H /N√

ξ + δ/N − 〈k〉H /N
⇒ fH <

√
ξ.

For large protein networks ξ ≈ 10−3 so that fH < 0.04 , which implies that step
(d) is rarely executed and the computation of the PL profile is fast.

2.3 Applications to Gene Expression Data

We consider the comparison of two groups A and B of microarray experiments.
Each gene g is scored for its differential expression between A and B with

D (g, A, B) =
(
〈ln (Ig)〉A − 〈ln (Ig)〉B

)
/

(
sd (ln (Ig))A + sd (ln (Ig))B

)
, (3)

where I is the intensity, 〈〉A denotes the average over group A and sd () the
standard deviation. Figure 2(a) presents two PL profiles obtained when ordering
genes by the score D comparing expression in one tissue (group A, two samples)
to expression in other tissues (group B, 2×78 samples) [24]. We can approximate
the pathways highly expressed in adipocytes with the subgraph induced by the
first 393 genes, as they correspond to a clear local minimum of PL. We broke
this subgraph into densely connected parts called communities [25,26] and likely
to represent functional modules. Often, this is done by looking for a partition
into c vertex groups that maximizes the global modularity score

Q =
∑

ij

(aij − pij)
c∑

r=1

δ (gi, r) δ (gj , r) =
c∑

r=1

xr − λr, (4)

where aij = 1 if vivj ∈ E and 0 otherwise, and δ is the Kronecker function. Here,
instead of using only the difference between x and its expected value λ, we defined
Q as the average | log (PL) | across the c candidate communities. We obtained
five main modules, two of which are displayed in Fig. 2. They correspond to
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Fig. 2. (a) Two PL profiles obtained when genes are ordered for their higher expression
level in one tissue versus 78 others. (b-c) Parts of the network induced by the genes
highly expressed in adipocytes.

lipid-metabolism pathways and components and modifiers of the extra-cellular
matrix. These modules are relevant to adipose tissue. So, by combining the
PL profile and a community finding algorithm we can identify tissue related
functional modules or cellular processes perturbed in an experiment.

However, such approach becomes questionable when the optimal i giving the
best PLi is large, e.g. 43% of the vertices with the appendix samples. Partition-
ing such a large graph into communities is unlikely to be much driven by the
expression scores. One can then adopt other strategies that identify portions of
the graph rich in differentially expressed genes [27,28]. This said, the PL profile
gives us valuable information: differential expression can map to a large number
of pathways, because functional neighbors tend to be co-expressed [29,30].

To illustrate this we generated 104 random partitions of 173 tumor samples
[31] in two groups of sizes 86 and 87. Each partition was used to order genes by
descending values of D (3), compute a PL profile and measure some of its charac-
teristics. The results, as well as those obtained with 104 random LN sequences,
are summarized in Table 1. The optimal i values corresponding to the minimal
PLi values are large compared to the permutation control. The best values of PL

are smaller with the D-based order than they are with random order. A better
measure than min PL to characterize a profile is the average value of log (PL),
because its distributions for random and expression-based orders overlap lit-
tle. The results of Table 1 show that the PL profile can detect co-expression of
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Table 1. Mean (standard deviation) of PL profile characteristics for gene expression
based and random protein orders

protein order optimal i mini (log PLi) 〈log PLi〉i

based on gene expression 940 (771) -7.1 (6.2) -1.9 (1.3)
random 672 (834) -1.3 (0.6) -0.4 (0.1)

pathway neighbors. Now, to state about a given partition of the tumor samples,
we might want to compare its PL profile to those obtained with random par-
titions. Building such control distribution is not a problem because PL profiles
are fast to compute. As mentioned above, a good statistic to compare PL pro-
files is the sum of the log (PL) values. Each PL is appropriately normalized for
degrees, but adequate normalization of the sum requires further mathematical
treatment.

3 Area of a Profile

In the previous section we indicated that PL is a degree-robust measure which
reasonably approximates the p-value for higher connectedness under the permu-
tation control. In this section we show that the same holds for the area of a
connectedness profile.

3.1 Distribution of Connectedness Profile Area Under the RGGED

Instead of working with log (PLi) we consider a centered and reduced version of
the size Xi of the subgraph induced by the protein set Li:

Zi =
Xi − λi

σi
for i ≥ 2 and Z1 = 0, with σ2

i =
∑

r<s≤i

prs (1 − prs) (5)

and prs being defined by (1). When i is large, the distribution of Zi is close
to normal. Convergence can be roughly estimated by approximating Xi with a
Poisson variable:

σ2
i � λi � i (i − 1)

2
〈k〉2

2M
� i2 〈k〉

2N
. (6)

If our criterion for normality is λi ≥ 5, then we must have i ≥ 86 for the network
used in this paper. For large i there is a monotonic mapping between Zi and
log (PLi), so that the PL profile area is well represented by the sum of the Zi

values. We define the Z-profile area up to index n ≤ N by

An =
n∑

i=1

Zi =
n∑

i=2

Xi

σi
− γn, γn =

n∑

i=2

λi

σi
. (7)
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By definition of Zi, the expected value of An is 0. We next turn Xi into a sum
of independent attachment variables Xaj , each Xaj being the number of edges
between vj and vl for l < j. The variance S2

n of An is then easily obtained:

An =
n∑

i=2

βiXai − γn; S2
n =

n∑

i=2

β2
i σ2

ai
, βi =

n∑

j=i

1
σj

, σ2
ai

=
∑

j<i

pij (1 − pij) . (8)

We argue that the asymptotic distribution of An is Gaussian. This is not trivial
because the variables Xai have different distributions. Also, since the Zi vari-
ables are dependent, their normality does not necessarily imply that of An. We
decompose Xai into a sum of Bernoulli variables Bij , one for each possible edge:

An =
n∑

i=2

βi

i−1∑

j=1

Bij − γn. (9)

Sufficient conditions for convergence of the distribution of An to normality are
given by a theorem due to Lindeberg [32]:

Lindeberg’s theorem. The central limit theorem applies when for any ε > 0
the truncated variables Uij defined by

Uij = βi |Bij − pij | if βi |Bij − pij | ≤ εSn and Uij = 0 otherwise (10)

are such that when n → ∞

Sn → ∞ and
1
S2

n

∑

(ij)

E
(
U2

ij

)
→ 1. (11)

Note that the rigorous formulation of (10) is with |βiBij − E (βiBij)|. We have
simplified given that βi > 0. If for any ε > 0, Sn increases fast enough with n
so that Uij = βi |Bij − pij |, then (11) is satisfied. We now show that this is the
case when there is no degree correlation in LN . Approximating σ2

i with (6) and
σ2

ai
with i 〈k〉 /N gives

βi � ρ

n∑

j=i

1
j
, ρ =

√
2N/ 〈k〉, S2

n � 2
n∑

i=2

i

⎛

⎝
n∑

j=i

1
j

⎞

⎠

2

. (12)

We then notice that S2
n ≥ 4 (hn − 1)2, where hn is the harmonic series. Given

that hn diverges, the left part of (11) is satisfied. To find a lower bound of S2
n

we use

i

n∑

j=i

1
j

≥ i

n∑

j=i

1
n

≥ f (i) with f (i) = i

(

1 − i

n

)

.

Studying f yields a lower bound of S2
n and there exists a trivial upper bound

for Uij .

S2
n ≥ 2

3n/4∑

n/4

1
i
f2 (i) ≥ 2

3n/4∑

n/4

4
3n

9n2

162 ≥ 3n2

64
; Uij ≤ βi ≤ ρ (1 + ln (n)) . (13)
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Let ε > 0 be given. Since x/ ln (x) → ∞ as x → ∞, there exists n such that
n ≥ 8ρ (1 + ln (n)) /ε

√
3 and εSn ≥ βi |Bij − pij | so that the variables Uij and

βi |Bij − pij | are identical and (11) is satisfied. Since the Lindeberg theorem
applies to An + γn, the asymptotic distribution of An is normal.

In our proof we considered that σ2
i scaled as i2 and σ2

ai
as i, based on the

assumption of no correlation between rank and degree in LN . The values of Sn

predicted by such approximations (12) are displayed by the line of Fig. 3(a).
Squares corresponds to the exact Sn values (8) averaged over 103 random vertex
sequences. The fit is excellent. However, ordering vertices by ascending degrees
yields smaller Sn values (circles), and ordering by descending degrees gives larger
values (triangles). Therefore, we numerically checked convergence to normality
for different sequences of degrees. Figure 3(b) shows that the L1 distance d1 be-
tween the normal distribution and the distribution of An/Sn (sampled with 103

realizations of the RGGED) decreases as n increases. The speed of convergence
depends of the sequence of degrees. Yet, in all cases, the Gaussian approxima-
tion is reasonable when n > 5, 000. The protein network we use in this paper
has N = 7, 302 vertices. Therefore, whatever the sequence of degrees is, AN has
normal distribution under the RGGED. Also, note that the computation of AN

and SN can be performed in O (M) via an algorithm similar that of Sect. 2.2.

 0

 2000
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 0  2000  4000  6000

Sn

n

(a)

degree independent
ascending degrees

descending degrees

 0

 100

 200

 10  100  1000

d1

n

(b)

Fig. 3. (a) Standard deviation Sn of the Z profile area as a function of the profile
length n. (b) Convergence of An/Sn to a normal variable under the RGGED: values
of the L1 distance to normality, averaged over 102 protein orders. Values above the
horizontal line have probability less than 0.01 with a normal variable.

The normality of AN under the RGGED is a useful property. It allows us to
compare connectedness profiles by their values of AN/SN , this quantity being
appropriately normalized for the sequence of degrees. We indicate in the next
section that this property carries over to the permutation control.

3.2 Distribution Under the Permutation Control

Figure 4(a) shows the distribution of AN/SN across 104 random LN sequences.
It is Gaussian, its mean is slightly shifted from zero (+0.07) and its standard
deviation is smaller (0.41) than that expected in the RGGED. The difference
of means is due to λN being smaller than M : by half the sum of pii over all
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vertices. When we compute λN , we do not consider self edges (vivi) but the
formula pij = kikj/2M does. The difference of variances seen in panel (a) of
Fig. 4 is explained by panel (b). In the RGGED the parameter σi increases
linearly with i. In the permutation control the standard deviation sdi of xi is a
non-monotonic function of i, because the total number of edges is constrained
to M . Using the values of sdi instead of σi in equation (8) gives the value
SN = 0.41 observed with the permutation control. As shown by Fig. 4(a), such
difference of variances implies that the p-value for AN/SN under the RGGED
is a conservative estimation of the p-value under the permutation control.
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Fig. 4. (a) Distributions of the Z-profile area under the RGGED and the permutation
control. (b) Standard deviation of xi under the permutation control and average σi.

We now show that this property is preserved when the permutation control
is no longer independent of vertex degree. Table 2 gives the mean and the stan-
dard deviation of AN/SN for different types of random protein orders. All values
were estimated with 104 LN sequences. When the protein order is correlated to
degrees, the mean of AN/SN significantly increases. Rather than indicating a
problem in the way AN/SN is normalized for degrees, the shift of the distri-
bution points out a property of the network known as positive degree mixing
[16]: vertices with similar degrees tend to be adjacent. To show that degree
mixing accounts for the observed shift, we rewired the network with the so-
called switching algorithm [4]. This destroys mixing while preserving degrees.
Table 2 shows that both means and standard deviations of AN/SN go back
towards zero. Therefore, it is reasonable to state that the p-value for AN/SN

under the RGGED is a conservative approximation for the p-value under the
permutation control, whatever the sequence of degrees is. Degree mixing has no
meaningful impact on the analysis of experimental data, as long as the knowledge
of the degrees is not used to order the proteins.

3.3 Application to Gene Expression Data

As an example, we consider two groups of tumors: 173 multiple myeloma samples
that are associated with bone lesions and 36 that are not [31]. The values of the
profile areas obtained for different expression scores are given in Table 3. The
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Table 2. Mean (standard deviation) of AN/SN for different types of random protein
orders

order degree independent ascending degrees descending degrees

original network 0.07 (0.41) 42.30 (0.42) 11.96 (0.01)
rewired network 0.07 (0.41) 0.48 (0.25) 0.06 (0.005)

best mapping to the network is obtained when ranking genes for their higher
expression in the samples associated with bone lesions (AN/SN = 9.15). This
corresponds to a p-value of 10−20 in the RGGED, and thus to an even smaller
p-value under the permutation control. A more informative p-value can be es-
timated by comparing the profile area to those obtained with random groups.
Table 3 shows that only 0.2% of 104 random partitions yield a mapping to
the network better than that obtained with the original groups. Therefore, we
can be confident that genes having higher expression in the tumors associated
with bone lesions are significantly close in the protein network. The mapping to
the network less significant for genes having lower expression in samples with
bone lesions (p = 0.015) and an intermediate p-value is obtained when ordering
genes by their fold change (p = 0.005). Also, genes which are not differentially
expressed between the two groups (ascending values of |D|) are not as well or-
ganized inside the network (p = 0.02). The pathways they map to are less likely
to be related to the presence or absence of bone lesions.

Table 3. Differential expression associated with bone-lesion inducing tumors is path-
way coherent

Bone lesions / no lesions Random groups

Expression score D |D| D |D| Expression score

Order desc. asc. desc. asc. desc. asc. desc. asc. Order
AN/SN value 9.15 6.8 2.27 1.27 2.37 2.37 0.45 0.30 Mean
p-value 0.002 0.015 0.005 0.021 1.49 1.49 0.53 0.45 S.D.

4 Area of a Weighted Profile

As mentioned above, connectedness profiles can be compared by the degree-
robust quantity AN/SN . For instance, in Fig. 3(a) the profile for the appendix
samples has a larger area (11.8) than the profile obtained with the adipocytes
(8.0). Yet, one might find the latter more interesting because the best PL value
corresponds to fewer proteins. Such difference can be quantified by making a
weighted profile wiZi, where large indices i are deemphasized, and using the
sum AwN of the weighted variables. Since the standard deviation σi of Xi scales
as i, a convenient weighting scheme is

AwN =
N∑

i=1

wiZi, with wi = i−θ and 0 < θ < 1. (14)
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Fig. 5. (a) Connectedness profiles based on differential expression D in promyelocytic
leukemia compared to 78 other tissues. Vertical lines indicate the points at which
D = 0, and arrows the best values of connectedness Z. (b) Evolution of a network-
mapping score based on AwN/SwN during the clustering of tumor samples. A high
score indicates a partition into pathway-coherent groups. Lines show the average values
(± one standard deviation) over 103 runs of random clustering.

All the results obtained for the non-weighted profile carry over to the weighted
one. Weighted profiles can be compared by their values of AwN/SwN , where
SwN is the standard deviation of AwN in the RGGED. For instance, with weight
parameter θ = 0.5, AwN is larger (13.3) for the adipocyte profile of Fig. 3(a)
than it is for the appendix profile (11.9).

Weighting a connectedness profile can also avoid paradoxical results in the
case of extreme profiles such as those displayed in Fig. 5(a). Two profiles were
obtained by ordering genes for their higher or lower expression in samples of
promyelocytic leukemia compared to 78 other tissues [24]. Ordering genes by
descending values of the expression score D (3) gives a Z profile reaching its
maximum before D becomes negative (vertical line). On the contrary, the reverse
order yields a maximal Z value only after D changes sign. So, up-regulated genes
largely contribute to the profile area AN intended to characterize down-regulated
genes. Such problem can be avoided by using AwN instead of AN .

Comparing the profile area of a protein order to that of the reverse order is
required for the last example of application we consider. Clustering of microarray
experiments is a widely used technique to uncover groups of samples based on
gene expression. One important question is whether these groups are associated
with known pathways. Here, we clustered 173 multiple myeloma samples [31] via
a greedy agglomerative algorithm. The distance between samples is based on the
Pearson correlation coefficient and the clustering output is a binary tree. Samples
were grouped together because some genes have higher or lower expression in
these samples versus the others. So, each cluster defines a differential expression
score D and we can estimate how well it maps to the protein network with
the largest value max A of AwN/SwN (θ = 0.5), when genes are ordered by
descending or ascending D values. Each clustering step gives a partition of the
samples and an average score 〈maxA〉. Figure 5(b) shows that 〈max A〉 increases
during the clustering. For comparison, 〈maxA〉 tends to decrease in average
across 103 runs of random clustering. Therefore, the clusters obtained with the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



308 J. Pradines et al.

greedy algorithm might be associated with certain functional modules. These
groups of samples do not significantly overlap with the two categories defined by
the presence or absence of bone lesions. So, the clustering gave other pathway-
coherent partitions of the tumor samples.

5 Conclusion

In this paper we have presented degree-robust statistics of connectedness that
are useful for working with protein networks. Robustness to degrees is impor-
tant, since individual proteins can have very different numbers of interactions.
The computation of our statistics is fast, in contrast to the commonly utilized
approach of rewiring edges to control for degrees. Hence, this work should open
new possibilities in the computational biology of protein networks.

Even though our connectedness measures were defined via a rather abstract
model of random graph, they have simple interpretations. The probability PL is
a good approximation of the p-value for higher connectedness when selecting |L|
proteins at random. The p-value of AN/SN in the RGGED approximates the
p-value for a stronger mapping between gene expression score and interaction in
the network when randomly ordering genes.

We have presented a few examples of application to the analysis of gene ex-
pression data. Clearly, there are more potential use cases and they can be based
on other gene attributes than expression scores. For instance, one could order
proteins for the match of their sequence to a given amino-acid motif. An opti-
mization algorithm based on AwN/SwN could then identify motifs that relate
to protein interaction. Finally, the degree-robust yet fast identification of vertex
attributes that relate to adjacency in a graph could prove useful in general.
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Abstract. Tiling DNA microarrays extend current microarray technol-
ogy by probing the non-repeat portion of a genome at regular intervals
in an unbiased fashion. A fundamental problem in the analysis of these
data is the detection of genomic regions that are differentially transcribed
across multiple conditions. We propose a linear time algorithm based on
segmentation techniques and linear modeling that can work at a user-
selected false discovery rate. It also attains a four-fold sensitivity gain
over the only competing algorithm when applied to a whole genome tran-
scription data set spanning the embryonic development of Drosophila
melanogaster.

1 Introduction

The ever increasing density of DNA microarrays, or simply arrays, has made
possible the development of tiling arrays. Most commercially available arrays
are designed using existing genome annotations, such as Refseq for expression
or dbSNP for genotyping; specifically, a small set of probes is dedicated to mea-
suring expression level of each gene or to detect a particular allele at one locus.
Instead, tiling arrays interrogate a genome, or a region thereof, in an unbiased
fashion by selecting probes at regular intervals, subject only to constraints such
as synthesizability, good hybridization behavior and sequence specificity, which
often imply the exclusion of repeat regions. Therefore, in combination with a
variety of sample preparation techniques, tiling arrays are general purpose dis-
covery tools [30] that have been successfully used to further our knowledge of
the transcriptome [20,14,17,19], protein-DNA interactions [22], DNA modifica-
tions [9] and DNA replication [25]. Furthermore, large datasets based on tiling
arrays are freely available to the scientific community [1,2] and more are being
generated, for instance, in the framework of a large collaborative project known
as ENCODE [35].

We assume that the input data consist of normalized intensity values for each
position at which a probe is centered, for each of one or more conditions. The
present paper won’t leverage the availability of control probes known as mis-
match probes as in [18] or an additional control experiment as in [13], but will rely
on a small number of replicate experiments. The biological interpretation of the
intensity depends on the specific experiment being conducted and can be related,

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 311–324, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



312 A. Piccolboni

for instance, to the level of gene expression or DNA enrichment. In the following
we focus on the expression case, but some of the ideas developed could be useful
for other applications, such as protein-DNA interactions and DNA modifications.
The goal is to identify genomic regions that are differentially expressed under
different experimental conditions and to provide some statistically meaningful
estimate of the detection error. We chose to focus on this problem for three rea-
sons: first, differential expression (DE) is a first indicator of biological function;
second, the data sets enabling this kind of analysis are increasingly available;
and third, we wish to improve on the only other available algorithm [18].

Applications of tiling arrays for the detection of sites of DNA-protein interac-
tion (CHIP2) or the characterization of karyotypic modifications (array-CGH)
have received increasing attention in the statistical and computational litera-
ture [38,23,27,26,28], whereas transcription has received comparatively less [13].
In particular, to our knowledge, only one work [18] deals with the detection of
differentially expressed regions. In that paper, a non parametric test (Kruskal-
Wallis) is applied to each probe, returning a p-value that the (ranks of the)
data could have been observed under the null hypothesis of no condition effects.
These p-values are thresholded and then runs of probes exceeding the thresh-
old are simplified by filling in small gaps and filtering out short runs. A false
discovery rate (FDR) [8] is provided using a permutation technique.

Taking a wider look at the tiling array analysis literature we can try to clas-
sify different methods according to two important characteristics that can be
described as local modeling and data aggregation. The first is concerned with the
relation between observed intensity and underlying variables such as expression
level or probe affinity and the noise model. While occasionally non-parametric
methods have been used, thus avoiding strong assumptions about the underlying
model, more often simple linear models have proved useful. One trend is towards
the use of aggregate information from the whole data set to estimate parame-
ters of interest for each local model, sometimes using Bayesian techniques [26]
and including sequence information [27], with the aim of making such estimates
less noisy and lessen or even eliminate the need for replicate experiments. The
second characteristic defines how probes are grouped to apply local modeling in
the absence of predefined probe sets, and how local models are aggregated to
produce the final output, in the form of a collection of regions displaying dif-
ferential expression or sites of DNA enrichment. Four main approaches can be
identified:

Sliding window. The local statistics are a function of all the data in a fixed-size
window starting at a given probe position, for instance taking the pseudo-
median of the signal or calculating the t-statistics for each probe and aver-
aging them; this procedure is repeated for every window. Further processing
is necessary to define output regions. These methods struggle to define the
optimal window size: a narrow setting allows the detection of smaller fea-
tures in the data, whereas a wide one increases the sensitivity for larger
ones and helps reducing false positives which arise from isolated, aberrant
signal. In the case of transcription, where the feature size is related to exon
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size and is extremely variable and where transcripts of interest, like small
RNAs, may hybridize with only one probe due to their length, this issue
seems particularly crucial. [14,23,26,28,16,38].

HMM. The local models are assumed independent conditional to the state
of a suitable HMM, which could be as simple as a first order two state
(expressed vs. non-expressed) HMM or have a high number of states and
order; the regions are defined by self transitions in the expressed state or
transitions within a subset of the states [26,37,31]. Adapting a finite state
model to a phenomenon that is inherently continuous is difficult: the intensity
observed for two consecutive probes within the same expressed exon is highly
correlated, even conditional to the knowledge that both are hybridizing with
some target, because the observed intensity is roughly proportional to the
abundance of the target.

Long runs. The local statistics are thresholded and long, mostly uninterrupted
runs are used to define the output regions [10,18]. This is used often in
combination with the sliding window technique. Thresholding early in the
process gives up useful quantitative information, with a potential loss in
power.

Segmentation models. The local models are combined into a larger model
that explicitly incorporates regions of expression and non expression; the re-
gions of expression are obtained by simply estimating the model parameters
[13,34]. The most important difference with HMMs is that the aforemen-
tioned independence assumption is no longer necessary; therefore, the model
can more accurately capture the correlation between signals obtained from
neighboring probes hybridizing to the same target and more specifically the
dependance on the abundance of that target. This is the general approach
followed in this paper.

Some methods let (force) the user to specify some relatively obscure parameters,
whereas others try to estimate them from the data; occasionally, training data
have also been incorporated [31]. Our goals were the following:

– improve the sensitivity and specificity w.r.t. available methods;
– let the user control the sensitivity/specificity trade off without having to set

too many parameters whose correct value or even interpretation is obscure;
– provide an efficient algorithm that can handle the available large data sets.

In Sect. 2 we introduce our model and derive a method to detect regions of DE.
In Sect. 3 we describe an efficient algorithm that implements it. In Sect. 4 we
devise a method to estimate the error of this algorithm. In Sect. 5 we report the
results of running the algorithm on real and simulated data. Finally, in Sect. 6
we point to directions for future research stemming from this work.

2 The Method

Let’s denote with i ∈ [I] a condition, with j ∈ [J ] a probe interrogating a given
position and with k ∈ [K] a replicate experiment. Let yijk be the set of observed
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normalized log intensities. The log transformation is often recommended since
the dominant noise component is multiplicative [21]. What we want to compute
is a set of non overlapping regions of DE R = {(bh, eh)} with bh, eh ∈ [J ] and
bh < eh∀h ∈ [H ], and eh < bh+1∀h ∈ [H − 1]. H is the total number of regions
and is part of the output. That is, the output is a set of disjoint intervals on
the integer numbers, where the boundaries correspond to probe positions. In
analogy with [14] we will refer to such intervals as diffrags.

We will first focus on modeling a run of consecutive probes within one diffrag.
We make the assumption that they are hybridizing with the same target or mul-
tiple targets in the case of transcript isoforms. Let the log of the total concen-
tration of these targets be denoted with xih. It is well known that the observed
intensity is dependent on the concentration of the target but also on the propen-
sity of each probe to hybridize, or affinity. The affinity is modeled by a single
parameter aj . With these definitions, a simple model is the following [21]:

yijk = xih + aj + εijk, ε ∼ N(0, σh). (1)

In the case of no DE, xih = xh and, without loss of generality, xh = 0 (the
common abundance can be absorbed into the corresponding aj ’s). Let Lh be the
log-likelihood function according to Eq. 1 and L0

h be the corresponding function
under the hypothesis of no DE. Under the assumption of independence between
non-overlapping regions, the log-likelihood for all the regions in R is as follows:

LJ =
∑

h∈R

Lh +
∑

h∈R̄

L0
h, (2)

where R̄ is the set of regions complementary to R or {(eh + 1, bh+1 − 1)}h ∪
{(0, b0)}. In all experiments reported in this paper we set the minimum size
of each region to be two probes. An equivalent expression, up to an additive
constant, that will be useful in the following, is:

∑

h∈R

(Lh − L0
h). (3)

Following a maximum likelihood approach, one could think that finding
maxR,x,a L is the correct way of fitting this model, but in this case we are
selecting among models with different complexity — measured, for instance, by
the number of free parameters — and therefore the maximum likelihood crite-
rion alone is not appropriate. It is straightforward to verify that LJ in Eq. 3 is
trivially maximized by defining as many regions as there are probes. A number
of criteria have been proposed to control the complexity of the optimal solution,
for instance in applications to genomic data [29] and to array-CGH data [33].
The different criteria amount to subtracting a penalty term from the likelihood
function that is larger for more complex solutions. Here we follow a suggestion
of Broman et al. [12], according to which introducing a penalty term is “approx-
imately equivalent” to thresholding the LOD score. Each term in the Eq. 3 sum
is equivalent to fitting a two-way ANOVA model to each region and computing
the appropriate F-statistics for the hypothesis of equal target concentration in
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each condition. Therefore it seems reasonable to penalize it with a quantile of the
F-distribution with degrees of freedom determined by the number of conditions
and replicates and the size of region h, as in the following equation:

LJ =
∑

h∈R

(
Lh − L0

h − (I − 1)qf(p, d1, d2h)
)
, (4)

where qf(·, ·, ·) is the quantile function for the F-distribution, p is a probability
and d1 = I − 1 and d2h = (I − 1)(eh − bh)K are degrees of freedom. One
consequence of using this penalty term is that no region h for which the LOD
score is smaller than the penalty can be part of an optimal solution. Therefore
specifying a probability p implies that applying the F-test for the hypothesis of
unequal means to all regions in an optimal solution would result in rejecting the
null hypothesis (equal means) with p-value p or better. The converse is not true
as two overlapping regions can not be simultaneously part of a solution. Since
this is a very simplified model, we make no claim that these p-values are accurate
and we won’t rely on them to estimate error rates. In the next section we will
assume p is supplied by the user but we will return to this issue in Sect. 4.

Any penalty function that can be expressed as a sum of terms that are only
dependent on each DE region is compatible with the general structure of this al-
gorithm. Of two popular criteria, AIC and BIC, only the former can be rewritten
this way but, since it isn’t parametrized, it doesn’t offer the flexibility of the one
adopted in the present work. An alternative to applying a heuristic penalty term
is to define a prior on all possible models and pick the model with the largest
posterior distribution given the data. While determining priors that are both
realistic and analytically tractable is a challenge, we believe it is an approach
worth further consideration.

3 The Algorithm

In this section we discuss how to efficiently maximize LJ , as defined in Eq. 4,
with respect to the set of regions R, the expression parameters x and the affin-
ity parameters a. Once the regions of DE are known, the maximum likelihood
estimates for the remaining parameters are as follows:

âj =
1

IK

∑

ik

yijk (5)

x̂ih =
1

(bh − eh)K

∑

j∈(bh,eh),k

(yijk − aj), (6)

subject to the constraints
∑

i xih = 0. As to optimizing over the set of re-
gions, exhaustive search is clearly not feasible, as the set of all subsets of [J ]
is exponential in J . Even introducing an upper bound W on the region size,
a reasonable assumption we will rely on in the following, the search space size
is still Ω(W

J
W ). An optimal solution can be found efficiently via dynamic pro-

gramming. The general idea can be traced back to [7], where the problem was to
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approximate a sequence with a set number of line segments. Here the sequence
takes values in RIK and the approximation is evaluated according to a simpli-
fied model of hybridization. We need to reformulate the objective in Eq. 4 as a
recurrence relation as follows:

L0 = 0 (7)

Lt = max
(

max
w≤W

(
Lt−w + Lh − L0

h − qf(p, d1, d2h)
)
, Lt−1

)

, (8)

where h = (t − w, t). The algorithm computes Lt for 0 < t ≤ J in ascending
order and stores the previous W values and records the argmax information for
both the inner and outer max operations. This requires JW steps.

We next show how to evaluate Lh − L0
h in constant time w.r.t. the size of

region h to reduce the complexity of the algorithm to O(JWIK). By simple
algebraic manipulations Lh − L0

h can be shown to be equal to
∑

i x2
ih

σ̂2
h

,

where
σ̂2

h =
1

I(eh − bh)

∑

i,j∈(bh,eh)

(yijk − ȳij)2

and
ȳij =

1
K

∑

k

yijk.

The direct evaluation of these expressions requires W steps, bringing the overall
complexity of the algorithm to Θ(JW 2IK). Since there are tiling arrays where
the density of interrogation is as small as 5 base pairs, in organisms such as
mouse or homo sapiens that means that one exon can contain several tens of
probes and that makes a quadratic run time in W less than ideal. A better
solution is to precompute, for each i, the cumulative sums w.r.t. j of

Xij =
∑

k

xijk, j ∈ [J ]

and

Sj =
∑

ik(yijk − ȳih·)2

IK
.

Let us denote them with Xij and Sj , resp. Then

xih =
Xieh

− Xi,bh−1

eh − bh

and
σ̂2

h =
Seh

− Sbh−1

(eh − bh)
.
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Computing the cumulative sums takes linear time in J and is independent
from W . Once those are available, evaluating Lh − L0

h takes only O(IK). This
can be seen as a repeated application of the cumulative sums technique which
is well known and used also in the tiling array context in the single sample,
homoscedastic case [13]. One final speed up is achieved by storing previously
computed quantiles of the F-distribution, since one needs to evaluate only W of
them, as W affects the second degree of freedom. Amortized over tens of millions
of likelihood evaluations, this cost is negligible.

4 Error Estimation

In Sect. 2 we delayed the problem of selecting the parameter p. As stated in Sect. 1
our goal was to provide a way for the user to control the sensitivity/specificity
trade-off without having to set parameters that have a difficult interpretation or
for which an appropriate value is not obvious. We selected a commonly used error
measure, the False Discovery Rate (FDR, [8]), defined as the expected ratio of
false positives to positives. In this application, a positive is a probe falling within a
diffrag. The user, in light of application-specific considerations, will elect to obtain
a more comprehensive list of differentially expressed regions with a higher FDR
or a shorter one at a lower FDR. We will first show how to estimate the FDR for
a given p and then how to calculate the value of p yielding the desired FDR.

In analogy with the widely used SAM algorithm [36] for the detection of
differentially expressed genes from expression array data, we used a permutation
technique to estimate the FDR. The algorithm is as follows. We first run the
algorithm on the original data. For each diffrag, we subtract from the data the
condition effects, that is we compute ỹijk = yijk − xih for all j ∈ (bh, eh) and
h ∈ R, ỹijk = yijk otherwise. Then the condition labels are permuted, that is
ỹP

if(j,k)g(j,k) = ỹijk where f(j, k) = PjK+k ÷ K, g(j, k) = PjK+k mod K and P

is a permutation of [JK] selected uniformly at random. The algorithm is run
on the permuted data and all positives are considered false positives. A new
permutation is selected and a new false positive estimate is obtained, and this
is repeated a number of times — 20 in the experiments reported below. We
will report also the estimate standard deviation, but establishing a confidence
interval for the FDR would be ideal.

We are left with the problem of selecting p so as to match a target FDR.
Lacking an analytical way of linking the two and leveraging the speed of this
algorithm and its implementation, we simply performed binary search on log p.
While there is a monotonic relationship between p and the number of diffrags,
this is not guaranteed between p and the number of positive probes, the unit
chosen to measure error rates, since the length of the detected regions can in-
crease when p is decreasing. In practice, though, both relations appear to be
monotonic and binary search always terminates within 1% of the target.

An implementation of this algorithm is available under the terms of the GNU
General Public License, version 2 [3].
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5 Experimental Results

Evaluation of data analysis methods for tiling array data is per se a challenge. Few
control data sets are available, and none relevant to the detection of differentially
transcribed regions to the best of our knowledge. There isn’t a consensus on what
model to use to generate simulated data, and the variety of organisms, tissues,
conditions and assays that can underlie the input to this kind of analysis is daunt-
ing. Giving up any pretense of exhaustivity, we combined different simulations and
the comparison with a competing method [18] on a real data set to evaluate the
algorithm’s performance. In particular, we wanted to show that this algorithm has
high specificity and sensitivity which do not depend on strict compliance with the
model and that the error estimates provided are reasonably accurate. This doesn’t
replace the need for benchmarks like the ones available for standard expression ar-
rays [11] or, more recently, CHIP2 type applications of tiling arrays [4].

Since we will later consider some results based on the organism Drosophila
melanogaster, we took exons from the initial part of chromosome X correspond-
ing to the first 105 probes for that chromosome in the tiling array design used
in [18]. We simulated affinities, expression levels and error terms randomly and
independently from the normal distribution for each exon (if two exons overlap,
it was done independently for the overlapping and non overlapping parts). For
consistency with the real data set considered later, we set the number of condi-
tions to 12 and the number of replicates to 3. In one simulation the expression
levels have standard deviation equal to the simulated error terms, in the other
it is 10 times larger. In intronic and intergenic regions the simulation is similar
but with expression levels clamped to some fixed value — this is irrelevant to
the algorithm. We also run the algorithm with two values of p, bypassing the
normal procedure of selecting a FDR first and letting the algorithm pick p. All
the rates in this section are based on probe counts and a probe is considered
positive if and only if it falls within a region detected as differentially expressed.

Table 1 shows that the algorithm has high sensitivity and specificity even on
the more noisy dataset and using less stringent parameter settings only seems
to degrade specificity. The FDR estimate is off by slightly more than 1% in the
worst case.

A most important simplifying assumption of our model is that it assumes
expression levels associated with different exons to be independent, but, for exons

Table 1. Performance on ideal simulation. From the left: standard deviation of DE
levels, p, estimated FDR, standard deviation of FDR in permutation, the same di-
vided by the square root of the number of permutations, real FDR, difference between
estimated and real FDR and true positive rate.

DE std p Est.FDR FDR std FDR std/
√

n Real FDR Δ FDR true positive

10 10−3 0.088 0.006 0.0014 0.082 -0.0065 0.992

10 10−4 0.016 0.002 0.0005 0.022 0.0055 0.992

1 10−3 0.096 0.006 0.0014 0.083 -0.0133 0.982

1 10−4 0.018 0.002 0.0004 0.024 0.0061 0.980
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Table 2. Performance on simulation with dependencies. See Table 1 caption for de-
tailed explanations.

DE std p Est.FDR FDR std FDR std/
√

n Real FDR Δ FDR true positive

10 10−3 0.092 0.006 0.0014 0.075 -0.0167 0.992

10 10−4 0.017 0.002 0.0004 0.020 0.003 0.992

1 10−3 0.096 0.008 0.0019 0.081 -0.015 0.982

1 10−4 0.019 0.003 0.0007 0.024 0.0053 0.981

Table 3. Performance on simulation with log-normal noise. See Table 1 caption for
detailed explanations.

DE std p Est.FDR FDR std FDR std/
√

n Real FDR Δ FDR true positive

10 10−3 0.162 0.020 0.0046 0.098 -0.0640 0.957

10 10−4 0.071 0.017 0.0039 0.052 -0.0189 0.956

1 10−3 0.103 0.006 0.0013 0.099 -0.004 0.904

1 10−4 0.029 0.004 0.0008 0.033 0.0042 0.899

belonging to the same transcript, this is clearly not the case. On the contrary,
such exons have highly correlated expression levels, even if splice variation makes
such correlation less then perfect. To study its effects on the performance of our
algorithm we modified our simulation so that exons associated with the same
set of transcripts would have the same expression levels, and again performed
four runs with two parameter settings and two noise levels.

Overall (see Table 2), there are only modest changes in performance, in the
true positive rate and in the real and estimated FDR. Visual inspection of the
results suggests that in this simulation short introns in between identically ex-
pressed exons are likely to be erroneously detected, because detecting one large
region including the intron and the two flanking exons is preferable according
to the algorithm than calling two smaller regions. This observation points to
the modeling of this kind of dependency as a promising research direction, not
only with the goal of improved performance but also to infer some structural
information implicit in these data [24,18].

For a third group of simulations we returned to the independent model, but
sampled the residuals from a log-normal distribution with log-scale mean and
standard deviation of -0.75 and 1 resp., which implies a standard deviation of
roughly 1. This was to shed light on the resilience of the algorithm to deviations
from the parametric assumptions underlying it. In Table 3 we observe only a
slight degradation in performance both in the sensitivity/specificity trade-off
and the ability to accurately estimate the FDR.

Let’s turn our attention to a real data set related to the early development of
Drosophila melanogaster [18]. Total RNA greater than 200 nucleotides was col-
lected at 2 hour time intervals for a total of 24 hours. Microarray hybridizations
were performed for three replicates using the same biological sample; therefore,
no sampling of biological variability is available. The tiling microarrays used in
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Fig. 1. A screenshot from the Integrated Genome Browser [15] showing the genomic
region of gene svr. From top to bottom: a heat map of DE levels, for each diffrag,
across 12 consecutive time points of the embryonic development of Drosophila; a track
(blue) representing detected diffrags; and a track (green) representing annotated genes
[6]. The heat-map is organized in increment of 2 hours, with the earliest developmental
stages at the bottom, and over- or under-expression, relative to the average signal, for
each diffrag, over the whole time course, are represented in green and red resp.

that experiment interrogate, in an unbiased fashion, the non-repeat portion of
the Drosophila genome every 35 bp on average, for a total of slightly more than
3 × 106 interrogation positions. The data can be obtained on line [5] and were
quantile normalized [11].

A typical run of the algorithm, implemented in C++, for fixed p, W = 20
and 20 permutations takes less than 35 minutes of CPU time and slightly more
than 3GB of RAM on an single 2.2 GHz Opteron processor. The core dynamic
programming algorithm runs in about 100 seconds for each permutation after
reading the input.

In [18] 27.6% of the non-repeat portion of the genome is reported as transcribed
at some point during development, either differentially or constitutively, at a false
positive rate of 5%, equivalent to an FDR of 18%, on each time point analyzed inde-
pendently. At the 3.19% FDR, 13.8% of all interrogationpositions – roughly equiv-
alent to 13.8% of non-repeat sequence – is found to be differentially expressed. At
the closely matched FDR of 3.21%, our algorithm reports 50.3% of differentially
expressed interrogation positions, representing almost a four-fold improvement in
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positive rate, and, if the FDR estimates are accurate, in sensitivity. This is not too
surprising since the algorithm used in [18] uses a non-parametric test and doesn’t
pool nearby probes together, which, together with a small number of replicates,
results in low power. On the other hand, that approach sidesteps most concerns
about modeling of the data, which we tried to address with simulations. Even if
our algorithm can not detect transcripts that are expressed but not differentially
expressed, we are still able to detect as transcribed during development almost
twice as much sequence at a much more stringent FDR.

Diffrags and their expression patterns can be conveniently visualized in the
Integrated Genome Browser [15] as shown in Fig. 1. Several isoforms of the silver
gene (svr) are clearly differentially expressed across embryonic development. It
appears that a long isoform is up-regulated for the first two time points whereas
a short form is up-regulated towards the end of embryonic development. Introns
are also detected albeit with weaker DE.

We now turn to some preliminary analysis of the results. A more thorough
analysis will be the subject of a follow up paper. Following [18] we broke down
diffrags by their relative position to annotated genes; that is, whether they over-
lap exons, introns or neither (intergenic). Diffrags that cannot be unequivocally
assigned to one category are split according to their overlap and the summary
statistics are reported in base pairs (bp). Of 5.78 × 107 differentially expressed
bps, 38% are classified as exonic and 38% as intronic, with the remaining 25%
being intergenic. While the comparison with the work of Manak et al.[18] is dif-
ficult because of different goals and error rates, it is interesting to observe that
the gain in sensitivity is confined to intronic (three-fold) and intergenic (7-fold)
regions, with only a modest gain in exonic regions. A possible explanation is
that intronic and intergenic expression occurs at lower levels [14].

We also looked at the global patterns of DE, measured as log-scale difference
w.r.t. the mean, for each diffrag, over the 12 time points and summarized with
the same number of box-plots in Fig. 2.
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Fig. 2. Log-scale DE pattern distributions

The main observation that can be
drawn is that at 4–6h and 20–22h
there is a greater variability of expres-
sion. To the best of our knowledge,
this has not been reported previ-
ously. Those two time points coincide
with very important biological transi-
tions: the onset of detectable zygotic
transcription and the beginning of
larval-specific transcription at the end
of embryogenesis. An equivalent plot
where each diffrag is weighted with its
length (not shown) is very similar.

We then performed a Principal
Component Analysis on the patterns of DE. The first 4 components are plotted
in Fig. 3. The first component represents an early/late expression dimension.
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Fig. 3. First 4 principal components (colored in black, red, green and blue in order of
decreasing variance) of the DE patterns

More interesting is the second, with two peaks at 4-6 and 20-22 hours, again the
two time points we singled out before as being of particular biological signifi-
cance. This points to a global change and reorganization of expression patterns
as the organisms undergoes important biological transitions and deserves further
study. The third principal component seems to decline as maternal transcripts
are degraded in the first 4 hours and then constantly increase.

6 Discussion and Further Work

We developed an algorithm for the detection of regions of DE from tiling ar-
ray data. The algorithm is based on a simplified but reasonable model of tran-
scription and hybridization and generalizes classic segmentation techniques. It
achieves a marked improvement in sensitivity and specificity over the only pub-
lished alternative and can work at a target FDR, which appears to be accurate
in simulations. Moreover, it is very efficient and can handle the largest available
datasets. A preliminary analysis of the results of running the algorithm on a real
dataset points to interesting biological observations worth further investigation.

While finding the extent of DE has been the main focus of this work, esti-
mating the number and length of the diffrags is also an important goal. More
accurately detecting diffrag boundaries is a first step towards characterizing the
structure of novel exons and transcripts detected with tiling arrays. In [18] a clus-
tering algorithm has been successfully employed to discover several transcript
isoforms that had eluded previous annotation efforts. Dedicated algorithms that
model splice variation and richer datasets that more deeply sample the diver-
sity of the transcriptome promise to be a powerful addition to more established
genome annotation methods [32].

Acknowledgments

I wish to thank Richard Bourgon for many insightful discussions, Gregg Helt
and Ed Erwin for help with the IGB browser and the Transcriptome Group
at Affymetrix for making the data available, in particular John Manak. Simon

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Multivariate Segmentation 323

Cawley and Earl Hubbell also provided useful feedback. Chuck Sugnet, Harley
Gorrell, John Manak, Jim Veitch and Richard Bourgon reviewed early versions of
this manuscript suggesting many improvements, as did on anonymous reviewer.

References

1. http://www.affymetrix.com/transcriptome.

2. http://www.ncbi.nlm.nih.gov/geo.

3. http://www.affymetrix.com/Auth/support/developer/downloads/Tools/
seg-limo.zip.

4. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5053.

5. http://transcriptome.affymetrix.com/publication/drosophila development/.

6. http://genome.ucsc.edu.

7. R. Bellman. On the approximation of curves by line segments using dynamic
programming. Communications of the ACM, 4(6):284, 1961.

8. Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society.
Series B. Methodological, 57(1):289–300, 1995.

9. B.E. Bernstein, M. Kamal, K. Lindblad-Toh, S. Bekiranov, D.K. Bailey, D.J. Hue-
bert, S. McMahon, E.K. Karlsson, E.J. Kulbokas, T.R. Gingeras, et al. Genomic
Maps and Comparative Analysis of Histone Modifications in Human and Mouse.
Cell, 120(2):169–181, 2005.

10. M. Bieda, X. Xu, M.A. Singer, R. Green, and P.J. Farnham. Unbiased location
analysis of E 2 F 1-binding sites suggests a widespread role for E 2 F 1 in the
human genome. Genome Research, 16(5):595, 2006.
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Abstract. An important problem in biology is to understand correspon-
dences between mRNA microarray levels and mass spectrometry peptide
counts. Recently, a compendium of mRNA expression levels and protein
abundances were released for the entire genome of the laboratory mouse,
Mus musculus. The availability of these two data sets facilitate using
machine learning methods to automatically infer plausible correspon-
dences between the gene products. Knowing these correspondences can
be helpful either for predicting protein abundances from microarray data
or as an independent source of information that can be used for learning
richer models such as regulatory networks. We propose a probabilistic
model that relates protein abundances to mRNA expression levels. Us-
ing cross-mapped data from the above-mentioned studies, we learn the
model and then score the genes for their strength of relationship by per-
forming probabilistic inference in the learned model. While we gave a
simplified outline of our technique in a publication aimed at biologists
(Cell 2006), in this paper, we give a complete description of the Bayesian
model and the computational technique used to perform inference. In ad-
dition, we demonstrate that the Bayesian technique achieves mappings
with higher statistical significance, compared to standard linear regres-
sion and a maximum likelihood version of the proposed model.

1 Introduction

Proteins are macromolecules essential to the structure and function of all liv-
ing cells. The biological process in which cells produce proteins from DNA in-
volves an intermediate step where the DNA is transcribed into messenger RNA
(mRNA), before being translated into a protein. An important problem in biol-
ogy is to understand correspondences between levels of mRNA transcripts and
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abundances of proteins that are produced. However, the biological processes un-
derlying translational regulation are quite complex, so inferring correspondences
between these two gene products is non-trivial. Addressing this correspondence
problem would facilitate better understanding of cell functionality (c.f. [1,2]). If
we know that there is a direct relationship between the two gene products, we
can determine protein abundance level at the genome level using simpler and
more cost-effective microarray-based mRNA expression measurements. Alterna-
tively, if we can ascertain no relationship between them, they can be treated as
complementary independent sources of information that can be used in learning
richer models, such as for predicting interaction networks.

In this paper, we seek to infer relationships between protein abundance and
mRNA level using noisy high throughput expression profiles of mRNA obtained
using microarrays and expression profiles of protein obtained using mass spec-
trometry. We define a probabilistic model that relates cross-mapped products
from these data sets. After learning the parameters of the model using the cross-
mapped data, we score the strength of the relationship between protein abun-
dance level and mRNA expression level on a gene by gene basis. In addition, we
perform permutation testing and assign a p-value to each gene, thereby obtain-
ing a confidence measure of the significance of the inferred relationship. In [1],
we provide a biologist’s overview of some parts of the model described in this
paper. Here, we provide thorough description of the computational method used
to analyze the data. Further, we compare our method to linear regression (which
has previously been proposed for this problem) and maximum likelihood esti-
mation in our model, and show that the Bayesian approach recovers a larger
number of statistically-significant relationships. The relationships thus detected
provide a resource for potential new biological discoveries [1].

There have been a number of previous approaches to inferring correlations
between mRNA and protein levels [3,4,5]. Almost all previous methods perform
correlation analysis on a global scale, and report positive but weak association
between transcript and translational levels. These methods suffer from three
main problems. First, they usually summarize global relationships between the
measured levels of the two gene products. However, it is an accepted fact that
the processes involved in translating mRNA into protein product are quite com-
plicated and vary between genes. Therefore, a more relevant goal is to infer
correlation on a gene-by-gene basis [6]. Second, measurements obtained from
existing technologies are prone to be quite noisy, but most previously proposed
methods either do not explicitly account for noise or assume a strictly Gaussian
form of noise. One way to account for non-Gaussian noise is to include addi-
tional hidden variables, such as unknown abundances of bio-molecules, but most
previously-proposed methods do not incorporate such hidden variables. Meth-
ods reported in [3, 6] use robust correlation approach and were able to report
stronger correlations, thereby conveying that we can better relate the two gene
products by properly accounting for non-Gaussian noise. However, one problem
with the approach suggested in [6] is that it uses a concordance test based on a
presence or absence call, making it inappropriate when quantitative expression
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Fig. 1. A schematic figure illustrating differences between our approach and a
Gaussian-noise-model approach. In (a), we show the probability of mRNA expression
given different values for the peptide count, under a linear model with Gaussian noise
of fixed variance. This noise model does not capture the fact that the variance of a sum
of counts depends on the number of counts. Further, it does not account for outlying
mRNA expression measurements, caused by spurious noise. In (b) we show the kind of
probability model used in this paper – the variance decreases for larger values of the
peptide count, and the noise model is heavy-tailed and thus the model is less sensitive
to outliers.

values are to be analyzed. Following this line of thinking, we formulate a proper
probability model that accounts for relevant noise processes, as shown schemati-
cally in Fig. 1. Third, previously, models that take into account multiple sources
of variability that govern the relationships between the two gene products could
not be directly learned from data mainly because of limited availability of data.
Therefore, earlier approaches suffered from inability to be invariant to known
sources of variation.

In this paper, we overcome these three problems in a principled fashion, al-
lowing us to better understand relationships between mRNA and protein levels.
We propose a method that analyzes the available data on a gene-by-gene ba-
sis. To obtain an understanding at the gene level, we introduce a probabilistic
model that uses a Bernoulli switch variable, which when inferred, either explains
microarray expression levels of mRNA as a noisy linear function of the hidden
parameter of a Poisson distribution over observed peptide counts, or as being
independent of peptide counts and accounted for by a background model learned
using only microarray measurements. The probabilistic framework can account
for both biological and experimental sources of uncertainty. In conjunction with
our biology collaborators, we recently published comprehensive dataset of mRNA
expression [8] and protein expression [1] across the entire genome of the labora-
tory mouse, Mus musculus. We make use of these large-scale data sets to learn
the model. The probabilistic framework enables us to incorporate other possible
kinds of data in a principled way.

The reminder of the paper is organized as follows: Sec. 2 describes the reliably
cross-mapped dataset we used for our analysis. Sec. 3 describes the probability
model we propose for inferring relationship between the two datsets, and the
method used for inference and learning in this model. In Sec. 4, we provide the
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results of our analysis, and compare them with other existing standard tech-
niques. We draw conclusions in Sec. 5 and outline potential directions for future
work.

2 Data and Its Representation

In this paper, we make use of the compendium of protein abundances reported
in [1]. This molecular compendium provides the protein content of 4,768 pro-
teins in four major organelle compartments (cytosol, membranes or microsomes,
mitochondria and nuclei) in six organs (brain, heart, kidney, liver, lung and
placenta) of the laboratory mouse, Mus musculus. Protein abundance is mea-
sured using a comprehensive comparative proteomic profiling procedure based on
gel-free multidimensional protein identification technology (MudPIT). We per-
formed 7 MudPIT experiments and summed their spectra to obtain a discrete
measure of protein abundance known as peptide count. It is shown that peptide
counts produced by this procedure are positively correlated with actual protein
abundance and thus can plausibly be used as a quantitative measure of protein
abundance [7].

Recently, two genome-scale surveys of mRNA transcripts levels in mouse tis-
sues were published [8, 9]. While [8] uses high-density inkjet synthesized long-
oligonucleotide microarrays, [9] uses custom short-oligonuleotide Affymetrix gene
chips to study gene expression. We performed a three-way cross-mapping be-
tween these three data sets, and found 1,914 detected gene products to be in
common across all three platforms. We used this cross-mapped set of genes to
perform our analysis of inferring relationships between mRNA transcript levels
from [8] and protein abundance from [1].

3 A Probability Model of mRNA Expression and Protein
Abundance

Figure 2 shows a Bayesian network for inferring relationships between mRNA
expression levels and protein abundance levels on a gene-by-gene basis. We con-
sider a set of G genes that are indexed by g. Let m and y be the measurements
of its two gene products, mRNA expression level and protein abundance level.
Both m and y are T -dimensional vectors corresponding to measurements of T
tissues. We index the tissues by i so that ith element, yi, of the vector y is the
peptide count corresponding to the ith tissue.

As described in Sec. 2, the peptide count for a particular tissue is the sum
of counts across multiple MudPIT experiments. When multiple MudPIT ex-
periments record the presence of a particular protein, the final peptide count
corresponding to the protein will be large. Therefore, for each tissue, we model
the effect of multiple MudPIT experiments on its observed peptide counts using
a latent variable xi. We can view this variable as the true rate at which peptides
are presented in all MudPIT experiments. We represent this unknown rate for
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Fig. 2. A probability model for inferring the relationship between peptide counts
measuring protein expression and microarray mRNA expression levels. This Bayesian
network makes use of plate notation, where the sub-model within a rectangle, includ-
ing edges entering the rectangle, is replicated; The nodes outside the rectangle and
connected to the nodes in the rectangle are shared across all replications. For instance,
the graph in the innermost rectangle corresponds to a single gene g and is replicated T
times to match with T tissues. All the T tissues for a single gene g shares the same s, w
and τ variable. As each gene has independent set of these variables, we use another sub
model indexed by g. The variables that are shared across multiple genes are outside
the outermost rectangular enclosing.

all tissues by x. With this, the distribution of the peptide counts for the protein
given the rate is modeled using an independent Poisson distribution for each
tissue, with rate parameter xi:

p(y|x) =
T∏

i=1

p(yi|xi) =
T∏

i=1

e−xixyi

i

yi!
. (1)

We model the rate parameter x using a Gamma distribution,

p(x) =
T∏

i=1

p(xi) =
T∏

i=1

βα

Γ (α)
xα−1

i e−xiβ . (2)
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The Gamma distribution is suitable because it is the conjugate prior to the
Poission distribution, so we can analytically compute the posterior distribution
p(x|y) over the rate variables given the peptide counts. This is also a Gamma
distribution given by

p(x|y) =
T∏

i=1

p(xi|yi) =
T∏

i=1

(β + 1)α+yi

Γ (α + yi)
x

(α+yi)−1
i e−xi(β+1). (3)

This posterior distribution is concentrated on a small range of x when y is large;
A large value for y indicates that the corresponding protein level is measured
reliably by multiple MudPIT experiments. When the observed peptide count is
small, it reflects uncertainty in the expression of a particular protein and there-
fore the prior distribution plays a more dominating role, making the posterior
distribution more spread out.

We represent the expression profile of the mRNA abundance corresponding
to a particular gene by a vector m, so that the expression for the ith tissue
is mi. We know that there are many genes for which mRNA expression and
protein abundance levels do not agree due to either biological factors such as
post-translational modifications or experimental factors such as noisy measure-
ments and changes in conditions between measurements. We model the decision
about whether or not the data can be mapped using a binary switch variable,
s, with prior distribution denoted by P (s). We typically fix P (s = 1) = .95,
but this is only a prior on the decision and hence will play only a weak role
and not force linear relationships where there aren’t any. For a particular gene,
if the switch is in the ‘off’ state (s=0), it indicates that the mRNA expression
levels and the hidden peptide rates for that gene do not agree. In this case,
the microarray measurements are assumed to be independent of the proteomics
measurements, and the microarray measurements are accounted for by using
a background model po(m) learned using kernel density estimation (c.f. [10]).
Kernel density estimation captures the underlying space of microarray expres-
sion profile by placing common variance Gaussian kernels on each profile, where
variance is computed using leave-one-out cross validation. For our model, we use
the entire available microarray data for each tissue to learn their corresponding
independent background model.

If the switch variable is in the ‘on’ state (s=1), the microarray measurement
for each tissue is explicitly modeled as a noisy linearly weighted function of the
average peptide counts, given by mi = wxi + noise. We assume the noise in
the microarray measurement is Gaussian with mean 0 and variance τ . While we
assume Gaussian noise here, the model on the whole is multi-layer and hierar-
chical with many more random variables with different distributions including
Poisson, Gamma, and discrete. This means that the resulting model is far from
being Gaussian and therefore does not have the shortcomings of linear regression
and correlation-based methods, which effectively assume Gaussian noise.

The scalar weight w is shared across all tissues for a particular gene and is in-
terpreted as the scaling factor required to match xi with mi for all tissues, up to
some noise level. As w models gene-specific effects, it accounts for technological
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effects such as microarray probe sensitivity and microarray data normalization,
to name a few. Also, w can capture biological effects such as translational ef-
ficiency; When the translational efficiency is higher for one gene compared to
another, it will have a smaller value for w. The distribution of m conditioned on
s,x, w and τ is given by

p(m|x, τ, s, w) =
{∏

i po(mi) if s = 0
∏

i
1√
2πτ

exp(−(mi − wxi)2/2τ) if s = 1 (4)

As described in Sec. 2, we have, for each gene, measurements from 6 tissues.
This means that we need to infer the scaling factor w for each gene using only
6 measurements. Using only 6 measurements to determine w is likely to lead to
overfitting, making the inferred relationship statistically insignificant. Instead,
we take a Bayesian approach that enables us to integrate over all possible values
of w. For this, we model the scaling factor w as a random variable with a Gaussian
prior distribution so that the effect of w can be averaged out over its entire range
of values. Similarly, we also treat the inverse variance τ−1 as a random variable
with a Gamma distribution as the prior. The parameters of both these prior
distributions are shared across all genes, and are learned using the entire data
set of expression profiles.

Since the joint model is a Bayesian network, we can write the joint distri-
bution over the variables modeled by it as the product of all the conditional
distributions. With θ = {w, τ},

p(x,y,m, θ, s) = p(x)p(y|x)p(m|x, s, θ)p(θ)P (s). (5)

The objective of the model is to account for relationship between microarray
mRNA expression data and protein peptide count data. One approach to this is
to learn the model so as to maximize p(m,y). However, if we trained the model
to maximize the joint probability, p(m,y), the model will try to account for
variability in protein and mRNA expression due to factors such as gene function
and tissue-specificity. In fact, our intention for the model is not to explain the
biological variability in gene expression but to infer the mapping between the two
sources of data. Therefore, we learn the model p(m|y), which is conditioned on
the observed peptide counts and thus need not explain gene- and tissue-specific
variations, unless they pertain to the predictability of the mRNA abundance
from the protein abundance. While one approach will be to model p(y|m), we
choose to model p(m|y) because inference and learning is more straight-forward.
In summary, given a data set of cross-mapped proteomics and microarray data,
our goals are to

– Learn the parameters of the model that maximizes the probability p(m|y)
of observing the mRNA expression profile given the peptide counts for the
entire set of genes, and

– Infer, for each gene, the probability P (s = 1|m,y) that a linear relationship
does exist between measurements of these gene products.
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3.1 Learning the Model

Given the mRNA expression levels and the protein abundance levels for a set
of T tissues corresponding to G genes, the goal is to learn the parameters of
the model that maximizes the conditional distribution

∏G
g=1 p(m(g)|y(g)). Using

(5), we can write the joint distribution over the observations by integrating over
all the hidden variables, s,x, θ:

p({m(g),y(g)}) =
∫

θ

G∏

g=1

∑

s

P (s(g))
∫

x
p(x(g))p(y(g)|x(g))p(m(g)|x(g), s(g), θ)p(θ) (6)

As described above, we do not want our model to account for biological variabil-
ity in gene expression. Therefore, we can approximate the marginal distribution
over the peptide counts p(y(g)) by its empirical distribution. To achieve this, we
replace p(x(g))p(y(g)|x(g)) with p(x(g)|y(g))p(y(g)) as follows

p({m(g),y(g)}) =
∫

θ

G∏

g=1

∑

s

P (s(g))
∫

x
p(x(g)|y(g))p(y(g))p(m(g)|x(g), s(g), θ)p(θ). (7)

This expression gives us the desired conditional probability:

p({m(g)}|{y(g)})≈
∫

θ

G∏

g=1

∫

x

∑

s

P (s(g))p(x(g)|y(g))p(θ)p(m(g)|x(g), s(g), θ), (8)

where p(x(g)|y(g)) can be analytically computed as shown before.
The integration over θ cannot be computed analytically, and hence we cannot

optimize the above quantity exactly. But, for each gene, we can lower bound
it using an approximate posterior distribution p(w, τ−1|y(g),m(g)) ≈ q(g)(θ) =
q(g)(w)q(g)(τ−1). Here, we use a factorized distribution because accounting for
the joint distribution is computationally more difficult. For mathematical and
computational convenience, we choose q(g)(w) as a Gaussian distribution and
q(g)(τ−1) as a Gamma distribution.

log p(m(g)|x(g), s(g)) ≥ log q(m(g)|x(g), s(g))

=
∫

θ

q(g)(θ) log
p(θ)p(m(g)|x(g), s(g), θ)

q(g)(θ)
(9)

We optimize the bound by alternating between finding the posterior distributions
and updating the model parameters. This guarantees that the bound becomes
tighter with each iteration and becomes equal when the approximate posterior
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distribution is same as the true posterior distribution [11]. After computing
q(m(g)|x(g), s(g)), it can be substituted into (8) to give

p({m(g)}|{y(g)}) ≥
G∏

g=1

∑

s

P (s(g))
∫

x
p(x|y(g))

∫

θ

q(g)(θ) log
p(θ)p(m(g)|x, s, θ)

q(g)(θ)

≈
G∏

g=1

∑

s

P (s(g))
∫

x
p(x(g)|y(g))q(m(g)|x(g), s(g)). (10)

Computing this integral over x is hard because it involves taking an expecta-
tion of q(m(g)|x(g), s(g)) with respect to p(x|y). An approach to compute this
expectation is to sample from p(x|y) and average q(m(g)|x(g), s(g)) using the
sample [12]. We resort to this approach as it is easy to sample from p(x|y), as
given by (3). We draw N samples x(1), · · ·x(N) from p(x|y) and use them to
approximate the true expectation using the sample average,

p(m|x) ≈
∑

s

P (s)
N∑

n=1

q(m|x(n), s). (11)

At this juncture, one may wonder why not collect samples from θ as opposed to
using variational inference to integrate over θ. The reason we choose to do it this
way is that it is hard to sample from the distribution governing θ, and would
require Markov-chain monte-carlo methods. In contrast, sampling from p(x|y)
is exact as it is a known distribution that is easy to sample from. Our goal of
learn a model that maximizes p({m(g)}|{y(g)}) lends itself to a simple inference
algorithm.

3.2 Inferring Strength of Relationships

For a gene under consideration, the strength of the relationship between its pair
of mRNA expression level and protein abundance is given by the probability,
P (s|m,y). We can compute this quantity by applying Bayes rule:

P (s|m,y) =

∫

x p(m|s,x)p(x|y)P (s)
∑

s

∫

x p(m|s,x)p(x|y)P (s)
≈

1
N

∑N
n=1 P (s)q(m|s,x(n))

∑
s

1
N

∑N
n=1 P (s)q(m|s,x(n))

.

(12)
For this computation, we evaluated the integral using sampling; We used N
samples x(1), · · ·x(n) from p(x|y), in combination with (11). To compute this
probability, we first fix a value for s. When s = 1, for each tissue, we obtain 1000
samples from p(xi|yi). We then compute p(m|s,x(n)) for each of the samples
and then average the probabilities. When s = 0, we do not need to sample
from p(xi|yi) as we use the background model for explaining the microarray
measurements. We can normalize the two to obtain the desired distribution,
P (s = 1|m,y).
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4 Results

We learned the model described above with the data from Sec. 2. Then, for
each of the 1, 914 genes, we computed the probability of a linear relationship
between the mRNA expression profile and the corresponding peptide counts as
given by (12). We used a permutation test to examine whether our probability
calculation is well-calibrated. Since the model parameters are shared across all
genes, we used 720 permutations where each permutation involved independently
permuting the peptide counts of the tissues within the gene, while making sure
that the permutation did not result in the observed data (this is possible because
many peptide counts are 0). After each set of permutations, we re-learned the
model and scored the genes. Then, we computed the p-value based on how many
times we observed a particular probabilistic score by chance.

A plausible alternative approach to our proposed Bayesian way of integrating
over parameters θ, is to replace the parameters with point estimates, known as
maximum likelihood (ML) estimation. We learned the model by performing ML
estimation on w (using an EM-type algorithm) and scored the genes based on
p-value obtained using permutation testing as described above. We also studied
another much simpler approach, which is to fit a linear regressor (LR) for each
gene individually, assuming a fixed variance. We used permutation testing in this
case as well to obtain a p-value for each gene. After obtaining p-values using these
three methods, we chose to look at the 568 genes that had p-values less than
.05 for all the three methods. From Fig. 3(a), it is clear that for a large number
of genes, the p-values achieved by the Bayesian method is much lower than the
p-value achieved by ML or LR, with ML doing slightly better than LR. Further,
for a given p-value threshold, the number of genes satisfying the threshold is
larger for the Bayesian method than for either the ML or LR methods. The
advantage of using the Bayesian approach is that when under uncertainty (here,
we need to estimate w from only 6 measurements), it integrates over all possible
ranges of values for the parameters, as opposed to ML and LR, where only a
single value for the parameters is used. This is another advantage of our approach
which allows us to obtain relationships that are much more reliable as it can
better reason under uncertainty, taking into account all the modeled sources of
variability. Fig. 3(b)-(c) shows each of these 568 genes as a point in a scatter
plot comparing the Bayesian p-values to the ML or LR p-values.

We also analyzed scenarios when one of the methods infers a much stronger
relationship (or lack thereof) than the other methods. For this, we performed
three experiments. We selected all genes that had p-values less than .005 under
our proposed Bayesian method, and had p-values greater than .05 under the
other two methods. We found 158 such genes, 10 of which are shown in Fig. 4a.
We see that these genes have expression values that are large and would require
paying a huge penalty under LR and ML to match the mRNA expression with
the average peptide count. The Bayesian method, in contrast, can average over
all values of w, appropriately weighted, and thus is less sensitive to the large
deviations. In Fig. 4b, we show 10 of the 44 genes where ML performs better
than the other methods under the same threshold criterion described above. For
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Fig. 3. Comparison between our Bayesian method, maximum likelihood (ML) estima-
tion in the same model, and linear regression (LR). We consider only 568 genes that
have p-values (computed from a permutation test) less than .05 in all three methods.
(a) shows that for a large number of genes, the Bayesian mapping achieves much lower
p-values than the ML or LR methods and for a given p-value threshold detects a larger
number of cases with p-values below this threshold. (b) shows the scatter plot of the
p-values obtained by the LR and Bayesian method while (c) shows the scatter plot
of the p-values obtained by the ML and Bayesian method. In (b) and (c), markers
below the 45. red line correspond to genes whose Bayesian p-value is lower (indicating
higher statistical significance for the Bayesian method) than the ML or LR methods
respectively, and vice versa.

these genes, the expression profiles of both gene products are relatively flat and
small, indicating quite weak signal values. Fig. 4c shows 10 of the 61 examples
in which the p-value under LR is smaller than the other two methods. In this
case, the peptide counts are quite tissue-specific and the mRNA expressions are
similar, thereby allowing LR to fit the data exactly.

We can also use this model to partition the data into three groups of biological
interest: inliers, borderline cases and outliers. The outliers correspond to the set
of genes that have P (s = 1|m,y) ≤ .33 and have p-values that within .05.
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Fig. 4. Comparison of the genes products when (a) Proposed Bayesian method (b)
Maximum likelihood (c) Linear regression estimates a significant relationship than the
other two methods. See accompanying text for details.

These correspond to genes where there is significant disagreement between the
measurements of the two gene products. We found that 503 pairs of gene products
were in this class. Several of these were blood-borne factors that showed highest
mRNA probe signal intensity in liver (where they are primarily synthesized),
whereas the corresponding proteins are preferentially detected in the lung and
placenta (which are rich in blood vessels). We were able to uncover 409 genes in
which the measurements of the two gene products were significantly correlated
(P (s = 1|m,y) ≥ .66 and had p-values that were within .05). We call these
genes inliers. We group all genes that do not belong to either inliers or outliers
as borderline. Figure 5 depicts a breakdown of the genes into the three categories.

We further performed analysis to find if these categorizations have relation-
ships to biological functions. We found that inlier genes were significantly en-
riched (p-value < 10−3) in gene ontology (GO) function annotations such as
cell adhesion and central nervous system. The outlier genes were enriched for
GO function annotations including embryogenesis and transport, while border-
line genes were enriched with function annotations such as mitochondrion, and
functional and skeletal developmental anomalies.
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Fig. 5. Clustering of combined peptide and microarray gene profiles into three cate-
gories: inliers, borderline and outliers. We can see that for inliers, the genes are typically
tissue specific and have similar expression patterns between the two data sets. For out-
liers, there is significant disagreement in expression profiles.

5 Conclusion

We introduced a probabilistic model for inferring relationships between mRNA
expression levels and protein abundance measured as peptide counts. Our model
enables probabilistic scoring of the strength of the relationship between the gene
products on a gene-by-gene basis. In addition, the same model can be used to test
the significance of the relationship. Our model provides a principled framework
for including various hidden variables and sources of uncertainty, both biological
and experimental, that can affect the measured protein abundance and mRNA
expression levels. Importantly, we showed that a Bayesian treatment of our model
yields a larger number of statistically significant predictions, in comparison to a
maximum-likelihood treatment of our model and linear regression (correlation).
We studied experimental variability in the measurement of protein and mRNA
levels and we were able to partition a set of genes into inliers, outliers and
borderline, based on whether their gene products significantly agree or disagree
or unknown. We can further augment the model to incorporate various other
information such as protein functions, protein-protein interactions and temporal
measurements. As an example, for learning regulatory networks, we can augment
our proposed model for inferring correlation between mRNA of a gene and all
its protein products, or infer RNA interference by finding relationships between
several mRNAs and a single protein.
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Abstract. A centromere is a special region in the chromosome that plays a vital
role during cell division. Every new chromosome created by a genome rearrange-
ment event must have a centromere in order to survive. This constraint has been
ignored in the computational modeling and analysis of genome rearrangements to
date. Unlike genes, the different centromeres are indistinguishable, they have no
orientation, and only their location is known. A prevalent rearrangement event in
the evolution of multi-chromosomal species is translocation, i.e., the exchange of
tails between two chromosomes. A translocation may create a chromosome with
no centromere in it. In this paper we study for the first time centromeres-aware
genome rearrangements. We present a polynomial time algorithm for comput-
ing a shortest sequence of translocations transforming one genome into the other,
where all of the intermediate chromosomes must contain centromeres. We view
this as a first step towards analysis of more general genome rearrangement models
that take centromeres into consideration.

1 Introduction

Genomes of related species tend to have similar genes that are, however, ordered dif-
ferently. The distinct orderings of the genes are the result of genome rearrangements.
Inferring the sequence of genome rearrangements that took place during the course of
evolution is an important question in comparative genomics. The genomes of higher
organisms, such as plants and animals, are partitioned into continuous units called
chromosomes. Every chromosome contains a special region called a centromere, which
plays a vital role during cell division. An acentric chromosome, i.e. one that lacks a cen-
tromere, is likely to be lost during subsequent cell divisions [9]. Thus a rearrangement
scenario that preserves a centromere in each chromosome is more biologically realistic
than a one that does not. The computational studies on genome rearrangements to date
have ignored the existence and role of centromeres. Hence, the rearrangement scenarios
for multi-chromosomal genomes produced by current algorithms may include genomes
with non-viable chromosomes. In this study we begin to address the centromeres in the
computational analysis of genome rearrangements.

Since sequencing a centromere is almost impossible due to the repeated sequences
it contains, the only information we have on a centromere is its location in the genome.
Therefore, in the model we define, centromeres appear as anonymous and orientation-
less elements. We say that a genome is legal if each of its chromosomes contains a

� This study was supported in part by the Israeli Science Foundation (grant 309/02).

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 339–353, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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single centromere. A legal rearrangement operation results in a legal genome (Fig. 1).
The legal rearrangement sorting problem is defined as follows: given two legal genomes
A and B, find a shortest sequence of legal rearrangement operations that transforms A
into B. The length of this sequence is the legal distance between A and B.

X1

Y1

ILLEGAL

X2

Y2

−Y2

−X1Y1

X2

X1

Y2
LEGAL

X2

Y1

Fig. 1. An example of legal and illegal translocations for a certain cut of two chromosomes. The
black circles denote the location of the centromeres. The broken line indicates the positions where
the two chromosomes were cut.

A reciprocal translocation is a rearrangement in which two chromosomes exchange
non-empty ends. A reciprocal translocation results in an illegal genome if exactly one
of the exchanged ends contains a centromere. In this paper we focus on the problem
of legal sorting by reciprocal translocations, abbreviated hereafter LSRT. This problem
is a refinement of the ”sorting by reciprocal translocations” problem (hereafter SRT),
which ignores centromeres. SRT was studied in [3,2,5,6] and is solvable in polynomial
time. Clearly a solution to SRT may not be a solution to LSRT since 50% of the possible
reciprocal translocations are illegal (Fig. 1). Indeed, in many cases more rearrangements
are needed in order to legally sort a genome.

In this study we present a polynomial time algorithm for LSRT. The basic idea is
to transform LSRT into SRT, by replacing pairs of centromeres in the two genomes
by new unique oriented elements. Our algorithm is based on finding a mapping be-
tween the centromeres of the two given genomes such that the solution to the resulting
SRT instance is minimum. We show that an optimal mapping can be found in poly-
nomial time. To the best of our knowledge, this is the first rearrangement algorithm
that considers centromeres. While a model that permits only reciprocal translocations
is admittedly quite remote from the biological reality, we hope that the principles and
structure revealed here will be instrumental for analyzing more realistic models in the
future. One additional advantage of centromere-aware models is that they restrict dras-
tically the allowed sequences of operations, and therefore are less likely to suffer from
high multiplicity of optimal sequences.

The paper is organized as follows. Section 2 gives the necessary preliminaries. In
Section 3 we model LSRT and present some elementary properties of it. Section 4
describes an exponential algorithm for LSRT, which searches for an optimal mapping
between the centromeres of A and B, .i. e., one that leads to a minimum SRT solution.
In Section 5 we take a first step towards a polynomial time algorithm for LSRT by
proving a bound that is at most two translocations away from the legal translocation
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distance. In Section 6 we present a theorem leading to a polynomial time algorithm for
computing the legal translocation distance and solving LSRT. For lack of space most
proofs are omitted and the final polynomiality result is only sketched.

2 Preliminaries

This section provides the needed background for SRT. The definitions follow previous
literature on translocations [3,2,5,6]. In the model we consider, a genome is a set of
chromosomes. A chromosome is a sequence of genes. A gene is identified by a positive
integer. All genes in the genome are distinct. When it appears in a genome, a gene is
assigned a sign of plus or minus. The following is an example of a genome with two
chromosomes and six genes: {(1, −5), (−4, −3, −2, 6)}.

The reverse of a sequence of genes I = (x1, . . . , xl) is −I = (−xl, . . . , −x1). Two
chromosomes, X and Y , are called identical if either X = Y or X = −Y . Therefore,
flipping chromosome X into −X does not affect the chromosome it represents.

Let X = (X1, X2) and Y = (Y1, Y2) be two chromosomes, where X1, X2, Y1, Y2
are sequences of genes. A translocation cuts X into X1 and X2 and Y into Y1 and Y2
and exchanges segments between the chromosomes. It is called reciprocal if X1,X2,
Y1 and Y2 are all non-empty. There are two types of translocations on X and Y . A
prefix-suffix translocation switches X1 with Y2:

(X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1, −X1).

A prefix-prefix translocation switches X1 with Y1:

(X1, X2), (Y1, Y2) ⇒ (Y1, X2), (X1, Y2).

Note that we can mimic one type of translocation by a flip of one of the chromosomes
followed by a translocation of the other type.

For a chromosome X = (x1, . . . , xk) define Tails(X) = {x1, −xk}. Note that flip-
ping X does not change Tails(X). For a genome A define Tails(A) =

⋃
X∈A Tails(X).

For example: Tails({(1, −3, −2, 4, −7, 8), (6, 5)}) = {1, −8, 6, −5}. Two genomes A1
and A2 are co-tailed if Tails(A1) = Tails(A2). In particular, two co-tailed genomes
have the same number of chromosomes. Note that if A2 was obtained from A1 by
performing a reciprocal translocation then Tails(A2) = Tails(A1). Therefore, SRT is
solvable only for genomes that are co-tailed. For the rest of this paper the word “translo-
cation” refers to a reciprocal translocation and we assume that the given genomes, A
and B, are co-tailed. Denote the set of tails of A and B by Tails.

2.1 The Cycle Graph

Let nand N be the number of genes and chromosomes in A (equivalently, B) respec-
tively. We shall always assume that both A and B consist of the genes {1, . . . , n}. The
cycle graph of A and B, denoted G(A, B), is defined as follows. The set of vertices is
⋃n

i=1{i0, i1}. The vertices i0 and i1 are called the two ends of gene i (think of them
as ends of a small arrow directed from i0 to i1). For every two genes, i and j, where
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j immediately follows i in some chromosome of A (respectively, B) add a black (re-
spectively, grey) edge (i, j) ≡ (out(i), in(j)), where out(i) = i1 if i has a positive
sign in A (respectively, B) and otherwise out(i) = i0, and in(j) = j0 if j has a pos-
itive sign in A (respectively, B) and otherwise in(j) = j1. An example is given in
Fig. 2(a). There are n −N black edges and n − N grey edges in G(A, B). A grey edge
(i, j) is external if the genes i and j belong to different chromosomes of A, otherwise
it is internal. A cycle is external if it contains an external edge, otherwise it is internal.

Every vertex in G(A, B) has degree 2 or 0, where vertices of degree 0 (isolated
vertices) belong to Tails. Therefore, G(A, B) is uniquely decomposed into cycles with
alternating grey and black edges. An adjacency is a cycle with two edges. A breakpoint
is a black edge that is not part of an adjacency.

2.2 The Overlap Graph with Chromosomes

A signed permutation π = (π1, . . . , πn) is a permutation on the integers {1, . . . , n},
where a sign of plus or minus is assigned to each number. If A is a genome with the set
of genes {1, . . . , n} then any concatenation πA of the chromosomes of A is a signed
permutation of size n.

Place the vertices of G(A, B) along a straight line according to their order in πA.
Now, every grey edge and every chromosome is associated with an interval of ver-
tices in G(A, B). Two intervals overlap if their intersection is not empty but none con-
tains the other. The overlap graph with chromosomes of A and B w.r.t. πA, denoted
OVCH(A, B, πA), is defined as follows. The set of nodes is the set of grey edges and
chromosomes in G(A, B). Two nodes are connected if their corresponding intervals
overlap. An example is given in Fig. 2(b). This graph is an extension of the overlap
graph of a signed permutation defined in [4]. Let OV(A, B, πA) be the subgraph of
OVCH(A, B, πA) induced by the set of nodes that correspond to grey edges (i.e. ex-
cluding the chromosomes’ nodes). We shall use the word “component” for a connected
component of OV(A, B, πA).

In order to prevent confusion, we will refer to nodes that correspond to chromosomes
as “chromosomes” and reserve the word “vertex” for nodes that correspond to grey
edges. A vertex is external (resp. internal) if it corresponds to an external (resp. internal)
grey edge. Obviously a vertex is external iff it is connected to a chromosome. A compo-
nent is external if it contains an external vertex, otherwise it is internal. A component
is trivial if it is composed of one (internal) vertex. A trivial component corresponds
to an adjacency. Note that the internal/external state of a vertex in OVCH(A, B, πA)
does not depend on πA. Therefore, the set of internal components in OVCH(A, B, πA)
is independent of πA. The span of a component M is the minimal interval of genes
I(M) = [i, j] ⊂ πA that contains the interval of every vertex in M . Clearly, I(M) is
independent of πA iff M is internal. The following lemma follows from A and B being
co-tailed and [4, Corollary 2.2]:

Lemma 1. Every internal component corresponds to the set of grey edges of a union of
cycles in G(A, B).

The set of internal components can be computed in linear time using an algorithm in
[1].
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Fig. 2. Auxiliary graphs for A1 = {(1, −2, 3, −6, 7, −11, 10, −9, −8, 12), (5, 4)}, B1 =
{(1, . . . , 4), (5, . . . , 12)} (πA1 = (1, −2, 3, −6, 7, −11, 10, −9, −8, 12, 5, 4)). (a) The cycle
graph. Black edges are horizontal, grey edges are curved. (b) The overlap graph with chromo-
somes. The graph induced by the vertices within the dashed rectangle is OV(A1, B1, πA1). (c)
The forest of internal components.

2.3 The Forest of Internal Components

(M1, . . . , Mt) is a chain of components if I(Mj) and I(Mj+1) overlap in exactly one
gene for j = 1, .., t − 1. The forest of internal components [2], denoted F (A, B), is
defined as follows. The vertices of F (A, B) are (i) the non-trivial internal components
and (ii) every maximal chain of internal components that contains at least one non-
trivial component. Let M and C be two vertices in F (A, B) where M corresponds to a
component and C to a chain. M → C is an edge of F (A, B) if M ∈ C. C → M is an
edge of F (A, B) if I(C) ⊂ I(M) and I(M) is minimal. See Fig. 2(c) for an example.
We will refer to a component that is a leaf in F (A, B) as simply a leaf.

2.4 The Reciprocal Translocation Distance

The reciprocal translocation distance between A and B is the length of a shortest se-
quence of reciprocal translocations that transforms A into B. Let c(A, B) denote the
number of cycles in G(A, B). Let |F (A, B)| and l(A, B) denote the number of trees
and leaves in F (A, B) respectively. Obviously |F (A, B)| ≤ l(A, B). Define

δ(A, B) ≡ δ(F (A, B)) =

⎧
⎪⎨

⎪⎩

2 if |F (A, B)| = 1 and l(A, B) is even

1 if l(A, B) is odd

0 otherwise (|F (A, B)| �= 1 and l(A, B) is even)
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Theorem 1. [2,3] The reciprocal translocation distance between A and B is n−N −
c(A, B) + l(A, B) + δ(A, B)

Let Δc denote the change in the number of cycles after performing a translocation on
A. Then Δc ∈ {−1, 0, 1} [3]. A translocation is proper if Δc = 1, improper if Δc = 0
and bad if Δc = −1.

Corollary 1. Every translocation in a shortest sequence of translocations transforming
A into B is either proper or bad.

Proof. An improper translocation cannot decrease the translocation distance since it
does not affect any parameter in its formula. 	


3 Incorporating Centromeres into a Genome

We extend the model described above by adding the requirement that every genome is
legal (i.e. every chromosome contains exactly one centromere). We denote the location
of a centromere in a chromosome by the element •. The element • is unsigned and
thus does not change under chromosome flips. The following is an example of a legal
genome: {(1, 2, 3, •, 4), (•, 5, 6)}. The set of tails is defined for regular elements, thus
Tails(•, 5, 6) = {5, −6}. We assume that a cut of a chromosome does not split a cen-
tromere. Clearly, for every cut of two chromosomes one translocation is legal while the
other is not (see Fig. 1).

3.1 A New Precondition

We present here a simple condition for the solvability of LSRT. If this condition is not
satisfied then A cannot be transformed into B by legal translocations. For chromosome
X = (x1, . . . , xi, •, xi+1, . . . , xk) define Elements(X) = {x1, . . . , xi, −xi+1, . . . ,
−xk}. Note that Elements(X)=Elements(−X). For genome A we define Elements(A)
=

⋃
X∈A Elements(X). For example:

Elements({(1, 2, •, 3, 4), (•, 5, 6)}) = {1, 2, −3, −4, −5, −6}.

Observation 1. Let A and B be two legal genomes. If A can be transformed into B by
a sequence of legal translocations then Elements(A) = Elements(B).

We will see later that this condition is also sufficient. Thus, for the rest of this paper we
assume that the input to LSRT is co-tailed genomes A and B satisfying Elements(A) =
Elements(B) = Elements. The cycle graph of A and B, G(A, B), ignores the • elements.

3.2 On the Gap Between the Legal Distance and the “Old” Distance

Let d(A, B) denote the legal translocation distance between A and B. Let dold(A, B)
denote the translocation distance between A and B when the • elements are ignored.
Obviously d(A, B) ≥ dold(A, B). Consider the genomes A2 and B2 in Fig. 3. It can
be easily verified that dold(A2, B2) = 3 and d(A2, B2) = 4. This example is eas-
ily extendable to two genomes A2k and B2k, with 2k chromosomes each, such that
dold(A2k, B2k) = 3k and d(A2k, B2k) = 4k.
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3.3 Telocentric Chromosomes

A chromosome is telocentric if its centromere is located at one of its endpoints. For
example the chromosome (•, 5, 6) is telocentric.

Lemma 2. Let A and B be co-tailed genomes satisfying Elements(A)=Elements(B).
Then A and B have the same number of telocentric chromosomes. Moreover, the set of
genes adjacent to the centromeres in the telocentric chromosomes is the same.

Let η denote the number of non-telocentric chromosomes in A and B. We shall show
later how mapping between centromeres in non-telocentric chromosomes in A and B
can help us to solve LSRT.

3.4 Pericentric and Paracentric Edges

A grey (respectively, black) edge in G(A, B) is said to be pericentric if the two genes
it connects flank a centromere in genome B (respectively, A). Otherwise it is called
paracentric. See Fig. 3(a). For a gene i we define:

cent(i0) =

{
−1 if i has a positive sign in Elements,

1 otherwise.
cent(i1) = −cent(i0)

In other words, the sign of the end closer to the centromere (in both A and B) is posi-
tive, and the sign of the remote end is negative. The legality precondition (Section 3.1)
implies the following key property:

Lemma 3. Let (u, v) be an edge in G(A, B). If (u, v) is pericentric then cent(u) =
cent(v) = 1. Otherwise cent(u)cent(v) = −1.

3.5 Peri-cycles

Let C be a cycle in G(A, B). The peri-cycle of C, CP , is defined as follows. The ver-
tices of CP are the pericentric edges in C. A vertex in CP is colored grey (respectively,
black) if the corresponding edge in C is grey (respectively, black). A path between two
consecutive pericentric edges in C is translated to an edge between the two correspond-
ing vertices in CP . See Fig. 3. Note that if C contains no pericentric edges then its
peri-cycle is a null cycle (i.e. a cycle with no vertices).

Lemma 4. Every peri-cycle has an even length and its node colors alternate along the
cycle.

Proof. Let C be a cycle that contains a black pericentric edge (u1, v1). Suppose u1, v1,
. . . , uk, vk is a path between two consecutive black pericentric edges in C. In other
words, (uk, vk) is a black pericentric edge (possibly u1 = uk and v1 = vk) and
there are no other black pericentric edges in this path. Then according to Lemma 3
cent(v1) = cent(uk) = 1. There is an odd number of edges in the path between v1
and uk and thus there must be an odd number of pericentric edges between v1 and uk

(Lemma 3). It follows that there must exist at least one grey pericentric edge between
any two consecutive black pericentric edges. The same argument for a pair of consec-
utive grey pericentric edges implies that between two such edges there must be at least
one black pericentric edge. 	
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Chromosome 1 Chromosome 2

C

1011 3031

(2, 6)

(a) G(A2, B2)

(1, 2), (2, 3)

(3, 4)

(5, 6)
60612021 5051

(b) The peri-cycle of C

4041

Fig. 3. Pericentric edges and peri-cycles. A2 = {(1, 3, 2, •, 6), (•, 5, 4)}, B2 =
{(1, 2, 3, •, 4), (•, 5, 6)} . (a) The cycle graph G(A2, B2). Pericentric edges are denoted by dot-
ted lines. (b) The peri-cycle of the single cycle in G(A2, B2). The labels of the edges denote the
set of grey edges in the corresponding paths.

It follows that every vertex / edge in a peri-cycle has an opposite vertex / edge. Remov-
ing two opposite vertices / edges from a peri-cycle results in two paths of equal length.
We define the degree of a cycle as the number of grey (equivalently, black) vertices in
its peri-cycle. For example, the single cycle in Fig. 3 is of degree 1.

4 Mapping the Centromeres

This section demonstrates how mapping between the centromeres of A and B can be
used to solve LSRT. We shall first see that trying all possible mappings and then solving
the resulting SRT gives an exact exponential algorithm for LSRT. Later we shall show
how to get an optimal mapping in polynomial time. Let CEN = {n + 1, . . . , n + η}.
For a genome A let Ȧ be the set of all possible genomes obtained by the replace-
ment of each • element in the non-telocentric chromosomes by a distinct element from
CEN. Each i ∈ CEN can be added with either positive or negative sign. Thus |Ȧ| =
η!2η. For example, if A1 = {(1, 2, •, 3, 4), (•, 5, 6)} then Ȧ1 consists of the genomes
{(1, 2, 7, 3, 4), (•, 5, 6)} and {(1, 2, −7, 3, 4), (•, 5, 6)}. Note that every Ȧ ∈ Ȧ satis-
fies Tails(Ȧ) = Tails. For each i ∈ CEN we define cent(i0) = cent(i1) = −1. A
pair Ȧ ∈ Ȧ and Ḃ ∈ Ḃ defines a mapping between the centromeres in non-telocentric
chromosomes of A and B.

Observation 2. Let Ȧ ∈ Ȧ and Ḃ ∈ Ḃ. Then every edge (u, v) in G(Ȧ, Ḃ) is paracen-
tric and satisfies cent(u)cent(v) = −1.

The notion of legality is easily generalized to partially mapped genomes: a genome is
legal if each of its chromosomes contains either a single • element or a single, distinct
element from CEN (but not both). Since A and Ȧ ∈ Ȧ differ only in their centromeres,
there is a trivial bijection between the set of translocations on Ȧ and the set of transloca-
tions on A. This bijection also preserves legality: a legal translocation on Ȧ is bijected
to a legal translocation on A.

Lemma 5. Let Ȧ ∈ Ȧ and Ḃ ∈ Ḃ. Then every proper translocation on Ȧ is legal and
d(Ȧ, Ḃ) = dold(Ȧ, Ḃ).

Proof. Let k = dold(Ȧ, Ḃ). If k = 0 then Ȧ = Ḃ and hence d(Ȧ, Ḃ) = 0. Suppose
k > 0. Let ρ be a translocation on Ȧ satisfying dold(Ȧ · ρ, Ḃ) = k − 1. According
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to Corollary 1, ρ is either proper or bad. Suppose ρ is bad. Then there is another bad
translocation ρ′ that cuts the exact positions as ρ, thus satisfying dold(Ȧ ·ρ′, Ḃ) = k−1,
and either ρ or ρ′ is legal. Suppose ρ is proper. We shall prove that each of the new
chromosomes contains a centromere and hence ρ is legal. Let X be a new chromosome
resulting from the translocation ρ and let (u, v) be the new black edge in it. Since ρ
is proper, G(Ȧ · ρ, Ḃ) contains a path between u and v where all the edges existed
in G(Ȧ, Ḃ). This path contains an odd number of edges. Following Observation 2 for
G(Ȧ, Ḃ), cent(u)cent(v) = −1. X is composed of two old segments, Xu and Xv , that
contain u and v respectively. If cent(u) = −1 then Xu contains an element from CEN,
otherwise Xv contains one. In either case X contains an element from CEN. 	


Theorem 2. Let Ȧ ∈ Ȧ. Then d(A, B) = min{dold(Ȧ, Ḃ)|Ḃ ∈ Ḃ}.

Proof. By Lemma 5, d(Ȧ, Ḃ) = dold(Ȧ, Ḃ) for every Ȧ ∈ Ȧ and Ḃ ∈ Ḃ. Obviously a
legal sorting of Ȧ into any Ḃ ∈ Ḃ induces a legal sorting sequence of the same length, of
A to B. Thus, min{dold(Ȧ, Ḃ)|Ḃ ∈ Ḃ} ≥ d(A, B). On the other hand, every sequence
of legal translocations that sorts A into B induces a legal sorting of Ȧ into some Ḃ ∈ Ḃ,
thus min{dold(Ȧ, Ḃ)|Ḃ ∈ Ḃ} ≤ d(A, B). 	


A pair of genomes, Ȧ ∈ Ȧ and Ḃ ∈ Ḃ, define an optimal mapping between the cen-
tromeres of A and B if d(A, B) = dold(Ȧ, Ḃ). Theorem 2 and Lemma 5 imply the
following algorithm for LSRT:

Algorithm Legal Sorting

1. Choose Ȧ ∈ Ȧ arbitrarily.
2. Compute Ḃ = arg min{dold(Ȧ, B̈)|B̈ ∈ Ḃ}.
3. Solve SRT on Ȧ and Ḃ - making sure that every bad translocation in the

sorting sequence is legal.

It can be shown, by a minor modification of the algorithm in [5], that solving SRT
with the additional condition that every bad translocation is legal can be done in
O(n3/2

√
log(n)). Step 2 can be performed by enumerating all possible mappings and

computing the SRT distance for each. This implies:

Lemma 6. LSRT can be solved in O(η!2ηn + n3/2
√

log(n)).

Our goal in the rest of this paper is to improve this result by speeding up Step 2, i.e.,
finding efficiently an optimal mapping between the centromeres of A and B.

5 Cent-Mappings

Our general strategy will be to iteratively map between two centromeres in A and B
and replace them with a regular element until all centromeres in non-telocentric chro-
mosomes are mapped. The resulting instance can be solved using SRT, but the increase
in the number of elements may have also increased the solution value. The main effort
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henceforth will be to guarantee that the overall increase is minimal. For this we need
to study in detail the effect of each mapping step on the the cycle graph G(A, B). Our
analysis uses the SRT distance formula (Theorem 1). We shall ignore for now the pa-
rameter δ, and focus on the change in the simplified formula n−c+ l (N is not changed
by mapping operations).

A mapping between two centromeres affects their corresponding black and grey peri-
centric edges. Let (i, i′) and (j, j′) be pericentric black and grey edges in G(A, B)
respectively. Suppose cen ∈ CEN is added between i and i′ in Ȧ and between j and
j′ in Ḃ. In this case (i, i′) and (j, j′) in G(A, B) are replaced by the four (paracen-
tric) edges (i, cen), (cen, i′), (j, cen) and (cen, j′) in G(Ȧ, Ḃ). (The first two edges are
black, the latter are grey.) We refer to the addition of cen ∈ CEN between (i, i′) and
(j, j′) as a cent-mapping since it maps between two centromeres. Note that for each
pair of centromeres in A and B there are two possible cent-mappings (corresponding to
the relative signs of the added elements). Given Ȧ ∈ Ȧ, every Ḃ ∈ Ḃ defines η disjoint
cent-mappings and vice versa. Obviously every cent-mapping increases the number of
genes by one (Δn = +1).

Lemma 7. Every cent-mapping satisfies Δc ∈ {−1, 0, 1}.

In the rest of the paper we will analyze the effect of a cent-mapping using peri-cycles. A
peri-cycle can be viewed as a compact representation of a cycle focused on pericentric
edges, which are the only edges affected by cent-mappings. A cent-mapping is called
proper, improper, bad if Δc = 1, 0, −1 respectively. See Fig. 4 for illustrations of the
three types of cent-mappings. We say that a cent-mapping operates on a cycle C if C
contains at least one of the mapped pericentric edges. A proper / improper cent-mapping
always operates on one cycle in G(A, B); A bad cent-mapping always operates on two
different cycles in G(A, B).

Observation 3. Every proper cent-mapping satisfies Δl ∈ {0, 1}. An improper cent-
mapping satisfies Δl = 0. A bad cent-mapping satisfies Δl ∈ {0, −1, −2}.

It follows that a proper cent-mapping satisfies Δ(n−c+l) = 0 iff Δl = 0; An improper
cent-mapping satisfies Δ(n−c+ l) = 1; A bad cent-mapping satisfies Δ(n−c+ l) = 0
iff Δl = −2. A proper cent-mapping is safe if it satisfies Δl = 0. In the following
sections we present two classes of cycles, “annoying” and “evil” for which any set of
proper cent-mappings that eliminates all their pericentric edges is unsafe.

5.1 Annoying Cycles

In this section we focus on cycles in leaves. The degree of every cycle in a leaf is at
most 1 (otherwise it must be external). Moreover, a leaf can contain at most one cycle
of degree 1 (for the same reason). A cycle is called annoying if: (i) it is contained in
a leaf, (ii) its degree is 1, and (iii) a proper cent-mapping on its two pericentric edges
satisfies Δl = 1 (i.e. one leaf is split into two leaves). See Fig. 5(a). Thus a proper
cent-mapping on an annoying cycle satisfies Δ(n − c + l) = 1. On the other hand, any
bad cent-mapping on a cycle contained in the span of a leaf (annoying or not) results
in the elimination of that leaf. Thus, a cent-mapping on two cycles in leaves satisfies
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Fig. 4. The effect of a cent-mapping on peri-cycles. Each of the cycles is a peri-cycle with black
and grey nodes corresponding to centromeres (pericentric edges) in A and B, respectively. In all
cases a cent-mapping on b and g in the top peri-cycles is performed, and the bottom peri-cycles
are the result. Dotted lines denote new edges. (a) and (b) show the two alternative cent-mappings
of a pair of pericentric edges in the same cycle. In case (c) each of the two alternatives generate
a single cycle.

Δ(n − c + l) = 1 + 1 − 2 = 0. Let Cann denote the set of annoying cycles and let
ann = |Cann|. Let Cnona be the set of non-annoying cycles of degree 1 that are contained
in the span of a leaf. See Fig. 5(b). Let nona = |Cnona|.

5.2 Evil Cycles

In this section we focus on cycles that are not in leaves. Let C be a cycle of degree 1
that is not in a leaf and let CP be its peri-cycle. Let (b, g) be an edge in CP . Denote
by V (b, g) the set of grey edges in the corresponding path between b and g in C. The
edge (b, g) is bad if after a proper cent-mapping on b and g the edges in V (b, g) belong
to a leaf, otherwise it is good. For example, in Fig. 3 the edge (b, g) where V (b, g) =
{(1, 2), (2, 3)} is bad.

Lemma 8. The “badness” of edge (b, g) in a peri-cycle is unchanged by other cent-
mappings not involving b and g.

Lemma 9. Let C be a cycle satisfying: (i) deg(C) > 0, and (ii) C contains a new grey
edge, gnew, that was created by a cent-mapping. Let (b, g) be an edge in the peri-cycle
of C such that V (b, g) contains gnew. Then (b, g) is good.

A path in a peri-cycle is bad if all the edges in it are bad. For a path P , let len(P ) denote
the number of vertices in P . A cycle C is called evil if its peri-cycle contains a bad path
P such that len(P ) > deg(C). For example, the single cycle in Fig. 3 is evil since it
contains a bad edge, which is a bad path of length 2, and its degree is 1. An example of
an evil cycle with only bad edges in its peri-cycle is presented in Fig. 5. Let Cevil denote
the set of all evil cycles that are not in leaves. Define evil = |Cevil|.
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(c) An evil cycle with only bad edges in its peri-cycle(b) A cycle in Cnona(a) An annoying cycle

1 234

chromosome 2

71210 9 458

chromosome 1

1 1123 6

Fig. 5. Examples of cycles in Cann, Cnona and Cevil. In all the figures the target genome B is a
fragmented identity permutation (i.e., every grey edge is of the form (i, i + 1)), pericentric edges
are denoted by dotted lines.

Lemma 10. Let C be a cycle that does not belong to a leaf. There is a set of safe proper
cent-mappings of all the pericentric edges in C iff C is not evil.

Proof. Let CP be the peri-cycle of C and let k = deg(C). Suppose C is evil. Then PC
contains a bad path P with k + 1 vertices. There are 2k vertices in CP , thus any proper
matching of all the pericentric edges in C must match two vertices from P . It follows
that there must be a proper cent-mapping on the two ends of an edge in P . Hence, by
definition this cent-mapping is unsafe.

Suppose C is not evil. If k = 1 then the two edges in CP are good and the proper
cent-mapping of the two pericentric edges in C is safe. Suppose k > 1. Let CP =
P1, P2 where P1 is a longest bad path in CP . Let u be the first vertex in P1 and let v be
the last vertex in P2. Then (u, v) is a good edge in CP . Let C1 and C2 be the two cycles
created by the proper cent-mapping on u and v, where C1 contains V (u, v). Obviously
this proper cent-mapping is safe, deg(C1) = 0 and deg(C2) = k−1. It suffices to prove
that C2 is not evil. Let CP

2 be the peri-cycle of C2. Then CP
2 = P ′

1P
′
2 where len(P ′

1) =
len(P1) − 1, len(P ′

2) = len(P2) − 1, and P ′
1 and P ′

2 are connected by good edges
(Lemma 9). Let p be the length of the longest bad path in CP

2 . Then (i) p ≤ len(P1) ≤ k
(since P1 is a longest bad path in C), (ii) p ≤ max(len(P ′

1), len(P ′
2)) = len(P ′

2), and
(iii) len(P1) + len(P2) = 2k. It follows that p ≤ k − 1 = deg(C2). Thus by definition
C2 is not evil. 	


Corollary 2. Every cent-mapping satisfies Δ(n − c + l + evil) ≥ 0.

We partition Cevil into three classes:

• C1
evil: Cycles of even degree and only bad edges in their peri-cycle.

• C2
evil: Cycles of odd degree and only bad edges in their peri-cycle.

• C3
evil: Cycles with at least one good edge in their peri-cycle.

If C ∈ Cevil is of degree 1 then C ∈ C3
evil (since otherwise it would be in a leaf).

Every new evil cycle (i.e. an evil cycle created by a cent-mapping) contains a good edge
(Lemma 9) and hence belong to C3

evil. Let C ∈ C3
evil and let (b, g) be an edge opposite to

a good edge in the peri-cycle of C. A proper cent-mapping on b and g satisfies Δl = 1,
Δevil = −1 and hence Δ(n−c+l+evil) = 0. Such a cent-mapping can be viewed as a
replacement of an evil cycle with a leaf. On the other hand, every proper cent-mapping
on a cycle in C1

evil ∪ C2
evil satisfies Δ(n − c + l + evil) = Δ(l + evil) = 1.

Lemma 11. Let C ∈ Cevil. There exists an improper cent-mapping on C for which
Δevil = −1 iff C /∈ C1

evil.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Rearrangements in Genomes with Centromeres Part I: Translocations 351

In other words: for every cycle in C2
evil ∪ C3

evil there exists an improper cent-mapping
satisfying Δ(n − c + l + evil) = 0; Every improper cent-mapping on a cycle in C1

evil
satisfies Δ(n − c + l + evil) = 1. It follows that a cent-mapping on C ∈ C1

evil ∪ Cann

satisfies Δ(n − c + l + evil) = 0 only if it is bad.

Lemma 12. Let C1, C2 ∈ Cevil ∪ Cann, where deg(C1) ≤ deg(C2). If deg(C1) =
deg(C2) then every bad cent-mapping on C1 and C2 satisfies Δ(l + evil) = −2. If
deg(C1) < deg(C2) there exists a bad cent-mapping on C1 and C2 satisfying Δ(l +
evil) = −2 iff C2 ∈ C3

evil.

5.3 Sorting by d + 2 Legal Translocations in Polynomial Time

In this section we present upper and lower bounds for the legal translocation distance.
These bounds provide an intuition for the rather complicated formula for the legal
translocation distance presented in the next section. The proof of the upper bound im-
plies an approximation algorithm that sorts A into B using at most d(A, B) + 2 legal
translocations. For a set of cycles C let subset(C, i) = {C ∈ C : deg(C) = i}. For
example, subset(C1

evil ∪ Cann, 1) = Cann. Define

DEG = {i : |subset(C1
evil ∪ Cann, i)| is odd} CYC = C3

evil ∪ Cnona

For example, if the degrees of the cycles in C1
evil ∪ Cann are {1, 2, 2, 2, 4, 4, 6, 8} then

DEG = {1, 2, 6, 8}. The bad cent-mappings graph, BCM, is defined as follows. It is a
bipartite graph whose two parts are DEG and CYC. Vertices i ∈ DEG and C ∈ CYC
are connected by an edge if deg(C) ≥ i. See Fig. 6 for an example. Thus an edge
(i, C) represents a bad cent-mapping operating on C and C′ ∈ subset(C1

evil ∪ Cann, i)
for which Δ(n − c + l + evil) = 0 and Δ|DEG| = −1.

CYC

DEG

C4C3C2
(1) (6)(3)(1)

86

C1

1 2

Fig. 6. An example for a bad cent-mappings (BCM) graph. DEG = {1, 2, 6, 8}, CYC =
{C1, C2, C3, C4}. The degree of each cycle in CYC appears in brackets below the the cycle.

A matching, M , is a subgraph of BCM where every vertex is adjacent to exactly one
edge. The size of a matching M , denoted |M |, is the number of edges in it. Finding
a maximal matching in BCM is an easy task that can be completed in linear time. De-
fine fbad = |DEG| − |M |, where M is a maximal matching. For a matching M let
FM be the forest of internal components after performing a bad cent-mapping on every
C ∈ Cann ∪ M . In other words, FM is obtained from F by the deletion of every com-
ponent containing in its span a cycle from either Cann or Cnona ∩M . Below we describe
Algorithm Get Mapping 1 for finding a mapping between the centromeres of A and B.
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Algorithm Get Mapping 1

1. Let M be any maximal matching in BCM
2. Perform a bad cent-mapping on every C1, C2 ∈ C1

evil, where deg(C1) = deg(C2).
3. Perform a bad cent-mapping on every pair of cycles in Cann.
/* Now |C1

evil ∪ Cann| = |DEG| */
4. For every (i, C) ∈ M perform a bad cent-mapping on C and C′ ∈ subset(C1

evil ∪
Cann, i), such that Δ(l + evil) = −2 (Lemma 12).

5. While |DEG| ≥ 3: For i = 1, 2, 3 let Ci ∈ C1
evil ∪ Cann, and deg(C1) is mini-

mal. Perform a bad cent-mapping on C2 and C3 and let C4 be the new evil cycle.
Perform a bad cent-mapping on C1 and C4 such that Δ(l + evil) = −2 (Lemma
12).

6. If |DEG| = 2: Perform a bad cent-mapping on C, C′ ∈ C1
evil ∪ Cann.

If |DEG| = 1: Perform an improper cent-mapping on C ∈ C1
evil ∪ Cann.

/* Now |C1
evil| = ann = 0 */

7. Perform an improper cent-mapping on every C ∈ Cevil such that Δevil = −1
(Lemma 11).

/* Now evil = 0 */
8. Perform safe proper cent-mappings on every cycle of degree at least 1 (Lemma 10).
9. Perform a proper cent-mapping on every C ∈ Cnona.

Theorem 3. Let d = d(A, B) and let f = n − N − c + l + evil + �fbad/3�. Then
d ∈ [f, f + 2]. In particular, Algorithm Get Mapping 1 produces Ȧ ∈ Ȧ and Ḃ ∈ Ḃ

for which d(Ȧ, Ḃ) ≤ d + 2.

6 The Legal Translocation Distance

Define mbad = fbad mod 3. For a matching M define fgood(M) = |C3
evil \ M |.

Define δ′ ∈ {0, 1, 2} as follows. δ′ = 2 iff the following conditions are satisfied: (i)
C2

evil = C3
evil = DEG = ∅, (ii) |F∅| = 1, (iii) l and ann are even, and (iv) If ann > 0

then nona = 0. Let δ′ = 0 iff at least one of the following is satisfied:
(γ1) There exists a maximal matching M satisfying lM is even and |FM | �= 1.
(γ2) mbad = 1, DEG = {1} and either (i) |F | > 1, or (ii) l∅ is odd and |C2

evil| > 0
(γ3) mbad = 1 and DEG �= {1}.
(γ4) mbad = 2 and there exists a maximal matching M for which either (i) lM is odd

or (ii) fgood(M) ≥ 1.
(γ5) There exists a maximal matching M for which fgood(M) ≥ 2
(γ6) There exists a maximal matching M for which fgood(M) ≥ 1, lM is odd and

C ∈ C3
evil \ M can be replaced by a leaf such that |FM | > 1.

Theorem 4. The legal translocation distance between A and B is d(A, B) = n−N −
c(A, B) + l(A, B) + evil(A, B) + �fbad(A, B)/3� + δ′(A, B).

The proof of Theorem 4 is by a case analysis of the change in each the parameters
n − c, l, evil, fbad and δ′ for each cent-mapping and hence is quite involved. It leads to
a polynomial time algorithm for finding an optimal mapping between the centromeres
of A and B. This algorithm can be viewed as an extension of Algorithm Get Mapping 1
that includes a constant number of additional operations that consider δ′.
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Theorem 5. LSRT can be solved in O(ηn + n3/2
√

log(n)) time.

Proof. Finding an optimal mapping between the centromeres of A and B can be done
in O(ηn) in the following manner. The set of peri-cycles can be computed in O(n).
For every edge in a peri-cycle we compute its “badness” in O(n) by simply performing
the corresponding proper cent-mapping. Computing the badness of all the edges thus
takes O(ηn). Computing C1

evil, C2
evil, C3

evil, Cann and Cnona and DEG requires a simple
traversal of all the edges in every peri-cycle. Hence it can be done in O(η). Overall the
algorithm performs O(η) operations where each can be implemented in O(n) time. 	


7 Summary and Future Work

Computational studies in genome rearrangements have overlooked centromeres to date.
In this study we presented a new model for genomes that accounts for centromeres.
Using this model we defined the problem of legal sorting by reciprocal translocations
(LSRT) and proved that it can be solved in polynomial time. Unfortunately, the legal
translocation distance formula appears to be quite complex and it is an interesting open
problem whether it or its proof can be simplified.

A solvable LSRT instance requires the two input genomes to be co-tailed and with the
same set of elements (see Section 3.1). This requirement is a rather strong and unrealistic.
Allowing for reversals, non-reciprocal translocations, fissions and fusions will cancel
these restrictions. Under a centromere-aware model, fissions and fusions are legal if they
are centric [7,8]. In future work we intend to study an extension of LSRT that allows for
reversals, (centric) fusions and fissions. We expect an exact algorithm for this extended
problem to bring us nearer to realistic rearrangement scenarios than can be done today.
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Abstract. Numerous efforts are underway to catalog genetic variation in hu-
man populations. While the majority of studies of genetic variation have focused
on single base pair differences between individuals, i.e. single nucleotide poly-
morphisms (SNPs), several recent studies have demonstrated that larger scale
structural variation including copy number polymorphisms and inversion poly-
morphisms are also common. However, direct techniques for detection and val-
idation of structural variants are generally much more expensive than detection
and validation of SNPs. For some types of structural variation, in particular dele-
tions, the polymorphism produces a distinct signature in the SNP data. In this
paper, we describe a new probabilistic method for detecting deletion polymor-
phisms from SNP data. The key idea in our method is that we estimate the fre-
quency of the haplotypes in a region of the genome both with and without the
possibility of a deletion in the region and apply a generalized likelihood ratio test
to assess the significance of a deletion. Application of our method to the HapMap
Phase I data revealed 319 candidate deletions, 142 of these overlap with variants
identified in earlier studies, while 177 are novel. Using Phase II HapMap data we
predict 6730 deletions.

1 Introduction

Since the completion of the reference human genome sequence, efforts have been un-
dertaken to identify genetic variants in the human population. The most comprehensive
of these efforts is the International HapMap Project which aims to produce a genome-
wide catalog of variation in a population of 270 individuals [1]. Both HapMap and
the majority of studies of genetic variation have focused on single base pair differ-
ences between individuals, or single nucleotide polymorphisms (SNPs), due to recent
technological advances which have significantly reduced the cost of measuring SNPs.
However, a number of recent studies have demonstrated that variation at the single nu-
cleotide level is only part of the picture, and that other larger-scale variants are also
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Fig. 1. A. A parent child trio where both parents are homozygous and the child is heterozygous
at a particular SNP. In this case, the genotypes are consistent with Mendelian inheritance. B. A
parent child trio where the father has a hemizygous deletion and will be incorrect genotyped as
homozygous. In this case, the deletion is transmitted and the child is also incorrectly genotyped
as homozygous resulting in a Mendelian error.

common including copy number polymorphisms, i.e. gains and losses of specific chro-
mosomal regions as well as inversion polymorphisms [11]. The relative contribution of
such structural polymorphisms to human genetic variation is still unclear.

Direct techniques for detection and validation of structural variants are generally
much more expensive than detection and validation of SNPs. However, for some types
of structural variation such as deletion polymorphisms, the structural variation leaves a
distinct signature in the SNP data. Specifically, a genotyping assay will incorrectly iden-
tify a heterozygous deletion as a homozygous genotype of the undeleted allele, while a
homozygous deletion with result in a missing SNP. If we observe the genotypes of both
parents and a child, then deletions will typically be observed as an inconsistencies in the
rules of Mendelian inheritance (Figure 1). This inconsistency occurs when one parent
transmits a deletion to the child and the other parent does not. The child’s measured
genotype will then be homozygous in the undeleted allele. If the parent transmitting
this deletion does not have this allele, then a Mendelian error results.

Two recent papers [2], [8] cleverly exploited this idea and introduced techniques for
detecting deletion polymorphisms from the HapMap data by looking for Mendelian
errors in trios. Conrad et al. [2] search for groups of Mendelian errors that are physi-
cally close on the genome. Candidate deletions are filtered using a series of heuristics.
McCarroll et al. [8] create a binary vector for each SNP that indicates the presence
or absence of a Mendelian error for each parent-child pair in the population. They then
cluster these vectors across different SNPs and look for clusters that contain SNPs phys-
ically close on the genome. These methods report 375 and 315 deletion polymorphisms
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respectively, but only 225 of these are common to both studies suggesting that the sen-
sitivity and/or specificity of the methods are relatively poor [11].

The difficulty with detecting deletions from SNP data, is that there is no one-to-one
relationship between Mendelian errors and deletion polymorphisms. First, most ob-
served Mendelian errors are due to experimental errors in genotyping assays rather than
the presence of deletions. Indeed, these errors are routinely filtered out of the official
HapMap releases. Second, not every deletion produces Mendelian errors at the deleted
SNPs: whether or not there is an error depends on the undeleted alleles. For these rea-
sons, using Mendelian errors as a signal for deletions requires sensitive methods to
distinguish deletions from experimental errors.

In this paper, we describe a new probabilistic method for detecting deletion polymor-
phisms from SNP data. The key idea in our method is that we estimate the frequency
of the haplotypes in a region of the genome both with and without the possibility of
a deletion in the region and apply a generalized likelihood ratio test to assess the sig-
nificance of a deletion. We argue that the use of haplotypes is a more precise way to
examine patterns of Mendelian errors than ad hoc clustering used in earlier studies. Our
method has several additional advantages over the earlier methods, neither of which
take into account the haplotype structure in the region. First, our method provides a
p-value confidence level for each prediction and estimates the frequency of the dele-
tion in a region. Second, the method explicitly combines information from multiple
trios, achieving higher specificity than [2] who predict deletions using information only
from individual trios. Finally, our method incorporates a flexible model for genotyp-
ing errors, which can be adapted to the case when neighboring errors are correlated.
This is an important advantage over earlier methods that assume errors are indepen-
dent because we can directly apply our method to the Phase II HapMap data. This data
includes approximately 4 million SNPs, but due to the long range PCR technology[5]
used to collect the data by Perlegen Sciences, errors in neighboring SNPs are inherently
correlated.

Application of our method to the HapMap Phase I data with 1,109,711 SNPs using
a very conservative threshold revealed 319 candidate deletions, 142 of these overlap
with variants identified in earlier studies, while 177 are novel. The advantage of our
method is by using less conservative thresholds, we can potentially discover many more
deletions. We applied our approach to the HapMap Phase II data with 3.8 million SNPs
and discover 6730 candidate deletions.

While this paper was under review, a comprehensive map of copy number variation
in the HapMap samples was published[9]. A direct comparison of our predictions to
this data is complicated for several reasons. The Redon et al. study uses two different
technologies to discover copy number variation. These technologies differ in their pre-
dictions of the genome coverage of copy number polymorphisms in the HapMap by a
factor of two. While the predictions were carefully calibrated to minimize the false pos-
itive rate, the false negative rates of the two technologies are unclear. For these reasons,
a comprehensive benchmarking of our methods will require a reanalysis of the raw data
collected in the Redon et al. study and is beyond the scope of what was possible un-
der the time constraints of the revision cycle of this paper. A compete comparison will
appear in the journal version.
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2 Methods

2.1 Probabilistic Model for Deletion Polymorphisms

Our method for detecting deletion polymorphisms relies on a generative probabilis-
tic model for trios of mother-father-child genotypes. For a window of L SNPs, we
are given a set of haplotypes hD, h1, . . . , hN with frequencies pD, p1, . . . , pN , where
pD +

∑N
j=1 pj = 1. Here, hD represents the deletion haplotype with corresponding

frequency pD. Each haplotype, hj ∈ {0, 1}L is a string of length L consisting of
0’s and 1’s, which represent the two possible alleles of a SNP. Let hi

j denotes the
ith SNP of haplotype hj . We denote the set of haplotype frequencies with the vector
P = (p1, p2, . . . , pN , pD)x.

Each mother-father-child trio is characterized by four-tuple(FT , FU , MT , MU ) of
haplotypes, where FT and FU are the haplotypes of the father, and MT and MU are the
haplotypes of the mother. Here the subscript T denotes the haplotype that is transmitted
from parent to child, and U denotes the untransmitted haplotype, so that the haplotypes
of the child are FT and MT .

Given a pair of haplotypes hj and hk, with hj �= hD and hk �= hD, we define a
genotype G(hj , hk) ∈ {0, 1, 2}L as the string of length L where

G(hj , hk)i =

{
hi

j , hi
j = hi

k,

2, hi
j �= hi

k,
(1)

for i = 1, . . . , L. Thus, 2 represents a heterozygous genotype. We also define G(hj , hD)
= G(hD, hj) = hj . We use the character 3 to indicate a missing SNP with no measured
genotype. Consequently, G(hD, hD) is defined to be the string of L 3’s. We define the
genotypes F = G(FT , FU ), M = G(MT , MU ) and C = G(FT , MT ) for the father,
mother, and child, respectively.

The experimental procedure used to measure genotypes is subject to errors that either
mutate an individual SNPs or fail to assign a value to a SNP. We assume that errors are
independent and identically distributed for each SNP, which is a reasonable assumption
for most genotyping platforms. (See below for exceptions.) Thus, the error process is
given by a set of probabilities {ei→j}3

i,j=0 where ei→j indicates the probability that
a SNP with the value i is measured as the value j. Then the likelihood of observing
genotype Ĝ when the true genotype is G is given by L(Ĝ, G) =

∏L
i=1 eGi→Ĝi .

Given the observed genotypes in a father-mother-child trio, we are uncertain of the
underlying haplotypes due to the possibility of genotype errors as well as the inherent
ambiguity of genotypes. However, if we know the underlying haplotype frequencies P ,
then we can explicitly model this uncertainty by summing over all possible choices
of haplotypes to compute the likelihood of the observed trio of father-mother-child
genotypes (F̂ , M̂ , Ĉ), giving the formula:

L(F̂ , M̂ , Ĉ|P ) =
∑

FT

∑

FU

∑

MT

∑

MU

pFT pFU pMT pMU L(F̂ , F )L(M̂, M)L(Ĉ, C) (2)

For a window W of L SNPs, the likelihood of a data set consisting of K trios
(F̂1, M̂1, Ĉ1) . . . (F̂K , M̂K , ĈK) is then the product of the likelihoods of each trio:
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L(W |P ) =
K∏

k=1

L(F̂k, M̂k, Ĉk). (3)

In our model, the possibility of a deletion within a window is determined by the
value of pD: if pD > 0 then a deletion is present in the window, while if pD = 0, then
no deletion is present in the window. In order to determine whether a deletion occurs
in a region, we use a generalized likelihood ratio test to distinguish the null hypothesis
pD = 0 versus the alternative pD > 0. For the window W we define the score S(W )
by the log likelihood ratio

S(W ) = 2 log
maxP L(W |P )

maxP,pD=0 L(W |P )
(4)

which intuitively measures the increase in likelihood of the data when deletions can be
used to explain the observed genotypes.

S(W ) is asymptotically equal to the chi-square distribution with one degree of free-
dom since (4) is a generalized likelihood ratio test []. Thus, we obtain a p-value ρ(W )
indicating the statistical significance of a deletion in W from the chi-square distribution.

2.2 Efficient Scoring of Candidate Deletions

For each window, (4) can be computed by maximizing likelihood over the haplotype
frequencies using the Expectation Maximization (EM) algorithm [3]. Unfortunately,
direct computation of (4) is impractical because the number of terms in the sum in (2)
is (N +1)4 for a single trio, and we must perform this computation during each iteration
of the EM algorithm. Since the HapMap contains genotypes for close to 4 million SNPs,
this computation becomes intractable for a genome-wide analysis.

In order to make the computation feasible for the HapMap data, we take advantage of
recent progress in haplotype phasing algorithms. A recent benchmarking study[7] has
shown that several of the state-of-the-art phasing algorithms perform extremely well on
trio data. Thus, we make the assumption that these algorithms will accurately predict
the haplotype frequencies p∗1, . . . , p

∗
N assuming there is no deletion (pD = 0) and use

one of these algorithms, HAP[4], to predict the haplotype frequencies. Since deletions
are typically rare in the population, we also assume that in the presence of a deletion,
pD > 0, the remaining haplotypes are correspondingly scaled as pi = (1 − pD)p∗i for
i = 1, . . . , N . We use the notation pD ◦ P = ((1 − pD)p∗1, . . . , (1 − pD)p∗N , pD) to
denote the vector of scaled probabilities.

Under these assumptions, we can efficiently compute the likelihood of the observed
data for any value of pD using the likelihood in the case that pD = 0. We denote
the likelihood in the special case where pD = 0 as L0 = L(F̂ , M̂ , Ĉ|P, pD = 0).
To compute the likelihood for any other value of pD, we decompose the sum in the
likelihood (2) into two parts: one contains all of the terms without any deletions,
and the other part contains terms with at least one deletion. Using the notation |D|
to denote the number of deletions in the set of haplotypes FT , FU , MT , MU , the
likelihood is then
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L(F̂ , M̂ , Ĉ|P ) =
∑

FT ,FU ,MT ,MU ,|D|=0

pFT pFU pMT pMU L(F̂ , F )L(M̂, M)L(Ĉ, C) (5)

+
∑

FT ,FU ,MT ,MU ,|D|>0

pFT pFU pMT pMU L(F̂ , F )L(M̂, M)L(Ĉ, C) (6)

= (1 − pD)4L0 (7)

+
∑

FT ,FU ,MT ,MU ,|D|>0

pFT pFU pMT pMU L(F̂ , F )L(M̂, M)L(Ĉ, C). (8)

Using this equation to compute the likelihood significantly improves the running time
since we only need to compute L0 once and then for any value of pD we can compute
the likelihood by only considering the 4 ∗ (N + 1)3 terms in the sum (8).

We then use EM [3] to compute the maximum likelihood estimate p̂D. The likeli-
hood function (3) can be viewed as a weighted sum of multinomials which motivates
the following update. Given an estimate β of p̂D, we iteratively compute a new estimate
β′ as follows. For each observed trio (F̂k, M̂k, Ĉk) we compute

β′
k =

∑
FT ,FU ,MT ,MU ,|D|>0 |D|pFT pFU pMT pMU L(F̂k, Fk)L(M̂k, Mk)L(Ĉk, Ck)

4L(F̂k, M̂k, Ĉk|β ◦ P )
. (9)

The new estimate β′ is the average of the estimates over all trios β′ = 1
K

∑K
k=1 β′

k.
Since EM is a local optimization method, for each window, we initialize pD to multiple
starting points and repeatedly apply the update until convergence.

3 Results

3.1 Data Preparation and Parameter Selection

We downloaded SNPs for thirty CEPH parent-child trios, a Caucasian population from
Utah (CEU), from Build 16c.1 of the “redundant-unfiltered” version of the Phase I
HapMap data. We filtered the data using the same criteria as described in [2] obtaining
a total of 1,109,711 SNPs.1 The SNP data was phased using HAP [4].

Our model depends on two sets of parameters: the vector P of haplotype frequen-
cies and the error probabilities ei→j . We determine the haplotype frequencies pi, i =
1, . . . , n, directly from the phased haplotype data according to

pi =
occurrences of hi in all parents

2(number of parents)
. (10)

Note that the haplotypes of the child are transmitted from the parents, and thus are not
considering when estimating haplotype frequencies.

To determine the parameters of the error model, we estimate the probability of a
genotyping error by examining specific cases where we can predict either the presence

1 Conrad et al. [2] report 1,108,950 SNPs after filtering the same data. The 761 extra SNPs in
our study is likely due to minor implementation differences. These extra SNPs represent only
0.068% of the total, and thus are unlikely to impact a comparison of the two methods.
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or absence of an error. We examined every SNP in which the father and mother are
homozygous and the offspring has no missing data. In these cases, the genotypes of
the parents define the child’s genotype. If the observed child genotype does not match
the expected genotype, then we observe an error. The genotype error frequency was set
to be the total number of observed errors divided by the total number of SNPs exam-
ined. We found a total of 23,641 errors in 18,093,695 SNP assays, yielding a genotyp-
ing error rate of 1.31E-3 over all chromosomes. Considering chromosomes separately,
we find the maximum and minimum estimated genotyping error rates were 3.82E-3
(chromosome 20) and 1.71E-4 (chromosome 15), respectively. This chromosomal vari-
ation is not surprising since the genotyping centers responsible for different chromo-
somes used different criteria for filtering SNPs prior to releasing the data. We set the
error probabilities {ei→j}2

i,j=0 separately for each chromosome according to the em-
pirical values. A similar approach was taken for errors involving missing data. We set
e0→3 = e1→3 = e2→3 for each chromosome equal to the number of missing SNPs on
that chromosome divided by the total number of genotyped SNPs. We noticed a large
disparity between the rate of missing SNPs among individuals. On chromosome 1, the
highest reported missing SNP rate was 0.0316 (on individual NA12761) and the low-
est was 2.14E-4 (on NA12248), a difference of over 100 times. This seems to indicate
great disparity in the quality of data for each individual. Due to this extreme difference
in the quality of data for each individual, we also tested our model using the empirical
frequency of missing SNPs for each individual. The results were similar to using the
empirical frequency of missing SNPs over all individuals.

3.2 Selecting and Filtering Windows

To improve the efficiency of our approach we examine only windows for which our
method has a reasonable chance of detecting a deletion. Specifically, we examine only
windows containing 1 ≤ L ≤ 40 SNPs, at most twenty unique haplotypes for the 30
trios (out of the 120 possible haplotypes), and at least a single Mendelian error com-
patible with a deletion. We compute a p-value for each window and merge all windows
that exceed a specified p-value threshold to obtain predictions over the whole genome.
The merging produces a set of non-overlapping windows and an associated p-value for
each window giving the probability that this window contains a deletion.

3.3 Predictions and Comparison with Earlier Studies

We compare our method to the method presented in Conrad et al.[2]. Briefly, that
method categorizes each SNP into one of seven categories for each trio, labeled A,B,C,
D,E, or F. A and B being a Mendelian error consistent with a deletion present in the
mother and father, respectively. C represents a Mendelian error that is incompatible
with a deletion in either parent. D represents a configuration with child, mother, and
father being homozygous or having missing data. E and F represent configurations that
include missing data with a possibility of a deletion in the mother and father, respec-
tively. G represents a configuration incompatible with a deletion. The method considers
a window from any trio to be a potential deletion if all SNPs in the windows are in states
A, D, or E for the mother or B, D, F for the father. Another condition is that there are at
least two SNPs in the A category (in an A, D, or E run of consecutive SNPs in the case
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Table 1. The number deletions predicted by our method for different p-value thresholds that
overlap with a deletion found by [2] or [8] or are novel

P-Value Cutoff Novel Deletions Previously Detected Deletions Conrad McCarroll

0.05 1527 334 254/1861 156/1861
0.01 782 280 214/1062 134/1062
0.001 350 192 152/542 106/542
1E-4 177 142 111/319 81/319
1E-5 64 98 80/162 62/162
1E-7 9 59 56/68 45/68
1E-9 1 39 36/40 33/40

of the mother having a deletion) or two SNPs in the B category (in a B, D, or F run of
consecutive SNPs in the case of the father having a deletion). The maximum range of
the deletion is bounded by SNPs in categories compatible with the deletion while the
minimum range of the deletion is bounded by the first and last SNP in the A (resp. B)
category in the case of the mother (resp. father) having a deletion.

Our proposed method has several advantages over the method in Conrad et al.[2].
First, our probabilistic model takes advantage of information from the complete set of
genotypes from all trios in the population while Conrad et al. make a prediction for one
trio at a time. Second, since our method uses a generalized likelihood test, we obtain
a p-value for our predictions. Third, we use information from the haplotype structure
in the region to help predict the deletions. Finally, we estimate the parameters of the
model (the rates of genotype errors and missing data) directly from the data.

Table 1 shows the number of deletions detected by our method and the number re-
ported in the Conrad et al.[2] and also in the McCarroll et al[8] studies that used the
same data for deletion identification.

For the 216 deletions reported in the CEU population by Conrad et al. [2], our method
discovers 319 deletions with a p < 10−4. Similarly we discover 81 of the total 304
deletions reported in [8], with a p < 10−4.

Since many of the Conrad and McCarroll deletions are non-overlapping is is likely
that many more deletions exist in the data which have not been predicted by either
study [11]. However, without a complete set of experimentally verified deletions in the
HapMap individuals, it is unclear if our novel predictions are true deletions are false
positives. In order to evaluate our results, we performed comparisons of our predictions
to the combined predictions of several existing studies of deletion polymorphisms, in
order to examine the sensitivity and specificity of our method. We formed the following
sets of deletions.

1. Set 1: Deletion polymorphisms reported in at least one of the following earlier stud-
ies. Deletions identified by experimental techniques: namely array-CGH [10,6] or
fosmid end sequencing [12], and that contain at least one SNP in the reported dele-
tion. Deletions inferred from SNPs by the methods of Conrad et al. and McCarroll
et al. [8,2]. (606 total).

2. Set 2: Deletions reported in at least one of the experimental studies only. (173 total).
3. Set 3: Deletions reported in at least two of the experimental studies. (18 total).
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In the Set 3, we say that a deletion is reported twice if there is any overlap in the deleted
intervals. For each set of assumed correct deletions, we define a set of intervals over the
genome as follows. We define an interval for each deletion in the set and label that inter-
val as a positive example. Starting at the ends of the deletion, we partition the remaining
portion of the genome into 50kb intervals. Each interval immediately adjoining a dele-
tion is labeled as a gap and ignored for the purposes of the evaluation. The remaining
intervals are considered not to be deletions and labeled as negative examples.

Figure 2 shows the specificity and sensitivity of our method and the method of [2]
when each of these three sets of deletions is the “true” set. It is apparent that our
method consistently outperforms the method of [2]. For example, on Set 3, the method
of Conrad et al. report only 3 true positives and 608 false positives, achieving ex-
tremely poor performance. Even with Set 1, which includes all predictions of Conrad as
“true positives”, the true positive and false positive fractions are 0.256 and 0.743,
respectively.

Conrad et al. [2] performed an experimental validation of 97 detected deletions and
validated 80 of them. These 80 validated deletions correspond to 41 non-overlapping
regions in the genome. Based on these experimental results, they estimated that their
method has a false positive rate of approximately 5% to 14%.

It is very difficult for us to directly compute our false positive rate because we can
not distinguish between false positives and novel deletions. However, by comparing our
findings to all known deletions (Set 1), we estimate an upper bound on our false positive
rate of 2.5%, 13.2%, and 53.9% for p-value thresholds of 1E-9, 1E-7 and 1E-4, respec-
tively. However, this evaluation methodology is overly conservative: since many of the
experimental studies were performed on a different set of individuals, it is likely that
some of the experimentally predicted deletion polymorphisms are simply not present
in the HapMap data. Furthermore, since the experimental studies are performed over
a small set of individuals, it is likely that the HapMap contains many more deletion
polymorphisms. Most likely, many of the predicted deletions counted as false positives
in Figure 2 are in fact novel deletions. We note that even with these extremely con-
servative upper bounds on the false positive rates, we still discover novel candidate
deletions.

Set 1 Set 2 Set 3
False positive rateFalse positive rate False positive rate
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Fig. 2. Receiver operator curve (ROC) curve showing the sensitivity and specificity of our method
of deletion detection on three different sets of deletion polymorphisms. By comparison, the
method of Conrad (the point on the figure) has significantly lower performance.
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Fig. 3. Receiver operator curve (ROC) for the Aug 12, 2006 release of the Phase II HapMap data

Table 2. Number of Deletions predicted by our method on the HapMap Phase II data

P-value Cutoff Deletions

P < 1E-5 6730
P < 1E-7 4227
P < 1E-10 2545
P < 1E-15 1334
P < 1E-20 777
P < 1E-30 323
P < 1E-50 72
P < 1E-80 17

3.4 Phase II Data

We applied our method to the latest Phase II HapMap data as of Aug 12, 2006 con-
taining 3,806,476 SNPS, subjected to the same filtering process as above, and phased
with HAP. Phase II presents some unique challenges due to the long range PCR tech-
nology [5] used to collect the data by Perlegen Sciences. This technology causes errors
in neighboring SNPs that are inherently correlated. Since our method takes into account
the haplotype structure, our method is less sensitive to these correlated errors than pre-
viously proposed methods. Figure 3 shows the specificity and sensitivity of our method
applied to the Phase II data. Sets two and three produce very similar ROC curves in
Phase I and Phase II as is apparent in Figures 2 and 3. Table 2 shows the number of
predicted deletions in the Phase II data. Due to the larger number of SNPs, there are
many more deletions detected with significant p-values.

4 Discussion

We describe a new probabilistic method for detecting deletion polymorphisms from
SNP and phased haplotype data of parent-child trios. Unlike previous heuristic tech-
niques for the same problem, our method is grounded in a generative model which al-
lows us to assign a p-value for each prediction. As expected, when benchmarked against
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the limited set of experimentally validated predictions, our method out performs previ-
ously proposed methods.

However, due to the lack of a complete experimentally verified set of deletion poly-
morphisms, the question of how many deletion polymorphisms can be detected from
SNPs remains open and will likely not be resolved until these methods are compared
against larger collections of experimentally validated deletions. Methods such as ours
for predicting deletion polymorphisms may lead to predictions for novel deletion poly-
morphisms which may then be further experimentally verified and extend the set of
known deletion polymorphisms. By verifying all predicted regions and measuring the
relative number of true deletions versus false predictions, we may obtain a better esti-
mate of the false positive rate of this method. However, without knowing the complete
set of deletion polymorphisms, it will be very difficult to measure the false negative rate.

Haplotype phasing methods must be updated to account for structural polymor-
phisms. Presently, these algorithms will either ignore Mendelian errors, or treat them as
missing data and infer incorrect haplotypes. We have begun to update the HAP phasing
algorithm [4] using the method described here to account for the presence of deletion
polymorphisms.
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Abstract. We present a technique for approximating the free energy
of protein structures using Generalized Belief Propagation (GBP). The
accuracy and utility of these estimates are then demonstrated in two
different application domains. First, we show that the entropy compo-
nent of our free energy estimates can be useful in distinguishing native
protein structures from decoys — structures with similar internal energy
to that of the native structure, but otherwise incorrect. Our method is
able to correctly identify the native fold from among a set of decoys
with 87.5% accuracy over a total of 48 different immunoglobin folds.
The remaining 12.5% of native structures are ranked among the top 4 of
all structures. Second, we show that our estimates of ΔΔG upon muta-
tion upon mutation for three different data sets have linear correlations
between 0.63-0.70 with experimental values and statistically significant
p-values. Together, these results suggests that GBP is an effective means
for computing free energy in all-atom models of protein structures. GBP
is also efficient, taking a few minutes to run on a typical sized protein,
further suggesting that GBP may be an attractive alternative to more
costly molecular dynamic simulations for some tasks.

Keywords: Protein Structure, Decoy Detection, Free Energy, Proba-
bilistic Graphical Models.

1 Introduction

This paper describes a technique for modeling protein structures as complex
probability distributions over a set of torsion angles, represented by a set of
rotamers. Specifically, we model protein structures using probabilistic graphical
models. Our representation is complete in that it models every atom in the
protein. A probabilistic representation confers several advantages including that
it provides a framework for predicting changes in free energy in response to
internal or external changes. For example, structural changes due to changes
in temperature, pH, ligand binding, and mutation, can all be cast as inference
problems over the model. Recent advances in inference algorithms for graphical
models, such as Generalized Belief Propagation (GBP), can then be used to
� Corresponding author.
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efficiently solve these problems. This is significant because GBP is a rigorous
approximation to the free-energy of the system [36]. We will show that these
free energy estimates are accurate enough to perform non-trivial tasks within
structural biology. In particular, we use GBP to a) identify native immunoglobin
structures from amongst a set of decoys with 87.5% accuracy, and b) compute
changes in free energy after mutation that have a linear correlation of upto 0.70
to laboratory measurements.

The Free energy is defined as G = E−TS, where E is the enthalpy of the sys-
tem, T is the absolute temperature, and S is the entropy of the system. There are
numerous energy functions (i.e., E) from which to choose. These functions often
model inter- and intra molecular interactions (e.g., van der Waals, electrostatic,
solvent, etc.). Unfortunately, entropy estimates can be difficult to compute be-
cause they involve sums over an exponential number of states. For this reason,
the entropy term is often ignored altogether, under the assumption that it does
not contribute significantly to the free energy. This is equivalent to modeling
the system at 0 Kelvin. Not surprisingly, this simplification can sometimes limit
the accuracy, and thus the utility of the energy calculations. For example, it
has been conjectured [3,30] that energy functions comprising sums of pairwise
interactions cannot distinguish a protein’s native structure from decoy struc-
tures within about 1 Å RMSD. If true, one likely explanation is that entropy
contributions become significant when structures are similar. Our findings are
consistent with this hypothesis. In particular, we find that the native structure is
usually the one with the highest entropy. This is in agreement with the findings
of others who have have demonstrated the practical benefits of including entropy
in energy calculations (e.g., [16]).

Numerous investigators have observed and attempted to address the limita-
tions of pairwise energy functions. Multi-body statistical potentials are a com-
mon alternative (e.g., [7,28]). Such potentials do not model the physics directly,
but instead use statistics mined from the Protein Data Bank [2] under the as-
sumption that these statistics encode both the entropy and the internal energy.
Carter and co-workers [7], for example, have developed a 4-body statistical po-
tential that predicts ΔΔGs upon mutations with significant accuracy. There are,
however, those that doubt the ultimate utility of statistical potentials (e.g., [29]).

We note that the contributions of this paper do not lie in the suggestion
that a protein’s structure be treated as a probability distribution — clearly this
is the very essence of statistical physics. Rather, our contribution lies in the
demonstration that an inference-based approach to free energy calculations is
sufficiently accurate to perform non-trivial tasks. Additionally, our technique is
efficient and runs in minutes on typical-sized proteins, suggesting it is well-suited
for large-scale proteomic studies.

2 A Markov Random Field Model for Protein Structure

In what follows, random variables are represented using upper case variables,
sets of random variables appear in bold face while lower case variables represent
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specific values that the random variables can take. Thus, the random variables
representing the position of all the backbone atoms is denoted by Xb, those rep-
resenting all the side chain atoms, by Xs, X i

s is the random variable representing
the side chain conformation of the ith residue and xi

b represents a particular value
that the backbone of the ith residue takes.

Let X = {Xb,Xs} be the random variables representing the entire protein
structure. Xb can be represented by a set of 3-d coordinates of the backbone
atoms, or equivalently, by a sequence of bond lengths and dihedral angles. Thus,
Xb is typically a continuous random variable. Each X i

s, is usually represented
by a set of dihedral angles1. While this too is a continuous random variable, due
to steric clashes not all dihedral angles are energetically favorable, allowing a
discretization of this state space into a set of discrete favorable conformations
called rotamers.

The probability of a particular conformation x can be written as

p(X = x|Θ) = p(Xb = xb)p(Xs = xs|Xb, Θ)

or more compactly,

p(X|Θ) = p(Xb)p(Xs|Xb,Θ)

where Θ represents any parameters used to describe this model, including se-
quence information, temperature etc. Frequently the backbone is assumed to be
rigid with a known conformation. Therefore Xb = xb for some particular xb.
The term of interest then becomes, p(Xs|Xb = xb,Θ).

This can be further simplified. Specifically, it is possible to list out conditional
independencies that the above probability distribution must satisfy. Consider the
random variables X i

s, X
j
s representing the side chain conformations of residues

i, j. Due to the underlying physics, if the residues are not close to each other,
their direct influence on each other is negligible. Also, if the residues that directly
influence these residues are in specific conformations, X i

s, X
j
s become condition-

ally independent of each other. Similar independencies can be listed between
side chain variables and backbone variables. These conditional independencies
can be compactly encoded using an undirected probabilistic graphical model,
also called a Markov Random Field(MRF).

For example, consider a particular backbone conformation xb of Lysozyme
(pdb id: 2lyz) shown in Fig. 1(a) with a few residues highlighted. Fig. 1(b)
shows that part of the Markov Random Field that is induced by the highlighted
set of residues. Two variables share an edge if they are closer than a threshold
distance. Edges can thus be present between backbone atoms, between backbone
and side chain atoms and between side chain atoms. This MRF thus represents
the probability distribution of the side chain atoms of a protein with a given
backbone.

1 This is a slight abuse of notation, since it is actually the differences Xi
b − Xi−1

b and
Xi

s − Xi
b that are represented using bond lengths and angles.
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(a) (b)

Fig. 1. (a) Structure of the backbone atoms of lysozyme (pdb id: 2lyz) with a few
residues highlighted (b) Part of the random field induced by the highligted residues:
Xi

s’s are the hidden variables representing the rotameric state, the visible variables are
the backbone atoms in conformations xi

b

In general, an MRF encodes the following conditional independencies for each
vertex Xi and for any set of vertices X′ not containing Xi.

p(Xi|X′, Neighbors(Xi)) = p(Xi|Neighbors(Xi))

That is, a random variable Xi is conditionally independent of every other set of
nodes in the graph, given its immediate neighbors in the graph.

Given this representation, the probability of a particular side chain conforma-
tion xs given the backbone conformation xb can be expressed as

p(Xs = xs|Xb = xb) =
1
Z

∏

c∈C(G)

ψc(xc
s ,x

c
b)

where C(G) is the set of all cliques in G, ψ is a potential defined over the
variables, and Z is the so called partition function.

To completely characterize the MRF, it is necessary to define the potential
function ψ. A common simplifying assumption is that of a pair-wise potential.
We use the Boltzmann Distribution to define a pairwise potential function in
the following manner:

ψ(X ip
s , Xjq

s ) = exp(−E(xip
s , xjq

s )/kBT )

where Eip,jq is the energy of interaction between rotamer state p of residue X i
s

and rotamer state q of residue Xj
s and kB is the Boltzmann constant. Similarly,

we can define the potential function between a side chain random variable X i
s

and a backbone random variable Xj
b which is in an observed state xj

b

ψ(X ip
s , Xj

b ) = exp(−E(xip
s , xj

b)/kBT )

Finally, we define the potential function between two backbone random variables
to have the trivial value of 1, since both are observed, i.e. ψ(X i

b, X
j
b ) = 1.
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Fig. 2. Factor graph representation for the graph shown in Fig. 1(b). The observed
variables corresponding to the backbone atoms can be replaced by a factor at each side
chain variable.

This undirected graphical model, characterized by the variables X, the edges
between the variables and the potential ψ can also be represented more conve-
niently, as a bipartite graph (X, F ), called a factor graph. If we restrict ourselves
to pairwise potentials, as we have done already by our form of potential function,
the equivalent factor graph for the MRF of Fig. 1(b) is shown in Fig. 2. Each
edge between side chain variables has been replaced by edges to a factor repre-
senting the interaction between these variables. Also, it can be shown that the
observed backbone variables can be dropped from the factor graph by replacing
their interactions with each side chain variable by a factor. The probability of a
particular conformation can then be expressed using the factor notation, as

p(xs) =
1
Z

∏

fa∈F

fa(xa
s )

where Xa
s is the set of variables connected to factor fa in the factor graph.

3 Approximating Free Energy

A corollary of the second law of thermodynamics is that a physical system seeks
to minimize its free energy. Thus, the most accurate entropy estimates are ob-
tained when the system has the least free energy. Under the assumption of con-
stant temperature, the free energy of a system is given by

G = E − TS

where E is the enthalpy of the system, T the temperature and S, the entropy.
If we associate a belief b(x) with state x, this can be rewritten as

G =
∑

x

b(x)E(x) + T
∑

x

b(x)ln(b(x))

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Free Energy Estimates of All-Atom Protein Structures Using GBP 371

where the first term and second terms on the right are the enthalpic and entropic
contributions respectively and the summation is over all possible x. Intuitively,
the enthalpic term corresponds to the energy of the system. However, the second
law of thermodynamics dictates that not all energy can be used to do work. The
free energy is the energy left to be used to do work after deducting the energy
that is “lost” which is the entropic deduction mentioned above.

There has been a considerable amount of work by physicists at developing
approximations to estimate these terms [4,11,22,23]. The popular methods are
based on approximating the free energy using a region based free energy. Intu-
itively, the idea is to break up the factor graph into a set of regions R, each
containing multiple factors fR and variables XR, compute the free energy over
the region using estimates of the marginal probability over XR, and then ap-
proximate the total free energy by the sum of the free energies over these regions.
Since the regions could overlap, contributions of nodes – factors or variables –
which appear in multiple regions have to be subtracted out, so that each node
is counted exactly once. This can be done by associating weights wR to the con-
tribution of every node in region R, in such a way that the sum of weights of
the regions that the node appears in, sums to one.

This region graph formalism is fairly general and one can create approxima-
tions of varying degrees. For example, the Bethe approximation[4] is a region
graph with each region containining atmost one factor, while the Kikuchi ap-
proximation is a region graph where the regions are created using the so-called
cluster variational approach that allows regions to contain more than one factor,
and is therefore a better approximation[11,36].

While the Kikuchi approximation has been extensively studied, until recently,
there was a dearth of algorithms that could compute such region graph based ap-
proximations efficiently. See [24] for a recent survey of previously used methods
and their performance relative to GBP. In fact, even computing exact marginals
for the purpose of computing these approximations is NP-Hard, if the graph,
like the MRF described above, has cycles. The Junction Tree algorithm for ex-
act inference has a running time that is exponential in the tree width of the
graph, which can be prohibitively expensive in large graphs. However, recent
advances within the Machine Learning community on approximate algorithms
for inference now allow efficient computation of these approximations 2[34,36].

3.1 Generalized Belief Propagation

Generalized Belief Propagation(GBP) is a message passing based algorithm that
approximates the true marginals. As the name suggests, it is a generalization of
the famous Belief Propagation(BP) algorithm, due to Pearl, and differs from the
latter in the size of its regions that estimate the Free Energy. While BP attempts
to find a fixed point of the Bethe approximation to the free energy mentioned
above, GBP computes fixed points of the more general region based free energy.

There are many variants of GBP; we focus on the so called Two-Way [36]
algorithm since it naturally extends BP. The algorithm can be viewed as running
2 The free energy is often referred to as the “Energy Functional” in this literature.
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BP on the region graph, with one crucial difference in the messages – since the
same node can appear in multiple regions, its contribution to each region must
be weighed in such a way as to ensure it is counted only once. This is done,
by first defining the “pseudo” messages for a region R with parents P(R) and
children C(R)

n0
R→P (xr) = f̃R(xR)

∏

P ′∈P(R)\P

mP ′→R(xr)
∏

C∈C(R)

nC→R(xC)

m0
R→C(xC) =

∑

xR\xC

f̃R(xR)
∏

P∈P(R)

mP→R(xR)
∏

C′∈C(R)\C

nC′→R(xC′),

where f̃R(xR) = (
∏

a∈Ar
fa(xa))wR and then compensating for overcounting by

defining the actual messages as

nR→P (xr) = (n0
R→P (xr))βR(m0

R→C(xC))βR−1

mP→R(xr) = (n0
R→P (xr))βR−1(m0

R→C(xC))βR

where wR is the weight given to region R, pR the number of parents of region
R, and βR = pR/(2pR + wR − 1). The beliefs at R, are then given by

bR(xR) = f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xP)

Note that if βR = 1, this algorithm becomes equivalent to running BP directly
on the region graph.

The algorithm is typically started with randomly initialized messages and run
until the beliefs converge. If it does converge, GBP is guaranteed to find a fixed
point of the region based free energy. While convergence isn’t guaranteed, in
practice, it has been found to converge successfully in many cases, even when
BP doesn’t [33,35].

3.2 Related Work

Probabilistic graphical models have been used to address a number of problems
in structural biology, primarily in the area of secondary structure prediction (e.g.,
[8]). Applications of graphical models to tertiary structure are generally limited
to applications of Hidden Markov Models (HMMs) (e.g., [10]). HMMs make
severe independence assumptions to allow for efficient learning and inference, the
result of which is that long-range interactions cannot be modeled. Long-range
interactions are, of course, found in all protein structures. Our method models
these long range interactions. Graphical models have also been used in the area
of fold recognition/threading [17]. An important difference between threading
and our work is that we model every atom in the structure, while threading is
generally performed over reduced representations.

We focussed on the problem of computing entropy using marginal probabilities
for the unobserved variables, Xs. This however isn’t the only interesting inference
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problem. If our task was to find the single most likely structure, the problem
reduces to Side Chain Placement. Indeed, one of the recent approaches to this
problem of placing side chains [32] can be viewed as a variant of the Junction
Tree algorithm for computing the most likely estimate.

It must be noted that our model is essentially similar to that of [33]. While
they use it in a study to evaluate inference algorithms and perform Side Chain
Placement, our task is to use it to obtain entropy and free energy estimates.

Recent work [20] has shown that most message passing algorithms can be
viewed as minimizing the divergence between the actual probability distribution
and a family of distributions suitably parametrized. The different algorithms
differ in their choice of the divergence measure and their parametrization of the
family of distributions. The pioneering work of [14,15] computes estimates using
a sampling scheme which can be computationally expensive, while [12] attempts
to solve the same problem using a mean-field approach. Mean field methods
minimize the Kullback-Leibler Divergence while Generalized Belief Propagation
(and BP) minimize an “inclusive” divergence. While the former is more accurate
at capturing the zeros of the actual distribution, the latter performs better at
predicting marginals. As we have shown in this section, marginal probabilities
allow us to compute estimates of the entropy and free energy of the distribution.
Thus, Generalized Belief Propagation is more suitable for the problem at hand.

4 Implementation and Results

We implemented the Two-way GBP algorithm described earlier, to compute
region graph estimates of free energy and entropy. We parsed the pdb files using
the pdb parser in the Molecular Biology Toolkit [21]. We then created the factor
graph by computing interatomic distances and creating a factor between residues
if the Cα distance between them was lesser than a threshold value. This threshold
is largely dictated by the sensitivity of the energy function. For the energy terms
we used, we found a threshold of 8.0 Å to be adequate. In the few datasets that
we tested, our results were not affected by small changes in this threshold. We
used the backbone dependent library provided by [6] and a linear approximation
to the repulsive van der Waals force used by [6,33]. Each rotamer in the library
also had an associated apriori probability which we incorporated into the factor
as a prior. We set the temperature of the system to be 300K, which corresponds
to normal room temperature.

We used a region graph construction which created two levels of regions.
The top level contained “big” regions – regions with more than one variable –
while the lower level contained regions representing single variables. Since we
expect the interaction between residues closest in sequence to be very strong,
we placed all factors and nodes between residues within two sequence positions
of each other in one region. Each of the rest of the factors, representing edges
between residues connected in space, formed “big” regions with two nodes in
them. Thus, in the example shown in Fig. 2, (X1

s , X2
S, X3

S , f1, f2, f3, f12, f23),
(X2

s , X3
S, X4

S , f2, f3, f4, f23, f34) and (X1
s , X7

s , f17) would be examples of big
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regions which appear in the top level, while (X1
s ) would be an example of a

small region in the lower level. Finally, we add edges from “big” regions to all
small regions that contain a strict subset of the “big” region’s nodes. In our
example, the region encompassing X1

s , X2
s , X3

s would thus be connected to the
small regions corresponding to each of X1

s ,X2
s , and X3

s .
Since the region graph formalism is very flexible, other equally valid alterna-

tives for creating the graph exist. The best choice of regions will largely depend
on the application at hand and the computational constraints. Our choice of
regions reflects a balance between accuracy and running time by focussing on
residues which are expected to be closely coupled together and placing them in
bigger regions. [1] studies this class of region graphs in more detail.

We initialized the GBP messages to random starting points and ran until
beliefs converged or a maximum number of iterations was reached. It must be
noted that we did not have any problems with convergence: the beliefs converged
in all cases.

We ran our programon datasets obtained from the “Decoys R Us” database[26].
We used the immunoglobin datasets from the “multiple decoy sets”. Each such
dataset consisted of multiple decoy structures along with the native structure of a
protein. We selected immunoglobin because it had a large number of decoys close
to the native structure and has been used extensively to test methods for decoy
detection[28].

Under our assumption of a rigid backbone, our estimates of entropy of different
structures will be comparable only when the other sources of entropy are largely
similar. Thus, our estimates will be most relevant only when the structures have
largely similar backbones. To ensure that we didn’t have backbones very different
from the native structure among our decoys, we removed all decoys with a Cα

RMSD greater than 2.0 Å to the native structure, from each dataset. We then
removed any dataset that ended up with less than 5 decoys so that we didn’t
end up with too few decoys in a dataset. We also removed three datasets which
had missing backbone atoms. At the end of this pruning, there were 48 datasets
left with an average of around 35 decoys per data set.

Fig. 3 shows our results on the immunoglobin dataset. When we ranked the
structures in the decreasing order of their entropy, the native structure ended
up at the top in 42 of the 48 datasets (87.5%). In no dataset was the native
structure ranked higher than 4. Fig. 3(b) shows the scatter plot of the entropy
estimates for a dataset where the native structure(3hfm) has the highest entropy.

To study the structures further, we ran PROCHECK[13] – a program for
structure validation that runs a suite of structural tests. PROCHECK reported
a very high number of main chain bond angles (nearly 13 angles on an average)
as “off graph” – bond angles so far away from the mean that they don’t show
up on the output plots of PROCHECK – for the four native structures which
have a rank three or four.

For example, a total of 27 angles were determined to be “off graph” for 1igc.
In contrast, there were an average of around 2 such angles, among the rest of the
structures. However, not all datasets in which the native structure had bad main
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(a) (b)

Fig. 3. (a) Histogram shows the distribution of the rank of the native structure, when
ranked in decreasing order of entropy for the culled immunoglobin decoy dataset. Over
this dataset, the native structure has the highest entropy 87.5% of the time(b) Entropy
estimates for 3hfm and its decoys, with the value of the entropy along the Y-axis and
the rmsd to native structure along the X-axis. The horizontal line indicates the value
of the entropy of the native structure; all other structures have a lower entropy in this
dataset.

chain bond angles had a decoy as the best rank. 1jel, for example, had 21 main
chain bond angles “off graph” and yet had the best rank among its dataset. This
is not unexpected, since the rank of the native structure is not only determined
by its quality, but also by the quality of the decoys. Thus, our results seem to
be affected, but not solely determined, by unusual main chain conformations.

Since the structures have very similar backbones, we expect that the entropic
contributions from the backbone atoms and our entropy estimates to be most
meaningful in relative order and magnitude. However, in order to test the efficacy
of these estimates in decoy detection, we repeated our experiments on the entire
immunoglobin dataset. Our hope is that while the magnitudes of the entropy
estimates might not be meaningful, the relative order of the native structure will
still be useful.

Fig. 4(a) shows the results of our experiments on the entire immunoglobin
dataset. As can be seen, despite the addition of the dissimilar backbones, the
ranking of the native structure isn’t affected much – in 84% of the datasets, the na-
tive structure has the highest entropy. We then compare our results to the
following different energy functions as reported in [28]: a four body statistical po-
tential(“4body”) developed in [28], the coulombic part of the CHARMM19 force-
field [5], “RAPDF” [27], “DFIRE” [37] and the sum of vanderwal and coulombic
terms of the AMBER force field [31]. These energy functions are described in detail
in [28].

It must be noted that “4body” has a distance parameter; the numbers re-
ported are the best results obtained across different values of this parameter.
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(a) (b)

Fig. 4. (a) Histogram showing the distribution of the rank of the native structure. (b)
Comparison of Results using various energy functions as reported in [28], along with
rankings based on our Entropy estimates. These results are on the 51 Immunoglobin
datasets for which data was available, including decoys with RMSD greater than 2.0
Å. Overall, the entropy estimates outperform all energy functions.

In contrast, the temperature T, which is the only tunable parameter in our
approach, was set to room temperature. Yet, our entropy estimates calculated
using a simple linear potential function, marginally outperforms “4body” and
significantly outperforms all the other pairwise energy terms on this dataset.

Thus these results show that our entropy estimates are very successful in
detecting the native structure from a set of decoys. However, they do not pro-
vide any evidence about the relative magnitude of these estimates. To test this,
we perform a different experiment. We compare experimentally determined val-
ues of difference in the free energy, between the native structures of Barnase,
T4 Lysozyme and Staphylococcal Nuclease (pdb ids: 1BNI, 1L63 and 1STN re-
spectively) and their multiple single point mutants selected from the ProTherm
database[19], with corresponding estimates obtained using GBP. Only mutations
in buried positions were considered in order to minimize the effects of the sol-
vent. All the ΔΔG experiments in a single dataset were conducted at the same
pH value.

Since these mutants have different sequences, the free energy of the denatured
state has to be estimated along with that of the crystal structure, in order
to estimate ΔΔG values. We estimate the free energy of the denatured state
by computing the free energy of the system before inference. Fig. 5 shows our
results on the three datasets. The correlation coefficient between our estimates of
ΔΔG and the experimentally determined values varied from 0.63 to 0.70 with p
values between 1.5*10−5 to 0.0063. This compares favorably with the estimates
– correlations between 0.7 and 0.94 – obtained using the four body potential of
[7] over all their (much smaller) datasets. This gives evidence that our estimates
predict the relative magnitude of ΔΔG with reasonable accuracy.
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(a) (b)

(c)

Fig. 5. Plots showing variation of experimental ΔΔG (on the X-axis) with computed
estimates of ΔΔG, along with a least squares fit for (a) thirty one mutants of barnase
(pdb id: 1BNI), R=0.70, p=1.5*10−5 (b) twenty eight mutants of T4 Lysozyme(pdb
id:1L63), R=0.63, p=3.0*10−4 and (c) fourteen mutants of staphylococcal nuclease
(pdb id:1STN), R=0.69, p=0.0063

5 Conclusion

We have shown that free energy calculations for all-atom models of protein struc-
tures can be computed efficiently using Generalized Belief Propagation. More-
over, these estimates are sufficiently accurate to perform non-trivial tasks. We
first demonstrated that it is possible to identify native immunoglobin structure
from a set of decoys, with high accuracy, by comparing the computed entropies.
We then demonstrated that our ΔΔG predictions for a set of mutations achieved
high linear correlations with experimentally measured quantities. This suggests
that our predictions are not only in the right relative order, but also have ap-
proximately the right relative magnitudes.

Our results have implications for a number of problem domains. First, we
believe that our method could be used in the contexts of protein structure pre-
diction and comparative modeling. Our decoy-detection results suggest that our
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method could be used in conjunction with protein structure prediction programs
that produce multiple putative folds, like rosetta [25]. The accuracy of existing
homology modeling methods is acknowledged to be an important issue in struc-
tural biology (e.g., [18,9]). We are presently extending our technique to allow
backbone flexibility. This would facilitate refining of homology models towards
a lower free-energy configuration, and potentially higher accuracy. Second, we
note that one of the advantages of a graphical model is that it is easily extended.
For example, we could enhance our edge potentials to incorporate experimen-
tal measurements from X-ray crystallography, Nuclear Magnetic Resonance, or
Cryogenic Electron microscopy. These enhancements could be very beneficial in
the context of structure determination experiments where the data are sparse
or low-resolution. Third, we can also extend our model to include ligands by
adding nodes to our graph. This, plus a combination of a backbone flexibility
and a somewhat more sophisticated energy term may lead to more accurate
ΔΔG calculations which, in turn, may be useful in the context of ligand binding
and docking studies. Finally, while our experiments assumed a known protein
sequence, it is possible to simultaneously perform inference over the sequence
and structure, leading to new techniques for performing protein design. We are
actively pursuing these goals as part of ongoing research into the application of
graphical models to protein structures.
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Abstract. Side-chain prediction is an important subproblem of the general pro-
tein folding problem. Despite much progress in side-chain prediction, perfor-
mance is far from satisfactory. As an example, the ROSETTA program that uses
simulated annealing to select the minimum energy conformations, correctly pre-
dicts the first two side-chain angles for approximately 72% of the buried residues
in a standard data set. Is further improvement more likely to come from better
search methods, or from better energy functions? Given that exact minimization
of the energy is NP hard, it is difficult to get a systematic answer to this question.

In this paper, we present a novel search method and a novel method for learn-
ing energy functions from training data that are both based on Tree Reweighted
Belief Propagation (TRBP). We find that TRBP can find the global optimum
of the ROSETTA energy function in a few minutes of computation for approx-
imately 85% of the proteins in a standard benchmark set. TRBP can also effec-
tively bound the partition function which enables using the Conditional Random
Fields (CRF) framework for learning.

Interestingly, finding the global minimum does not significantly improve side-
chain prediction for an energy function based on ROSETTA’s default energy
terms (less than 0.1%), while learning new weights gives a significant boost from
72% to 78%. Using a recently modified ROSETTA energy function with a softer
Lennard-Jones repulsive term, the global optimum does improve prediction ac-
curacy from 77% to 78%. Here again, learning new weights improves side-chain
modeling even further to 80%. Finally, the highest accuracy (82.6%) is obtained
using an extended rotamer library and CRF learned weights. Our results suggest
that combining machine learning with approximate inference can improve the
state-of-the-art in side-chain prediction.

1 Introduction

Proteins are chains of residues, each containing one of 20 possible amino acids. All
amino acids are connected together by a common backbone structure, onto which amino-
specific side-chains are attached. The 3-dimensional structure of a protein can thus be
fully defined by the dihedral angles that specify the backbone conformation on the one
hand (φ, ψ and ω angles), and the side-chain conformations on the other hand (up to 4
dihedral angles, denoted χ1 to χ4).

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 381–395, 2007.
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% Success

χ1

Core 87.9 %
Surface 75.7 %
All 82.2 %

χ1 ∧ χ2

Core 71.9 %
Surface 52.8 %
All 64.3 %

(a) (b)

Fig. 1. (a) Buried and exposed residues of Barnase (PDB code 1brn). The challenge in side-
chain prediction is to locate the native side-chain conformation (sticks), starting from the protein
backbone (depicted as a cartoon), and its amino acid sequence. Blowups for specific regions
are shown for buried residues (left) and exposed residues (right). Note that due to packing, core
residues are significantly more constrained than their exposed counterparts. (b) Success rate of
the state-of-the-art ROSETTA package using default parameters. It can be seen that even for
the core, the fraction of residues for which either the χ1 or χ2 angles are incorrectly modeled
is about 30%. Is improvement more likely to come from better search methods or from better
energy functions?

The problem of predicting the residue side-chain conformations given a backbone
structure is considered of central importance in protein-folding and molecular design
and has been tackled extensively using a wide variety of methods (for a recent review,
see [1]). The typical way to predict side-chain configurations is to define an energy
function and a discrete set of possible side-chain conformations, and then search for the
minimal energy configuration.

Despite much progress, the performance of side-chain prediction is far from satis-
factory. To illustrate the state-of-the-art, Figure 1b shows the results of the ROSETTA
package [2] on a standard benchmark set. The prediction success is typically reported
separately for core residues and surface residues, since core residues are much more
tightly constrained (see Figure 1a). ROSETTA uses an elaborate energy function for
side-chain modeling that contains 8 energy terms. Simulated annealing is used to search
for the minimal energy configuration. As can be seen, the success rate for the first two
angles is around 72% for core residues and 53% for surface residues. Thus even for the
better constrained residues, the prediction is wrong for almost one third of the residues.

One can think of two different approaches to improve this performance: (1) using a
better optimization algorithm to find a lower energy conformation; and (2) changing the
energy function. Deciding between these two approaches is currently difficult because
simulated annealing and many of the other minimizers used in side-chain prediction are
only guaranteed to find local minima of the energy function. We therefore do not know
if a better optimizer would find a better solution.

Obviously a method that can find the global optimum of the energy function could
shed light on this question. Unfortunately, it has been shown that for energy functions
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typically used in side-chain prediction, finding the global optimum is NP complete [3].
While this makes it extremely unlikely that we will be able to find the global optimum
for all proteins in polynomial time, it leaves open the option for finding the global op-
timum for some proteins. Indeed, methods such as dead-end-elimination (DEE) [4,5,6]
and linear programming relaxations [7] have been shown to find the global optimum
for simple energy functions in side-chain prediction. However, as reported in [7], these
techniques do not work well for more complicated energy functions and to the best of
our knowledge, no one has successfully found the global optimum for the elaborate
ROSETTA energy function.

In this paper, we present a novel search method and a novel method for learning
energy functions from training data that are both based on Tree Reweighted Belief
Propagation (TRBP). We find that TRBP can find the global optimum of the ROSETTA
energy function in a few minutes of computation for approximately 85% of the proteins
in a standard benchmark set. TRBP can also effectively bound the partition function
which enables using the Conditional Random Fields (CRF) framework for learning of
better energy functions.

Interestingly, finding the global minimum does not significantly improve side chain
prediction for an energy function based on ROSETTA’s default energy terms (less than
0.1%), while learning new weights gives a significant boost from 72% to 78%. A recent
modification of the ROSETTA energy function is aimed at optimal side-chain model-
ing and uses a softer van der Waals term [8]. This energy function yields significantly
better results than ROSETTA’s default parameters (77% with simulated annealing).
In this case, the global optimum improves prediction accuracy by 1.2%. Learning new
weights again improves side-chain modeling, to 80%. Finally, not unexpectedly, the
use of extended rotamer libraries improves modeling: combined with CRF learned
weights it yields the highest accuracy (82.6%). Our results suggest that combining ma-
chine learning with approximate inference can improve the state-of-the-art in side-chain
prediction.

2 Side-Chain Prediction

The input to the side-chain prediction task, which we will denote by y, is a list of amino-
acids that make up the protein as well as the three-dimensional shape of the backbone.
The output, which we will denote by x, is up to 4 dihedral angles, denoted χ1 to χ4,
for each amino acid. In principle, the output is a continuous valued vector whose length
is 4 times the number of amino acids in the protein. However, the common practice is
to discretize the output space into a small number of possible angles. These discrete
angles (usually up to 3 possibilities per angle) define a discrete set of possible side-
chain configurations called rotamers [9]. Side-chain prediction thus becomes a discrete
optimization problem:

x∗ = arg min
x∈R

E(x, y) (1)

where R is the discrete set of rotamer configurations, and the energy function E(x, y)
is, typically, defined in terms of pairwise interactions among nearby residues and inter-
actions between a residue and the backbone. Approaches to side-chain prediction differ
in their choices of energy functions and search methods.
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Search Methods. Although the minimization problem for side-chain prediction has
been shown to be NP hard [3], recent years have shown significant progress in search
methods. Simulated annealing with Monte Carlo sampling used in Rosetta is a fast
and efficient method to locate energy minima, but is not guaranteed to find the global
minimum energy conformation.

The dead end elimination (DEE) algorithm is an exhaustive search algorithm that
tries to reduce the search space as much as possible. It is based on a simple condition
that identifies rotamers that cannot be members of the global minimum energy confor-
mation [4,5,6]. In cases where enough rotamers can be eliminated, the global minimum
energy conformation can be found by an exhaustive search of the remaining rotamers.

Kingsford et al. [7] used the method of Linear Programming (LP) Relaxation to
locate the global optimum. They rewrote equation (1) as an integer program and then
relaxed the integer constraints to obtain a linear program. They found that for an energy
function similar to SCWRL [1], the LP solution was almost always integral, meaning
that the LP relaxation found the global minimum. However, once they added a second
energy term, the percentage of problems for which LP found an integer solution dropped
dramatically. They also discussed using a commercial Integer-Programming package
(CPLEX) and found it could work on the two-term energy functions that LP could
not solve.

Energy Functions. Many of the early energy functions were primarily based on the
repulsive part of the van der Waals energy term. The successful SCWRL program [1,9]
approximates the repulsive portion of the 12-6 Lennard-Jones potential with a piecewise
linear function. SCWRL also takes into account the prior probabilities of rotamers in a
training set.

ROSETTA’s energy function that is used for side-chain prediction also includes a re-
pulsive term and prior probabilities of rotamers, but combines these with six other terms
to obtain an atomic level, physically realistic energy function. Specifically it contains
the following energy terms [10]:

1. The attractive portion of a 12-6 Lennard-Jones potential (herein denoted by atr).
2. The repulsive portion of a 12-6 Lennard-Jones potential (rep). This term is damp-

ened in order to compensate for the use of a fixed backbone and rotamer set.
3. A solvation term, calculated using the model of Lazaridis and Karplus [11] (sol).
4. Rotamer energy: Backbone dependent internal free energies of rotamers, estimated

from PDB statistics performed by Dunbrack and Karplus [9] (dun).
5. A hydrogen-bonding potential, dependent both on distance and angles [12]. For his-

torical reasons, this term was divided into: (a) Side-chain to side-chain interactions
(hbond 1); (b) Side-chain to backbone interactions (hbond 2); and (c) Backbone to
backbone interactions (constant for the task of side-chain prediction).

6. A pair term that primarily reflects the electrostatic attraction and repulsion (pair).
It describes the tendency of polar amino acid residues to contact each other, based
on a statistical analysis of PDB structures of seeing two amino acids close together
in space (after accounting for the intrinsic probabilities of these amino acids to be
in that environment).

7. An internal term that reflects clashes within a side-chain conformation (intra).
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The energy function, E(x, y) is defined as a weighted sum of the eight terms. De-
noting by λi the weight of the ith term, the energy is:

E(x, y; λ) =
8∑

i=1

λiEi(x, y) (2)

2.1 Learning Energy Functions

Most current energy functions are based on a combination of parameters that describe
different aspects of a protein structure, some from physical chemistry (such as atr and
rep), others from analyses of given protein structures (such as dun).

What is the relative importance of the different terms in the energy function? The
supervised learning problem of setting the relative contribution, i.e. the weights, of the
energy terms can be formulated as follows: given a set of training proteins {xt, yt}T

t=1,
where xt is the side-chain configuration in the crystal structure of protein t and yt

denotes its backbone structure, seek parameters λ that maximize the prediction success
rate. Kuhlman and Baker [2] used a conjugate gradient-based optimization method to
optimize the weights of these energy terms by decreasing the energy of the native state
relative to a small number of decoy configurations.

Conditional Random Fields [13] provide a principled way of learning energy func-
tions from labeled data [14, 15, 16]. Defining the probability of the native side-chain
configuration (for a given backbone structure) as:

Pr(xt|yt; λ) =
1

Zt(λ)
e−E(xt,yt;λ) (3)

with:
Zt(λ) =

∑

x∈R
e−E(x,yt;λ) (4)

CRFs seek to maximize the product of the probabilities Pr(xt|yt; λ) over all training
proteins {xt, yt}T

t=1. The term “Conditional Random Fields” comes from the fact that
we are maximizing the conditional likelihood – we are not maximizing the joint proba-
bility of side-chain and backbone, but rather the conditional probability of a side-chain
configuration given the backbone. CRFs have several attractive properties for learning
energy functions: the conditional log likelihood is a convex function of the parameters
λ and the gradient of the log likelihood is simply:

∂ ln Pr(xt|yz; λ)
∂λi

= −Ei(xt)+ < Ei >λ (5)

Hidden Conditional Random Fields (HCRFs) [17, 18] extend conditional random
fields to settings where some of the variables are hidden. This is simply done by marginal-
izing out the hidden variables. In practice, a Viterbi approximation in which the marginal-
ization is replaced with maximization, is often used [15]. This leads to maximizing:

Pr(xt|yt; λ) ≈ max
h

1
Zt(λ)

e−E(xt,yt,h;λ) (6)

where h are the hidden variables.
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Applying the CRF framework to side-chain prediction raises a tremendous compu-
tational challenge. Note that calculating Zt (equation (4)) requires summing over all
possible side-chain configurations for a given protein. For the vast majority of proteins
this summation is intractable. Similarly, calculating the gradient in equation (5) is based
on taking expectations which requires a weighted sum over all possible side-chain con-
figuration for a given protein. Finally, equation (6) requires maximizing over all possi-
ble configurations for the hidden variables. Similar computational problems arise with
other supervised learning methods for learning energy functions [19, 15].

3 Tree Reweighted Belief Propagation

To summarize the results of the previous section, side-chain prediction raises major
computational difficulties, either in finding the global minimum of the energy or cal-
culating the partition function with respect to an energy function. In this work, we use
tree-reweighted belief propagation (TRBP) to address both problems.

Tree-reweighted belief propagation (TRBP) is a variant of belief propagation intro-
duced by Wainwright and colleagues [20]. We start by briefly reviewing ordinary max-
product belief propagation (see e.g. [21,22]). The algorithm receives as input a graph G
and the potentials Ψij , Ψi. In energy minimization settings, the potentials are inversely
related to the energy: Ψij(xi, xj) = e−E(xi,xj), Ψi(xi) = e−E(xi). In the side-chain
prediction setting the nodes of the graphs correspond to residues, and there are edges
between any two residues that interact [23].

At each iteration, a node i sends a message mij(xj) to its neighbor in the graph j.
The messages are updated as follows:

mij(xj) ← αij max
xi

Ψij(xi, xj)Ψi(xi)
∏

k∈Ni\j

mki(xi) (7)

where Ni\j refers to all neighbors of node i except j. The constant αij is a normaliza-
tion constant typically chosen so that the messages sum to one (the normalization has
no influence on the final beliefs). After the messages have converged, each node can
form an estimate of its local “belief” defined as:

bi(xi) ∝
∏

j∈Ni

mji(xi)Ψi(xi) (8)

It is easy to show that when the graph is singly-connected, choosing an assignment
that maximizes the local belief will give the minimal energy configuration [22]. In fact,
when the graph is a chain, equation (7) is simply a distributed computation of dynamic
programming. When the graph has cycles, ordinary belief propagation (BP) is no longer
guaranteed to converge, nor is there a guarantee that it can be used to find the minimal
energy configuration.

In tree-reweighted BP (TRBP), the algorithm receives an additional set of input edge
appearance probabilities, ρij . These edge appearance probabilities are essentially free
parameters of the algorithm and are derived from a distribution over spanning trees of
the graph G. They represent the probability of an edge (i, j) to appear in a spanning tree
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under the chosen distribution. As in standard belief propagation, at each iteration a node
i sends a message mij(xj) to its neighbor in the graph j. The messages are updated as
follows:

mij(xj) ← αij max
xi

Ψ
1/ρij

ij (xi, xj)Ψi(xi)

∏

k∈Ni\j

mρki

ki (xi)

m
1−ρji

ji (xi)
(9)

Note that for ρij = 1 the algorithm reduces to standard belief propagation.
After one has found a fixed-point of these message update equations, the singleton

and pairwise beliefs are defined as:

bi(xi) ∝ Ψi(xi)
∏

j∈Ni

m
ρji

ji (xi)

bij(xi, xj) ∝ Ψi(xi)Ψj(xj)Ψ
1/ρij

ij (xi, xj) ·

∏

k∈Ni\j

mρki

ki (xi)

m
1−ρji

ji (xi)

∏

k∈Nj\i

m
ρkj

kj (xj)

m
1−ρij

ij (xj)

The theoretical properties of TRBP are a subject of ongoing research [20,24,25,26].
We briefly summarize some relevant properties:

– If the TRBP beliefs contain no ties, that is for every i the maximum of bi(xi) is
attained at a unique value, then the assignment that locally maximizes the beliefs is
the global minimum of the energy function.

– If the TRBP beliefs contain ties, running an additional algorithm on a problem de-
fined only on nodes that have ties, gives an easily verified condition for the solution
to be a global optimum (see [26] for details).

– Using the sum-product version of TRBP (in which the maximization in equation (9)
is replaced with summation) it is possible to calculate a rigorous upper bound
ZTRBP on the partition function.

− log ZTRBP =< E >b −

⎛

⎝
∑

ij

ρijH(bij) +
∑

i

ciH(bi)

⎞

⎠ (10)

where ci = 1−
∑

j ρij and < E >b is the average energy with respect to the TRBP
beliefs, and H(bij), H(bi) are the entropies of the beliefs.

We used these properties of TRBP for minimizing and learning energy functions
for side-chain prediction. For minimizing energy functions, we used the max-product
version of TRBP followed by post-processing as described in [26]. For learning energy
functions, we replaced the partition function Z(λ) in equations (3),(6) with the TRBP
bound ZTRBP (λ). This enables us to maximize a lower bound on the probability:

Pr(xt|yt; λ) =
1

Z(λ)
e−E(xt,yt;λ) ≥ 1

ZTRBP (λ)
e−E(xt,yt;λ) (11)

We used the implementation of TRBP publically available at www.cs.huji.ac.
il/˜talyam/inference.html. The same package was also used to solve the LP
relaxation, as discussed in [27].
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4 Results

In the first part of this study, we evaluate whether location of the global minimum energy
conformation improves side-chain modeling accuracy. We then proceed to improving
the energy function by optimizing the weights of the different parameters in the energy
function to maximize the probability of native side-chain conformations. We show that
this improves side-chain prediction accuracy more than finding the minimum energy
conformation. The next step evaluates those approaches on an additional energy func-
tion with a softer repulsive term, and finally we investigate the use of extended rotamer
libraries.

Data set and Evaluation. A data set of 276 single chain proteins, up to 700 amino
acids long (all in all 64,397 positions) was used for this study (taken from the Roset-
taDesign webserver [28]). We randomly selected 20% of these proteins (55 proteins,
11,067 positions) as a training set and used the remaining 80% (221 proteins, 53,330
positions) as a test set.

We define the success rate of an energy function as the percentage of side-chain
angles that are predicted correctly, i.e. when the predicted angles are in the same bin as
those of native side-chain conformation in the crystal (e.g. gauche+, gauche−, or trans).
As widely accepted, we report the success rates for the first angle (χ1) and the first two
angles (χ1 and χ2) on all test set proteins. We also calculated the success rate separately
for core residues, defined as residues with more than 19 interacting neighbors, and
surface residues (up to 19 interacting neighbors), where residues are termed neighbors
if the distance between their Cβ atoms is less than 10Å.

4.1 Location of Global Minimum Energy Configuration

Our first set of experiments was designed to measure the importance of locating the
global minimum energy conformation of the energy functions currently used in side-
chain prediction. We first asked which methods can find the global optimum in reason-
able time? Consistent with Kingsford et al.’s report, the LP relaxation works well for
the simple SCWRL energy function (over 90% in a database of 370 proteins) but rarely
does so for the ROSETTA function (less than 5%). In other words, the LP solution is
almost never integer for the ROSETTA energy functions. In contrast, the TRBP method
finds the global optimum in over 80% of the proteins in our database for ROSETTA,
while the commercial Integer Programming package (CPLEX) can find the minimum
for all the examples in our database (although its run time is generally much larger than
that of TRBP). Also consistent with the report in [7], DEE [5] never found the global
optimum for these problems, indicating that not enough rotamers could be eliminated.

How much then does location of the global minimum energy conformation improve
performance? Our results indicate that the improvement obtained from locating the
global minimum energy (compared to simulated annealing) is negligible: side-chain
modeling accuracy for the first two χ angles of core, surface and all residues are essen-
tially unchanged (Figure 2).

Given a method that can find the global minimum energy, a better comparison of
the usefulness of different energy functions for side-chain modeling can be performed:
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Fig. 2. The location of the global minimum energy conformation does not improve side-chain
modeling for the ROSETTA original (default) energy function. The percentages of correctly pre-
dicted χ1 side-chain angles (a), and both χ1 and χ2 angles (b) are indicated for the whole set of
side-chains, as well as for the buried and exposed subsets separately.

χ1 success rate χ1 ∧ χ2 success rate

Core Surface All

75

80

85

S
uc

ce
ss

 r
at

e 
[%

]

 

 

vdW rep Uniform ROSETTA

Core Surface All

50

55

60

65

70

S
uc

ce
ss

 r
at

e 
[%

]

 

 

vdW rep Uniform ROSETTA

(a) (b)

Fig. 3. Comparison of different energy functions with global minimization. Side-chain predic-
tion success rate for energy functions that use either ROSETTA’s repulsive van der Waals and
rotamer energy terms (vdw rep) only, the full ROSETTA energy function with uniform weights,
or ROSETTA’s default weights.

For which energy function do the global energy minima coincide best with near-native
models? Figure 3 compares different energy functions defined by different weightings
of ROSETTA’s eight energy terms – using only the repulsive van der Waals (rep) and
rotamer energy (dun) terms (which simulates the setup of SCWRL [1]), using a uniform
weighting on all eight terms, and using ROSETTA’s default weights. It can be seen that
the van der Waals and rotamer terms on its own give the worst performance, followed
by a uniform weighting of ROSETTA’s eight terms and the best performance is given
by ROSETTA’s weights. These results are consistent with previously reported conclu-
sions. Note however that in the present study effects due to correlation between the
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energy function and the search algorithm are excluded since only proven global energy
minima are considered. For all three cases, we can therefore conclusively attribute the
improvement in performance to a more accurate energy function.

4.2 Learning

Our second set of experiments deals with the effect of reweighting the energy terms
in ROSETTA. We compared the default ROSETTA weights to those obtained using
supervised learning by two learning methods: (1) the standard CRF framework – when
all angles are considered observed; and (2) the Hidden CRF framework – when angles
χ3, χ4 are considered hidden. Note that our database includes ground truth for all angles
based on crystallography, but we hypothesized that due to the large variability in the
angles far from the backbone, ignoring the crystallographic “ground truth” might enable
better performance on the first two angles. As mentioned earlier, we used a small subset
of the proteins as a training set, and report here results for the test set—proteins that
were not seen by the learning algorithm.
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Fig. 4. The success rates, obtained using CRF and HCRF learned weights compared to
ROSETTA’s weights. Learning gives a significant improvement in performance.

Figure 4 shows χ1 and χ2 success rates on the test set using ROSETTA’s original
weights and the weights learned by the CRF and the HCRF algorithms. Both learning
algorithms improve over ROSETTA’s weightings.

Note that the improvement obtained by reweighting the terms (either using CRFs
or using Hidden CRFs) is far larger than that obtained by using a better minimizer.
Whereas going from simulated annealing to global minimization yields less than 0.1%
improvement for the first two angles in core residues, reweighting the energy terms
increases performance by almost 6%.

Figure 5a shows the weights learned by CRF and HCRF compared to ROSETTA’s
weights. While the change in most weights is mild, the repulsive van der Waals weight
almost vanishes. Note however that complete exclusion of the repulsive term from
ROSETTA’s default energy function significantly decreases the success rates. The rea-
son for the significant reduction of the van der Waals repulsive term is its sensitivity
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to discretization. Native structures are well-packed, therefore modeling with near-to-
native, discrete conformations (that is, using rotamers) can easily lead to clashes.
Consequently, when optimizing an energy function that distinguishes near-native
conformations from wrong conformations, the repulsive term will be down-weighted.
While an energy function with low repulsive weight might be useful for selecting cor-
rect side-chain conformations from a discrete set of possible combinations, procedures
that involve continuous minimization will be impeded by the missing term that con-
tributes significantly in guiding the structure towards the correct conformation.

ROSETTA’s default function ROSETTA Soft repulsive function
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Fig. 5. ROSETTA’s weights (a) and ROSETTA soft repulsive weights (b) compared to CRF and
HCRF learned weights. Weights are normalized so that attractive weights equal 1.

When we analyzed the performance for different amino acids, we found that the
greatest improvements were obtained on aromatic amino acids – Phenylalanine (F),
Tyrosine (Y), Tryptophan (W) and Histidine (H). These bulky aromatic rings tend to
clash if no extra rotamers are included in the rotamer library [29]. Since the repulsive
contribution to the energy function is significantly reduced as a consequence of the low
repulsive weight (Figure 5a), the selection of near-native conformations that clash with
the surrounding environment – but still create favorable contacts that contribute to other
terms in the energy function – is improved.

5 Results with “Soft Repulsion”

The fact that better performance can be obtained by decreasing the weight of the repul-
sive term has been observed previously in ROSETTA (e.g. [30]). In order to overcome
this unnaturally small contribution of the repulsive part of the Lennard-Jones poten-
tial, a “dampened” version has been developed (the “-soft rep” option, referred to as
DampRep in [8]). In this function, the repulsive energy increases less dramatically when
two atoms are brought together, and therefore, clashes are penalized less in the course
of discrete optimization. This energy function was shown to allow improved side-chain
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modeling in ROSETTA [8]. In order to evaluate the importance of the search strategy
and the energy function optimization, we conducted additional experiments based on
this energy function.
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Fig. 6. The location of the global minimum energy conformation improves side-chain modeling
for the ROSETTA soft repulsive energy function. Legend as in Figure 2.

We again found that TRBP can obtain the global optimum in a few minutes of com-
putation for the majority of the proteins in our database (approximately 80%) while
the LP relaxation and DEE could not. Figure 6 again shows that using the global op-
timizer leads to only a small improvement in prediction accuracy (approximately 1%
improvement for the first two χ angles of core residues). Consistent with our earlier ex-
periments, the gain from using a different energy function is larger than that using better
minimizers – note that using simulated annealing with the “soft repulsion” energy gives
better results than global optimization of the default ROSETTA function.

Figure 7 shows the results of applying reweighting to ROSETTA with soft repul-
sion. Even though this energy function had been optimized for side-chain modeling,
supervised learning is able to find better reweighting of the energy terms. In particular,
the new weights allow an improvement of correct modeling of χ1 and χ2 angles from
78% to 80%. Note that our test set contains approximately 32,000 residues for which
both χ1 and χ2 are defined, so that a 2% improvement corresponds to approximately
640 residues and is highly significant. For this data set the HCRF learning criterion
performed slightly better than the CRF criterion.

Figure 5b confirms that indeed, in the soft repulsive function the Lennard-Jones re-
pulsive term is of comparable size to the Lennard-Jones attractive term. Interestingly,
the contribution of hydrogen bonds is significantly increased.

Using a large rotamer library. A bottleneck in further improvement of side-chain
modeling is the rotamer library from which side-chain conformations are selected. Side-
chains that are not adequately represented in the library, cannot be correctly modeled.
Therefore, in addition to energy functions and search methods, another direction of pos-
sible improvement is to modify the discrete set of rotamers that define the search space
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Fig. 7. The success rates, obtained using CRF and HCRF learned weights compared to
ROSETTA’s soft repulsive weights

[31, 32]. We therefore repeated our experiments using extra rotamers to core residues,
for which accurate modeling is especially important to guarantee tight packing.

The much larger number of rotamers makes minimization much slower; TRBP can
still obtain the global optimum for 70%-90% of the proteins in our data set, whereas the
commercial Integer Programming package (CPLEX) fails to find the optimum for many
proteins due to memory limitations (even after pruning the search space using DEE).

Indeed, extended sampling improves the performance of ROSETTA’s soft repulsive
energy function by more than 1% even when simulated annealing is used (81.4% for
χ1∧χ2 in core positions). Using the global minimum energy configurations when avail-
able (and the configurations obtained by simulated annealing otherwise) only slightly
improved accuracy (less than 0.25%). In this case, using CRF learned weights leads to
only a small improvement (0.35%, to 81.9%). The highest accuracy (82.6%) is obtained
with weights learned using a local HCRF variant, in which we maximize the sum of the
marginal log likelihoods of the native rotamers (and treat all other positions as hidden).
For speed reasons we used ordinary BP in this variant.

6 Discussion

Side-chain prediction is an important subtask of the protein folding problem and has
multiple applications in linking protein structure and function. Traditionally, it has been
approached by formulating energy functions over a discrete set of angles and using dis-
crete optimization algorithms to find the minimal energy configuration. Despite much
progress in search methods and energy functions, performance is far from satisfactory
and it has been difficult to systematically determine whether the energy functions or the
search methods are to blame. In this paper, we have shown that using tree-reweighted
belief propagation (TRBP) it is possible to find the global minimum for many side-chain
prediction problems in a few minutes. TRBP can also be used to bound the partition
function and this is useful for learning new weights in the CRF framework. Using these
computational tools we have shown that (1) global optimization tends to yield a smaller
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improvement in performance than adapting the energy function, and that (2) supervised
learning can be used to automatically reweight the energy terms to obtain relatively
large improvement in side-chain modeling. By combining our learned weights with
global optimization we obtain significantly better performance on test data compared to
the ROSETTA package, widely considered the state-of-the-art.

The present study suggests that supervised learning can also be used to devise novel
energy terms, in addition to reweighting the existing ones. In addition, we plan to learn
task-specific weights in a more general setting; for example, by focusing on interface
modeling in protein-protein interactions (e.g. docking). We believe that the tools of ap-
proximate inference and machine learning will have great benefit in many applications
of structural biology.
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Abstract. Protein conformational changes play a critical role in bio-
logical functions such as ligand-protein and protein-protein interactions.
Due to the noise in structural data, determining salient conformational
changes reliably and efficiently is a challenging problem. This paper pre-
sents an efficient algorithm for analyzing protein conformational changes,
using noisy data. It applies a statistical flexibility test to all contiguous
fragments of a protein and combines the information from these tests to
compute a consensus flexibility measure for each residue of the protein.
We tested the algorithm, using data from the Protein Data Bank and
the Macromolecular Movements Database. The results show that our
algorithm can reliably detect different types of salient conformational
changes, including well-known examples such as hinge and shear, as well
as the flap motion of HIV-1 protease. The software implementing our
algorithm is available at http://motion.comp.nus.edu.sg/projects/
proflexana/proflexana.html.

1 Introduction

Protein structural changes, called conformational changes, play a critical role in
vital biological functions such as immune protection, enzymatic catalysis, and
cellular locomotion [7]. An example is the “flap” motion of HIV-1 protease, a
major inhibitory drug target for AIDS therapy. Conformational changes are a
direct consequence of protein structural flexibility and provide insight into the
essential link between structure and function.

The structures of an increasing number of proteins have been determined in
multiple conformations. In the long term, one may hope to reconstruct, compu-
tationally, protein motions from multiple experimentally-determined structures.
The motions can then be classified and archived, in order to better understand
protein structures and their relationships with protein functions [3]. More imme-
diately, analyses of multiple conformations can help in identifying salient con-
formational changes, such as hinge or loop motions, as well as in locating active
sites in ligand-protein binding [22].

With these goals in mind, our work focuses on analyzing protein conforma-
tional changes, an important problem that has received much attention over the
years (see Section 2). Specifically, our problem is to identify the flexible and rigid
regions of a single protein, given its structure, i.e., the 3D coordinates, in two
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Fig. 1. Various methods for detecting flexibility in the N-lobe of lactoferrin. (a) Torsion
angle differences. (b) The minimum RMSD for 5-residue fragments centered at each
residue. (c) Average temperature factors from X-ray crystallography data. (d) Our new
algorithm. For (a)–(c), large absolute values indicate flexible regions. For (d), small
values indicate flexible regions. (e) Superimposition of the two conformations (in red
and green, respectively) for the 40-residue fragment centered around residue 142.

different conformations. An example of such flexible regions is a hinge, a consec-
utive sequence of flexible residues that cause rotational motion between two rigid
domains of a protein. This analysis can also be easily extended to more than two
conformations through pairwise comparison, if a protein has a relatively small
number of distinct conformations that are biologically relevant.

Our problem may appear easily solved by comparing backbone torsion angles,
φ and ψ. Unfortunately, experimental data obtained through X-ray crystallog-
raphy or NMR methods are noisy. A rigid domain may appear flexible due to
noise in the data. Consider Fig. 1a, in which the peaks of the curves indicate
large differences in torsion angles φ and ψ between two conformations of the
N-lobe of lactoferrin. The N-lobe of lactoferrin is known to undergo inter-domain
motion hinged around residues 90 and 250 [1]. However, the curves appear quite
noisy and show many peaks in regions where there are no genuine conformational
changes. For example, although there is a sharp peak at residue 142, superimpos-
ing the two conformations for the 40-residue protein fragment centered around
residue 142 shows no significant conformational change (Fig. 1e). Other com-
mon methods for detecting conformation changes, such as the root-mean-square
distance (RMSD) and the temperature factor, are also susceptible to noise to
various degrees (see Fig. 1b–c).

Key to our problem is to distinguish genuine conformational change from
noise. Our algorithm addresses this difficulty at two levels. At the low level,
we have developed a reliable statistical test for determining the flexibility of
a protein fragment, with noisy data. At the high level, we apply this test to
all fragments of a protein and combine information from both short and long
fragments to compute a consensus flexibility measure for each residue of the
protein. As a result, the algorithm highlights the genuine conformational changes
by suppressing the spurious ones due to noise. See Fig. 1d for an example, in
which our new algorithm unambiguously detects the two main conformations
changes in the N-lobe of lactoferrin, despite the noise in the data. Our algorithm
takes O(n2) time for a protein with n backbone atoms. In our tests, it ran at
interactive speed even for large proteins with thousands of atoms.

In the following, after a brief review of previous work (Section 2), we first
describe our algorithm for protein flexibility analysis under noise (Section 3). We
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then give details on efficient implementation of the algorithm and provide a run-
ning time analysis (Section 4). Using data from the Protein Data Bank (PDB),
we tested our algorithm on proteins that exhibit different types of conforma-
tional changes. The results show that our algorithm can reliably detect salient
conformational changes (Section 5). We then highlight the main features of the
algorithm and address some remaining issues (Section 6). Finally we summarize
the results and point out possible future improvements (Section 7).

2 Related Work

Many approaches have been proposed to study protein conformational flexibility.
At one extreme, some methods use none or a single experimentally determined
protein conformation [11,14]. In particular, it has been suggested that tempera-
ture factors obtained from X-ray crystallography may be correlated with protein
flexibility [25]. However, temperature factors reflect mainly the thermal motion
and disorder of atoms, and are not reliable for detecting salient conformational
changes (see, e.g., Fig. 1c). At the other extreme, one may exploit the huge
number of different conformations generated by molecular dynamics simulation
and infer coordinated motion involving many residues of a protein [23].

Most methods, however, compare two or a small number of experimentally de-
termined conformations, because, despite the rapid growth of protein structural
data, the number of known conformations for any particular protein usually re-
mains small. These methods differ in the similarity metric used for comparing
protein conformations. They also differ in how they search for flexible and rigid
regions of a protein. Below, we briefly review some of them.

Backbone torsion angles are used in several methods to determine the similar-
ity of protein conformations [12,13,16]. As mentioned earlier, torsion angles are
highly sensitive to noise: small changes in atom coordinates may cause drastic
changes in torsion angles. These methods are useful, only if the noise level is
extremely low. A better similarity metric makes use of the pairwise distance ma-
trix, in which every entry is the distance between two atoms of a protein [10,18].
The most commonly used similarity metric is probably the minimum RMSD be-
tween the backbone atoms or the Cα atoms of a protein. Other related metrics
have been suggested as well [2]. As shown in Fig. 1b, RMSD is less sensitive to
noise than torsion angles, but not immune to it.

To search for flexible or rigid regions of a protein, the sieve-fit method chooses
a rigid core of atoms to align two protein conformations and iteratively improves
the alignment until a user-selected threshold is reached [4,15,26]. The results are
sensitive to the initial choice of the rigid core. A different method uses a heuristic
measure of protein flexibility, called the deformation index [10], to locate hinge
regions. The fit-all method of Gerstein and Chothia [6] systematically computes
the RMSD of all contiguous fragments of a protein between two conformations.
It treats the resulting RMSD values as a function of two variables and uses op-
timization methods to search for the function’s inflection points, which indicate
hinge regions. However, the search may get stuck locally if not restricted to a
suitable domain, which must be chosen manually.

To our knowledge, few methods systematically take into consideration noise
in the data when comparing protein structures.
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The problem addressed here is related to that of protein structure alignment,
which tries to find structural similarities in arbitrary proteins [20,27]. Our prob-
lem is more constrained. We focus on the same protein in different conformations
and require no alignment. This simplifies the problem and allows us to develop
a more efficient and robust algorithm. However, an important issue common to
both problems is to compare the structural similarity of protein fragments. The
statistical test that we have developed is thus useful in both problems.

3 Methods

To detect protein conformational flexibility accurately and reliably under noise,
we check the flexibility of all contiguous fragments of a protein between two con-
formations. We then extract a set of “minimal flexible fragments” and use them
to compute a flexibility measure for each residue of the protein (Section 3.1).
An important element of our algorithm is a statistical test for determining the
flexibility of a protein fragment based on the similarity of its structures in two
conformations (Section 3.2). The details are described below.

3.1 An All-Fragment Analysis of Protein Flexibility

Our algorithm aims to identify flexible and rigid regions of a protein. A flexible
protein fragment changes its shape between two conformations, while a rigid
fragment remains the same. To distinguish flexible and rigid fragments, we need a
measure of similarity between two conformations of a protein fragment. We have
chosen the minimum RMSD, a commonly used similarity metric. Intuitively, the
minimum RMSD tries to superimpose two conformations of a protein fragment
as well as possible, using translations and rotations.

Ideally, the minimum RMSD is 0 if the fragment is rigid and increases as the
fragment becomes more flexible. With noisy data, RMSD is unlikely to be 0, even
if two conformations are the same. To decide whether a fragment is flexible or
not, we use a statistical test to set a threshold for the RMSD. The exact threshold
values depend on the amount of noise in the data, the required confidence level,
and the length of the fragment tested. In particular, the threshold values are
higher for shorter fragments (see Fig. 3). It is thus more difficult to detect small
conformational changes in shorter fragments. We defer the detailed discussion
until Section 3.2.

Given a suitable threshold, we can compute the minimum RMSD for a frag-
ment of a protein and test its flexibility. However, we still must choose which
fragments of the protein to test. If we test short fragments and they turn out
to be flexible, we can localize the flexible residues better. On the other hand,
short fragments may fail to reveal small conformational changes, which could be
masked as noise. We must then rely on longer fragments. To identify all flexible
residues accurately and reliably, we examine all contiguous fragments and derive
a consistent interpretation of the information from them. The main advantage of
this approach is that it collates information from both long and short fragments
and is thus more robust against noise.
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(a) (b)

Fig. 2. (a) The RMSD matrix R̂ for lactoferrin. Darker colours indicate smaller RMSD
values. (b) The corresponding matrix T. Black indicates 0 (rigid). White indicates 1
(flexible).

RMSD matrices. We represent a protein as a sequence of backbone atoms.
Let F (i, j) denote the protein fragment between backbone atoms i and j. The
length of F (i, j) is the number of backbone atoms contained in it.

We start by computing the minimum RMSD of every contiguous fragment of
a protein and storing the results in an upper triangular matrix R̂. For i < j,
the entry R̂(i, j) of R̂ is the minimum RMSD of the fragment F (i, j) between
the two given conformations. For example, Fig. 2a shows the pseudo-colored
minimum RMSD matrix for lactoferrin, with darker colors indicating smaller
RMSD values. The dark triangular regions along the matrix’s main diagonal
correspond to relatively rigid protein fragments.

Next, we apply our statistical test (see Section 3.2) to threshold each entry
of R̂ and compute a new matrix T, which tentatively classifies every contiguous
protein fragment as flexible or rigid. If R̂(i, j) is greater than the threshold, the
entry T (i, j) of T is 1, and the fragment F (i, j) is considered flexible. Otherwise,
T (i, j) is 0, and F (i, j) is considered rigid. See Fig. 2b for an example.

Minimal flexible fragments. The matrix T contains a wealth of information
on the flexibility of a protein, but requires careful interpretation. Suppose that
T (i, j) = 1, which indicates that the fragment F (i, j) is flexible. Shall we then
consider every residue within F (i, j) flexible? The answer is no. Possibly, F (i, j)
contains two sub-fragments, one flexible and one rigid. It is thus inaccurate
to declare the whole fragment flexible. Also, what shall we do if we have two
overlapping fragments, both of which are classified as flexible according to T?

To give a consistent interpretation of the information in T, we introduce
the notion of minimal flexible fragment (MFF). An MFF is a flexible fragment
that contains no proper sub-fragment that is also flexible. In other words, all
proper sub-fragments of an MFF are rigid. Two remarks can be made about an
MFF F (i, j). First, F (i, j) is flexible, based on the evidence from data. Second,
there is no further evidence to attribute the flexibility to any sub-fragment of
F (i, j). Therefore, an MFF identifies a flexible region of a protein as accurately
as possible, given all the evidence in T.

The definition of MFF implies that a fragment F (i, j) is an MFF if and
only if T (i, j) = 1 and T (i′, j′) = 0 for i ≤ i′ < j′ ≤ j in the upper triangular part
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of T. This leads to an efficient dynamic programming algorithm for computing
the set L of all MFFs (see Section 4).

The flexibility measure. The length of an MFF F ∈ L is correlated with
the magnitude of conformational change. As mentioned earlier, the threshold
for declaring a fragment flexible is higher for shorter fragments. Thus, small
MFF length indicates that conformational changes are large, as they are de-
tectable even in a short fragment. Such conformational changes are often ob-
served in hinge regions, which cause large rotational motion between two rigid
domains of a protein and create open and closed conformations. In comparison,
large MFF length indicates that statistically significant conformational changes
are only detectable in long fragments, which implies that the conformational
changes are relatively small. This type of conformational changes include intra-
domain motions such as “induced fit”, which involves gradual, directed displace-
ments around the binding site of a protein in order to accommodate ligand
binding.

The above discussion suggests that the length of an MFF is a good indicator
of conformational flexibility, and we use it assign a flexibility measure f(i) to
each shortest fragment F (i, i + 1), for 1 ≤ i < n. For a given i, let L′ be the
subset of L such that every fragment in L′ contains F (i, i+1) as a sub-fragment.
The flexibility measure f(i) for F (i, i + 1) is the length of the shortest fragment
in L′. Smaller f values indicate higher flexibility. If L′ is empty, we set f = n+1
by convention to indicate that F (i, i + 1) is rigid.

In practice, we almost always use the standard kinematic model of protein
motion. It assumes that bond lengths and bond angles remain fixed during con-
formational change. In addition, we are usually more interested in determining
conformation change at the level of residues rather than atoms. Due to these
restrictions, we only need to consider the fragments F (3i, 3j) for 1 ≤ i, j ≤ n/3
and assign the flexibility measure to F (3i, 3i + 3). In this case, i corresponds to
the residue number, and the flexibility measure is assigned on a per residue basis.
Our algorithm also applies, with little change, if only the Cα atoms, instead of
all the backbone atoms, are used.

Interpretation of the results. The final output of our algorithm is a flexibility
measure f(i) for each residue i (see Fig. 5 for examples). For example, f(50) = 15
means that to detect conformational change due to residue 50, we require a
fragment of at least 15 atoms. Since the length of an MFF is correlated with the
magnitude of conformational change, f(i) gives an indication of conformational
flexibility at residue i. As another example, if f90 = n+1, where n is the length of
a protein, then no MFF contains residue 90. Any flexible fragment that contains
residue 90 must have sub-fragments that are also flexible. Hence the flexibility
cannot be reliably attributed to residue 90. It is thus considered rigid.

Instead of giving a binary classification of each residue as either flexible or
rigid, our flexibility measure provides a richer description by indicating the de-
gree of flexibility. Based on our experiments, the conformational changes re-
ported in the literature usually have values less than 30 in our measure.
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3.2 A Statistical Test for Protein Flexibility

To test a fragment F for flexibility, we make the null hypothesis that F is rigid.
We then compare the minimum RMSD R̂ of F between two given conformations
with a threshold r. If R̂ > r, we reject the hypothesis and consider F flexible;
otherwise, we consider F rigid. The key issue here is to choose a suitable thresh-
old r that is robust against the noise in the data. These thresholds are used
to convert the minimum RMSD matrix R̂ to the matrix T, as described in the
previous section.

The noise model. Our flexibility test uses the minimum RMSD as the simi-
larity metric. Let (xi, yi, zi) and (x′

i, y
′
i, z

′
i) for 1 ≤ i ≤ n be the backbone atom

coordinates of respectively two conformations q and q′ of a protein fragment F .

The RMSD is given by R =
√

1
n

∑n
i=1 ((xi − x′

i)2 + (yi − y′
i)2 + (zi − z′i)2)). The

similarity between q and q′ is defined as the minimum RMSD R̂, which minimizes
R over all possible translations and rotations of the two conformations.

Let us now analyze the effect of noise on the distribution of RMSD values. We
assume that the noise at each coordinate of each atom of a protein is indepen-
dently and identically distributed (i.i.d.) according to the normal distribution
with zero mean and a given variance. Although this is a simple model, it allows
us perform principled statistical analysis and has led to good results in our work
(see Section 5) and in related previous work [26].

If the fragment F is rigid, then q and q′ actually represent the same conforma-
tion. We can apply suitable translation and rotation to the coordinates (x′

i, y
′
i, z

′
i)

so that the resulting new coordinates (x′′
i , y′′

i , z′′i ) are the same as (x, y, z), except
for the noise. More precisely, let σ2 and σ′2 be the variances of the coordinate
noise for q and q′, respectively. We have

(xi − x′′
i ) ∼ N(0, σ2 + σ′2), (1)

where N denotes a normal random variable, because xi and x′′
i both follow the

normal distribution and the sum of normal random variables is again a normal
random variable. Thus,

xi − x′′
i√

σ2 + σ′2 ∼ N(0, 1), (2)

i.e., a standard normal random variable with mean 0 and variance 1. The same
holds for (yi − y′′

i )/
√

σ2 + σ′2 and (zi − z′′i )/
√

σ2 + σ′2.
Now, let R be the RMSD between (xi, yi, zi) and (x′′

i , y′′
i , z′′i ) for 1 ≤ i ≤ n.

Consider

S =
nR2

σ2 + σ′2 =
n∑

i=1

(

(
xi − x′′

i√
σ2 + σ′2 )2 + (

yi − y′′
i√

σ2 + σ′2 )2 + (
zi − z′′i√
σ2 + σ′2 )2

)

(3)

According to (2), each term in the above sum is a squared standard normal
random variable. By definition, S is then a Chi-square (χ2) random variable
with 3n degrees of freedom, and R2 is a scaled χ2 random variable.

The threshold for the minimum RMSD. To choose the threshold r, we
need to bound the probability Pr(R̂ > r). Since R̂ ≤ R, we have Pr(R̂ > r) ≤
Pr(R > r). We thus calculate Pr(R > r):
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Pr(R > r) = Pr(R2 > r2) = Pr(
nR2

σ2 + σ′2 >
nr2

σ2 + σ′2 ) = 1 − Fχ2(
nr2

σ2 + σ′2 ),(4)

which follows from (3) and Fχ2 denotes the cumulative distribution function of a
χ2 random variable. Given a desired bound p on Pr(R̂ > r), we can calculate the
threshold r from (4), which shows that r depends on the noise level in the data
(σ and σ′), the p-value, and the length of the protein fragment (n). In particular,
r increases with decreasing n (see Fig. 3).
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Fig. 3. The change of threshold r
as a function of fragment length
n, with p-value set to 1 × 10−6.
Each curve corresponds to a differ-
ent noise level.

The threshold r implies that if F is rigid,
then R̂ > r with probability at most p. So, the
p-value represents the confidence level of our
statistical flexibility test. For example, sup-
pose that p = 0.01. If R̂ > r, then F is rigid
with probability at most p = 0.01, or equiv-
alently, F is flexible with probability at least
1 − p = 0.99.

Choosing the p-value requires some addi-
tional thought. Suppose that the probability
of incorrectly assigning any fragment of a pro-
tein to be flexible should be at most γ. The ob-
vious choice of p = γ is incorrect, because we
encounter the multiple testing problem. For a
protein with n backbone atoms, our algorithm
applies the statistical test once for each con-

tiguous fragment of the protein, resulting in n(n − 1)/2 tests in total. Let E
denote the event that any of the tests gives the incorrect result and E′ denote
the event that a particular test gives the incorrect result. Then,

Pr(E) ≤ n(n − 1)
2

Pr(E′) ≤ n(n − 1)
2

p.

Since we want Pr(E) ≤ γ, we must choose p ≤ 2γ/(n(n− 1)). As an example,
for γ = 0.05 and n = 300, p should be smaller than 1.1 × 10−6.

Although the thresholds calculated this way may appear overly conservative,
it is justified due to the presence of noise in the data. Also, they are only used to
generate intermediate results stored in T. These results are further synthesized
to generate the final output. Tests of our algorithm on PDB data show that it
is reliable and does not miss salient conformational changes (Section 5).

4 Computational Efficiency

We now show that our algorithm runs efficiently in O(n2) time, where n is
the number of backbone atoms in a protein. Our algorithm consists of four
main steps: (i) computing the minimum RMSD matrix R̂, (ii) converting R̂ into
the matrix T, (iii) extracting the set L of minimal flexible fragments, and (iv)
computing the flexibility measure f(i) for each residue i.

Computing the minimum RMSD matrix. To compute R̂ between two given
conformations q and q′ of a fragment, we apply the eigenvalue algorithm of
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Horn [9]. It computes the covariances between the coordinates of the two confor-
mations and then use them to build a matrix whose largest eigenvalue gives the
minimum RMSD. This algorithm takes O(m) time for a fragment of length m.

Since there are O(n2) contiguous fragments for a protein withn backbone atoms
and computing the R̂ for each takes O(n) time, we can trivially compute the min-
imum RMSD matrix R̂ in O(n3) time. However, by constructing the covariances
incrementally, we can reduce the total running time to O(n2), in other words, con-
stant time per fragment on the average, which is asymptotically optimal. The de-
tails can be found in [17]. A similar algorithm was reported recently in [21].

Computing the matrix T. Given the RMSD value R̂ for a protein fragment,
we apply our flexibility test by computing the threshold value r and comparing
it to R̂. The threshold value r can be computed in O(1) time. Hence, each entry
in the matrix T can be computed in O(1) time from the corresponding entry
in R̂. Since T has O(n2) entries, computing it requires O(n2) time.

Extracting minimal flexible fragments. Dynamic programming is used to
extract the set L of MFFs from T, To do so, we construct another binary matrix
T′ based on T and go through T′ diagonal by diagonal. We start with the first off-
diagonal of T ′ and set T ′(i, i+1) = T (i, i+1) for 1 ≤ i < n. We then move to the
next off-diagonal and iterate. If T (i, j) = 1, T ′(i+1, j) = 0, and T ′(i, j − 1) = 0,
then the corresponding fragment F (i, j) is an MFF by definition. We add it to L
and set T ′(i, j) = 1 to indicate that F (i, j) contains a flexible sub-fragment, in
this case, itself. If T (i, j) = 0, T ′(i + 1, j) = 0, and T ′(i, j − 1) = 0, then F (i, j)
is rigid, and all its sub-segments are rigid. We set T ′(i, j) = 0. Otherwise, we set
T ′(i, j) = 1, because F (i, j) must contain a proper sub-segment that is flexible.
Since T′ contains O(n2) entries, the algorithm completes in O(n2) time.

Furthermore, the set L contains at most n fragments. To see this, consider
any two fragments F (i, j) and F (i′, j′) in L. We must have i �= i′. Otherwise,
one fragment would be a sub-fragment of the other. This is impossible, as both
are MFFs. Since every fragment in L must have a distinct i value and 1 ≤ i ≤ n,
L contains at most n fragments.

Computing the flexibility measure. Since L has length at most n, it takes
O(n) time to compute the flexibility measure f(i) for each fragment F (i, i + 1)
and O(n2) time to compute f for all such fragments in a protein.

Since each of the four steps can be performed in O(n2) time or better, we
have shown that for a protein with n backbone atoms, it takes O(n2) time to
compute the flexibility measure f for all fragments F (i, i + 1), 1 ≤ i < n.

5 Results

We tested our algorithm on both synthetic data, in which case we know the
ground truth, and experimental data from the PDB.

5.1 Synthetic Data

We took the PDB data for the TBSV coat protein (PDB code 2tbv, residues
102–387) and artificially changed a single torsion angle at residue 245 by 50◦. We
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then added noise with mean 0 and standard deviation 0.2 to the atom coor-
dinates. After creating the new structure, we compared it with the original
structure using our algorithm. The results (Fig. 4) show that residues 240–
249 are flexible and the rest are rigid. The f -values for residues 240–249 are
24. We then varied the same torsion angle by a smaller amount, 10◦, and re-
peated the test. This time, the algorithm reported a much larger flexible region,
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Fig. 4. Results for synthesized conformational change.
A single torsion angle in residue 245 of the TBSV coat
protein is changed by an angle of θ, and Gaussian noise
is added to all atom coordinates.

residues 212–260, and the
f -values for these residues
range from 100 to 139.
The larger f -values in the
second test clearly indi-
cate that the conforma-
tional change is smaller
than that in the first test,
and the residues involved
are thus less flexible.

The single torsion angle
that was changed is not
identified because given the
noise in the coordinates,
there is not sufficient statis-

tical evidence in the data that allows this. If the conformational change is small,
we must examine a large fragment in order to differentiate genuine conforma-
tional change from noise, with confidence. Thus, the smaller the conformational
change, the less precisely we can identify the region of flexibility.

5.2 Protein Structures

Using PDB data, we tested our algorithm on proteins exhibiting a wide range of
conformational changes. Our data set (see Table 1) consists of all the proteins
used in [22] to test similar algorithms. It also includes two additional proteins:
adenosylcobinamide kinase, which undergoes shear motion, and HIV-1 protease,
which undergoes a gradual, induced-fit type of motion. We performed tests on
other proteins as well, but cannot report all the results here for lack of space;
the readers are encouraged to use our software, which is freely available, to test
other proteins of interest.

Tomato Bushy Stunt Virus (TBSV) coat protein. The results on this vi-
ral coat protein (Fig. 5a) show small f -values for residues 267–276 and very large
f -values for the rest of the protein, which suggests a small region of high confor-
mational flexibility with the rest of the protein being rigid. This closely matches
the experimental evidence for the conformational change in this protein, which is
reported to exhibit rigid-body closure about a single hinge at residues 266–272 [8].

Adenosylcobinamide kinase. Conformational change in adenosylcobinamide
kinase is limited to a small fragment and involves the shearing of a helix (chain B,
residues 233–249) effected by the residues at both ends of the helix. [24]. This
is clearly shown in a morph of two conformations available from the Macro-
molecular Movements Database [3]. Our results (Fig. 5b) agree well with this
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Table 1. Test proteins

Protein Num. Res. PDB code σ Motion
TBSV coat protein 286 2tbv, A 0.2 inter-domain,
(residues 102–387) 2tbv, C 0.2 hinge
adenosylcobinamide 180 1cbu, B 0.2 intra-domain,
kinase 1c9k, B 0.2 shear
lactoferrin 691 1lfg 0.2 inter-domain,

1lfh 0.2 hinge
HIV-1 protease 99 3hvp 0.1 induced-fit

4hvp 0.1
lactate 329 1ldm 0.1 intra- and
dehydrogenase 6ldh 0.1 inter-domain
aspartate trans- 310 5at1, A 0.1 intra- and
carbamoylase 8atc, A 0.1 inter-domain
control 310 1rab, A 0.1 none

1rac, A 0.1

interpretation. Residues near the ends of the helix (residues 229–236 and 241–
256) are identified as the flexible regions. The middle of the helix is not much
affected by the shearing. The rest of the protein is rigid.

Lactoferrin. Lactoferrin is responsible for the reversible binding and transport
of ferric iron. It contains multiple hinges and is folded into two similar lobes, the
N-lobe (residues 1–333) and the C-lobe (residues 345–691), each of which binds
with a cation. The domain closure is effected by local changes in two β-strands
centered around residues 90 and 250 in the N-lobe [1]. Our results (Fig. 5c)
correctly identify the two flexible β-strands, residues 90–95 and residues 249–
252, which separate the N-lobe into three regions. See also Fig. 1 for improvement
of our algorithm over some common existing ones. The C-lobe, which also binds
with a cation, may also exhibit conformational flexibility. However, according to
earlier work [5], “(The C-lobe) . . . shows no appreciable conformational change...
The absence of changes in the C-lobe is not completely understood, but could
arise from crystal-packing effects.” Our plot of the flexibility measure shows
a definitive flexible region (residues 415–425) between two rigid regions, which
indicates the presence of the suspected conformational change. Movements of the
N-lobe relative to the C-lobe is also detected through a flexible region between
residue 321 and 362.

HIV-1 protease. HIV-1 protease plays a critical role in the maturation of HIV-
1 virus and is a major inhibitory drug target. Its conformational flexibility affects
the effectiveness of various inhibitors [19]. We applied our algorithm to two of
the many known conformations of HIV-1 protease. The results (Fig. 5d) show
that most of the residues have moderately low f -values. Thus, almost the entire
protein is flexible to some degree. This reflects that the ligand binding process in
HIV-1 protease fits the induced-fit model, in which many small movements of the
receptor occur during the binding process. The results also show three regions
of high conformational flexibility (residues 14–16, 38–40, and 50–53), and they
are consistent with results reported in the literature [11].
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(a) TBSV coat protein (b) adenosylcobinamide kinase (c) lactoferrin
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(d) HIV-1 protease (e) lactate dehydrogenase (f ) aspartate transcarbamoylase

Fig. 5. Computed protein flexibility measure f , based on PDB data

Lactate dehydrogenase (LDH). The binding of LDH with the cofactor of
nicotinamide adenine dinucleotide (NAD) induces major conformational changes
as well as several smaller intra-domain changes. Our results (Fig. 5e) indicate
regions of maximum flexibility in residues 91–114, 191–196, 214–235 and 322–
329, and larger regions of moderate flexibility in residues 1–30, 115–190 and
235–320. These results agree well with the conformational changes suggested
by Gerstein and Chothia [6]. The differences occur in only two regions. In [6],
residues 1–8 are designated as static, and residues 191–196 have no designation.

Aspartate transcarbamoylase. Aspartate transcarbamoylase, from E. coli.,
exhibits a complex combination of inter-domain and intra-domain conforma-
tional changes. The enzyme is found in two states often referred to as the tense
(T) and the relaxed (R) states. Our results show high flexibility in three re-
gions (residues 45–55, 75–90, and 230–246), which correspond to regions of intra-
domain conformational changes found in earlier work [22]. Our results also show
conformational flexibility in residues 130–155 and residues 260–270, located near
the boundaries of known domains. They correspond to inter-domain conforma-
tional changes. Several other regions of moderate flexibility within the domains
are also detected.
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Fig. 6. Control experiment

Control. As a control experiment, we applied our
method to two independently-determined struc-
tures of aspartate transcarbamoylase in the T
state (PDB codes 1rab and 1rac). As expected,
no flexibility is detected even at σ = 0.1 (Fig. 6).

The above results show that our algorithm
works well for both inter-domain and intra-
domain motions, including well-known examples
such as hinge and shear. These results also show
that despite its simplicity, the Gaussian model of

coordinate noise is adequate, as an approximation, for accurate detection of
conformational flexibility.
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6 Discussion

An important feature of our algorithm is the assignment of a continuous per-
residue flexibility measure, which allows it to handle sharp conformational
changes as well as smaller, more gradual ones. Our algorithm does not pre-
suppose the existence of a particular type of conformational change and, as a
result, is able to identify a wide range of conformational changes. This is clearly
illustrated in the HIV-1 protease example, in which the induced-fit motion is
correctly identified. Some alignment algorithms (e.g., [20,27]) which presuppose
the existence of hinges separating rigid domains detect only a single hinge in
this protein. This is clearly an incomplete picture of the conformational change
in HIV-1 protease.

Our algorithm gives more accurate results than a number of commonly used
approaches, as shown earlier in Fig. 1. We believe this is primarily due to the
principled treatment of noisy data through the all-fragment analysis at the high
level and the statistical flexibility test at the low level.
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Fig. 7. Applying our algorithm to
TBSV with σ = 0.1

One issue that affects the accuracy of our
algorithm is the setting for σ2, the variance of
the noise in the input protein structure coor-
dinates. Sometimes, σ is readily available from
multiple structure determination experiments.
Other times, we can get a rough estimate from
standard parameters in crystallographic data,
such as temperature factors, but getting an
accurate estimate may be difficult, as the re-
lationship between these parameters and σ is
complex and not easy to establish quantita-
tively. In such cases, we have found out from our experiments with PDB data
that σ values between 0.1 and 0.2 Å work well.

Let us now consider what happens if we over- or under-estimate σ. Essentially,
σ controls the sensitivity of our algorithm. For larger σ values, the sensitivity of
our algorithm decreases. It detects only more significant conformational changes
and may miss some subtle ones, which are masked as noise. For smaller σ val-
ues, the sensitivity of our algorithm increases. It is more likely to detect subtle
conformational changes, but may also generate some false positives due to noise.
For example, we set σ = 0.1 and re-ran our algorithm on the TBSV coat protein.
The result (Fig. 7) is consistent with that for σ = 0.2 (Fig. 5a). The single hinge
is detected in both cases. However, the result for σ = 0.1 shows an additional
flexible region at one end of the protein (residues 102–133). This is likely due
to increased noise in the structural data at the ends of a protein, rather than
genuine conformational change.

Thus, when it is difficult to get an accurate estimate of σ, we can run the
algorithm multiple times. We start with a relatively large σ value (say, 0.2) and
gradually reduce σ. The conformational changes detected at high σ values are
more reliable. With reduced σ, additional, more subtle conformational changes
can be detected, but some false positives may also occur.
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7 Conclusion

We have developed an efficient algorithm for analyzing conformational changes
of a protein. It applies a statistical flexibility test to all contiguous fragments
of a protein and combines the information to compute a consensus flexibility
measure for each residue of the protein.

We tested the algorithm with PDB data. The results show that our algorithm
reliably detects a broad range of protein conformational changes, including both
inter-domain and intra-domain ones. Furthermore, this algorithm is fully auto-
mated. The user only needs to provide an estimate of the level of noise in the
input protein structural data and the required confidence level of the results. In
contrast to some earlier algorithms, the algorithm does not require the user to
know the type of motion (e.g., hinge or shear) in advance. Neither does it ask the
user to select an arbitrary threshold for determining flexible protein fragments.
Instead, our algorithm chooses such thresholds automatically based on princi-
pled statistical analysis. Our algorithm is efficient. It takes O(n2) for a protein
with n backbone atoms and runs at interactive speed on a desktop PC even for
large proteins with thousands of atoms.

Currently, our statistical test assumes that the coordinate noise in each atom
is i.i.d., and the basis for identifying genuine conformational change is the mag-
nitude of displacements in atom positions. An interesting extension is to explore
the correlation among displacements. This may help improve our algorithm’s
accuracy in detecting coordinated motion involving many atoms.

While our work focuses on finding the flexible regions of a single protein
in different conformations, the principle used by our statistical test for noise
analysis applies to many other structural comparison problems. An example is to
compare a set of different proteins in order to identify a common domain. When
the effect of noise is significant, the statistical test may improve the performance
of many algorithms for such problems.
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Abstract. We present a novel highly efficient method for the detection
of a pharmacophore from a set of ligands/drugs that interact with a
target receptor. A pharmacophore is a spatial arrangement of physico-
chemical features in a ligand that is responsible for the interaction with
a specific receptor. In the absence of a known 3D receptor structure, a
pharmacophore can be identified from a multiple structural alignment of
the ligand molecules. The key advantages of the presented algorithm are:
(a) its ability to multiply align flexible ligands in a deterministic manner,
(b) its ability to focus on subsets of the input ligands, which may share
a large common substructure, resulting in the detection of both outlier
molecules and alternative binding modes, and (c) its computational effi-
ciency, which allows to detect pharmacophores shared by a large number
of molecules on a standard PC. The algorithm was extensively tested on
a dataset of almost 80 ligands acting on 12 different receptors. The re-
sults, which were achieved using a standard default parameter set, were
consistent with reference pharmacophores that were derived from the
bound ligand-receptor complexes. The pharmacophores detected by the
algorithm are expected to be a key component in the discovery of new
leads by screening large drug-like molecule databases.

Supplementary Material:
http://bioinfo3d.cs.tau.ac.il/pharma/supp.html

Keywords: Computer-Aided Drug Design (CADD), Rational Drug Dis-
covery, 3D Molecular Similarity, 3D Molecular Superposition.

1 Introduction

A pharmacophore is the three-dimensional (3D) arrangement of features that is
essential for a ligand molecule in order to interact with a receptor in a specific
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binding mode. An identified pharmacophore can serve as an important model in
rational drug design, since it can aid in the discovery of new lead compounds that
can bind to a target receptor. Many computational methods for pharmacophore
identification have been developed [1,2]. The methods are classified into direct
and indirect methods. Direct methods use both ligand and receptor structural
information. However, often the 3D structure of the receptor is unknown. In such
cases, only indirect methods, which derive a pharmacophore only from a set of
ligands that have been experimentally observed to interact with the receptor, are
applicable. Generally, given a set of active ligands, the indirect methods search
for the largest or highest scoring 3D pattern of features responsible for binding
that is shared by all or most of the input ligands. If we represent the ligands
by the 3D positions of the features that they possess, then a simpler variant of
the problem is the largest common point set (LCP) problem in Computational
Geometry, which is known to be NP-hard even when the input is only three
3D point sets [3,4]. The pharmacophore identification problem is further com-
plicated by the fact that drug-like molecules are flexible, namely they possess
many internal degrees of freedom, due mainly to rotatable bonds. As a result,
they may have many possible conformations. The specific ligand conformations
that bind in the active site of the receptor are unknown. Thus, all the feasible
conformations of each input ligand have to be considered.

Due to the hardness of the problem, no indirect method finds the optimal solu-
tion in polynomial-time. The various existing approaches mainly differ in: (i) the
chosen feature descriptors and structure representation, (ii) their technique for
addressing the ligand flexibility, and (iii) the pattern identification algorithm [1].
The different feature descriptors mainly depend on the desired level of resolution.
At the highest level, a feature is defined as the 3D position of an atom associated
with the atom type [5,6,7]. At the next (coarser) level, atoms are grouped into
topological features like phenyl ring and carbonyl group [8]. Finally, at the lowest
level of resolution, spatially adjacent atoms are grouped into physico-chemical
functional features that are important for ligand-receptor binding, such as aro-
maticity, charge, hydrogen bonding and hydrophobicity [9,10,11,12]. The ligands
as well as the searched pharmacophore pattern are then described by the features
that they possess, and their structures are represented mainly as 3D point sets
[7], distance matrices [13,14], graphs [15,14], or trees [16]. Most indirect meth-
ods treat the conformational search as a separate initial stage. A discrete set of
conformations is generated with the goal of sampling the whole conformational
space of each ligand [17,11,10,9,7,5,18,19]. The main drawback of this approach
is that the number of conformations required to cover the whole conformational
space might be extremely large, especially for highly flexible compounds. An
alternative approach is to combine the conformational search within the pattern
identification process. The main advantage of this approach is that the search
space is not limited to a precomputed discrete number of conformations. How-
ever, to date the methods that adopt this approach are based on a random search
[8,20,6,21]. Furthermore, even for the simplified problem of superimposing only a
pair of (and not multiple) ligands, deterministic algorithms that do incorporate
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the conformational search within their superposition process are rare. Two such
methods are FlexS [22] and fFLASH [23]. The most common techniques for iden-
tifying pharmacophore patterns are clique-detection [17,5,24], exhaustive search
[9,8] and genetic algorithms [5,20,6,21].

Here, we present a new indirect method for pharmacophore detection, which
is, to the best of our knowledge, the first deterministic algorithm that performs
this task through multiple flexible alignment. The main novelty of the method
lies in its explicit consideration of ligand flexibility in the pattern identification
stage. The algorithm is very efficient, as demonstrated in the Results section.
Another key advantage of the method is its ability to find candidate pharma-
cophores shared by non-predefined subsets of the input ligands. This makes
the method tolerant to outliers and to several binding modes. The performance
of the method has been successfully evaluated on a benchmark dataset taken
mainly from the FlexS dataset [25]. This dataset consists of almost 80 ligands
that are classified into 12 cases according to the protein receptor they bind
to. A web interface of this pharmacophore detection application is available at
http://bioinfo3d.cs.tau.ac.il/PharmaGist/.

2 Method

Problem definition and hardness. Given a set of ligands, the goal is to find
candidate pharmacophores, namely the largest (or highest scoring) 3D patterns
of features responsible for binding that are shared by a significant number of
input ligands. If we consider the ligands as rigid bodies represented by the 3D
positions of their features, then a simpler optimization task is to search for the
maximal cardinality set of features that is shared by all ligands. This task is
equivalent to the largest common point set (LCP) problem in Computational
Geometry, which is NP-hard even for the case of only three 3D point sets [3,4].
The pharmacophore detection task is even more complicated, since drug-like
ligands are flexible and thus can adopt many conformations. As shown in the
supplementary material, even the simplest case of finding the largest common set
of features shared by a pair of molecules, one rigid and one flexible, is NP-Hard.

There are two other related requirements that are expected from a robust
method for pharmacophore detection. The first requirement is motivated by the
fact that, due to alternative binding modes, the same set of ligands may share
several pharmacophores. Thus, the aim is to detect not only the largest (or
highest scoring) candidate pharmacophore, but also other candidates, as long
as their score is larger than a predefined threshold. Additionally, in order to
overcome outlier ligands and to be able to deal with several binding sites of
the target receptor, it is important to find candidate pharmacophores shared
by only some of the ligands. This requirement complicates the problem since
the number of ligand subsets is exponential in the number of input ligands.
Furthermore, since there is a trade-off between the number of ligands and the
number of features in their common 3D pattern, the exact definition of the
requirement is quite vague mathematically. One possible approach, which we
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have adopted, is to find for any possible number of r input ligands, candidate
pharmacophores shared by exactly r input ligands for which the score is greater
than a predefined threshold.

Our approach. The input is a set of ligands, each given by the 3D coordinates
of its atoms’ centers and the covalent bonds between them. To avoid explicit
conformational search, we assume that one ligand, the pivot, is given in its active
conformation and thus considered as rigid. In contrast, the other (target) ligands
are treated as capable of exhibiting torsional flexibility about their rotational
bonds. Informally, the goal is to find the highest scoring 3D pattern of pivot
features that can be aligned to most of the target ligands. We approach this task
by searching for conformations of the target ligands and their superpositions on
the pivot such that the score of the superimposed common features is maximized.
Note that the pivot ligand may be selected by the user. However, the default
assumption is that the identity of the pivot ligand is unknown. Thus, the method
iteratively selects each one of the input ligands to serve as a pivot.

Formally, we define a feature of a molecule to be a set of atoms with a physico-
chemical property important for ligand-receptor binding (aromaticity, charge,
hydrogen bonding or hydrophobicity). Let S(fp, f t) be a given scoring function
for measuring the similarity between a pair of features, fp of the pivot and f t of
a target ligand. We associate each feature with its center of mass and say that
a pair of features, fp on the pivot and f t on the target ligand t, are potentially
matched if their Euclidean distance is below a predefined threshold ε and their
score, S(fp, f t), is positive. Two equal-sized sets of l features, one of the pivot
and one of a target ligand, F p = {fp

i }1≤i≤l and F t = {f t
i }1≤i≤l, are said to be

flexibly matched if there are a feasible conformation of the target ligand and a
3D pose (position and orientation) for it, such that the corresponding features,
fp

i and f t
i (for any 1 ≤ i ≤ l) are potentially matched. A set of features of the

pivot, F p = {fp
i }1≤i≤l is said to be m-matched if there are m sets of target

features, F t (1 ≤ t ≤ m), each belonging to a different ligand, such that F p

and F t are flexibly matched. The score of an m-matched set of pivot features is
the center-star score of all matched feature pairs with the m target molecules,∑m

t=1
∑l

i=1 S(fp
i , f t

i ). For two sets of l features each, one of the pivot and one
of a target ligand t, F p = {fp

i }1≤i≤l and F t = {f t
i }1≤i≤l, we define S(F p, F t)

to be the sum of the similarity scores of the corresponding features, that is∑l
i=1 S(fp

i , f t
i ).

Given a pivot, a set of M target ligands, and a distance error ε ≥ 0, the goal
is to find for any m (1 ≤ m ≤ M) the highest scoring sets of pivot features that
are m-matched. The pivot can be selected as the ligand with highest affinity
to the receptor or the one with the smallest number of degrees of freedom. By
default an iteration over all input ligands is performed. In this (default) scenario,
the goal is generalized to selecting the best pivot as well.

Method Outline. The method consists of four stages: Ligand Representation,
Pairwise Alignment, Multiple Alignment and Pharmacophore Clustering. In the
first stage, each ligand is partitioned into rigid groups connected by rotatable

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



416 Y. Inbar et al.

bonds and is assigned a set of physico-chemical features. In the second stage,
pairwise flexible alignments between the pivot and each target ligand are com-
puted. In the third stage, we combine pairwise alignments into multiple align-
ments between the pivot and at least two target ligands. In the fourth stage,
all candidate pharmacophores are clustered to produce a non-redundant set of
solutions. While the second and the third stages are invoked for each possible
pivot separately, the clustering stage is invoked only once to cluster solutions
generated by all pivot iterations.

2.1 Ligand Representation

A ligand is represented by an atom graph. The vertices of the graph are the
ligand atoms and the edges are the covalent bonds between them. The rotatable
bonds of the ligands are identified and each ligand is divided into rigid groups. A
bond is considered rotatable if it is not: (i) double, (ii) a ring bond, (iii) a bond
connecting a single (leaf) atom, or (iv) a peptide bond. A rigid group of a ligand
is defined as a set of atoms between rotatable bonds (including their atoms).
To determine the rigid groups of a ligand, the connected components of a graph
identical to the ligand atom graph but without the rotatable bonds are detected
by DFS. Then, a rigid group is specified as the set of atoms of such a connected
component and the atoms of the rotatable bonds to which it is connected in
the atom graph. This definition ensures at least three atoms in a rigid group (in
the extreme cases a rigid group consists of a leaf atom connected to a rotatable
bond or two adjacent rotatable bonds). It also ensures that adjacent rigid groups
are not disjoint, but share the atoms of the rotatable bond between them. Note
that including both atoms of a rotatable bond in a rigid group does not violate
the group rigidity, since when rotating the bond, its atoms remain in the same
position relative to the other atoms in the group. The decomposition of a ligand
into rigid parts is represented by a directed tree called rigid group tree. The
vertices of the tree are the ligand rigid groups and the edges connect adjacent
rigid groups. By DFS, the vertices (rigid groups) are topologically sorted and
the edges are directed so that the out-degree of each vertex is at most one.

Finally, we compute for each rigid group the features that it possesses. A
feature is a set of atoms with a physico-chemical property that is important for
binding, namely it is one of the following types: (i-ii) a hydrogen-bond accep-
tor/donor atom; (iii-iv) an anion/cation atom; (v) a set of atoms of an aromatic
ring (detected by a variant of BFS applied on the ligand atom graph); and (iv)
a pair of adjacent hydrophobic atoms.

Applying this stage to a single ligand takes linear time in the size of the ligand,
that is O(n) if n is the maximal number of atoms in an input ligand. This is due to
the fact that we apply several variants of DFS and BFS on the ligand atom graph.

2.2 Pairwise Alignment

The input is the pivot and a single target ligand. The pivot is considered as rigid,
while the target is treated as flexible. The goal is to simultaneously find feasible
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conformations of the target ligand and their superpositions on the pivot such
that the score of their aligned features is maximized. The algorithm consists of
two stages, Rigid Group Alignment and Rigid Group Assembly into a Flexible
Alignment. In the first stage, a set of transformations is generated for each rigid
group of the target ligand. Each transformation superimposes a target rigid
group on the pivot and yields a new candidate pose for the rigid group. In the
second stage, we combine candidate poses of the target rigid groups. The result
is a set of feasible conformations of the target ligand superimposed on the pivot
such that the score of the aligned features is maximized.

Rigid Group Alignment. The goal is to generate candidate transformations
for superimposing the rigid groups of the target ligand onto the pivot. For this
purpose, we apply a hybrid technique of Pose-Clustering [26] and Geometric
Hashing [27]. In the pre-processing stage, for each rigid group of the target
ligand, we extract all non-collinear triplets of atoms and store them in a 3D hash
table. The hash key of a triplet is the triple of side lengths of the triangle that it
forms and is invariant to 3D translation and rotation. In the recognition stage,
we extract non-collinear triplets of atoms from each rigid group of the pivot and
use them to query the hash table. The result of each query with a pivot triplet
is a list of all almost-congruent triplets from the target rigid groups.

Each pair of almost-congruent triplets, one of a pivot rigid group and one of
a target rigid group, uniquely defines a transformation that superimposes the
target triplet onto the pivot triplet with minimal RMSD [28]. Different pairs
of almost-congruent triplets can lead to nearly identical transformations. Thus,
for each target rigid group, we cluster similar transformations and join their
matched triplets of atoms into one list. The clustering method is similar to the
one used in [29] and is based on the RMSD distance between the images of the
transformations on the atoms of the target rigid group.

Finally, for each cluster we compute a representative transformation with
minimum RMSD between the matched atoms in the joined list in linear time in
the size of the list [28]. These transformations when applied on the target rigid
group represent new poses for it on the pivot. For each new pose we compute
a feature match list. This is a list of pairs of matched features, one of the pivot
and one of the target rigid group. Two such features can be matched if: (i) they
have an identical physico-chemical property1, and (ii) the distance between their
centers of mass, on the pivot and in the new pose of the target rigid group, is
less than a predefined threshold ε. Each feature match list is associated with a
feature score (S(F p, F t) as defined above). Given a new pose of a target rigid
group, the feature match list with the maximized score is found by an exact
algorithm for finding maximal matching in a bipartite graph [30]. The vertices
of the graph are the features of both the pivot and the target rigid group. The
edges connect potential pairs of matched features and are efficiently constructed
by using a 3D look-up grid as follows. The pivot features are stored in the grid by

1 In principle the method can match features of different types and maximize their
overall score.
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their midpoints. The midpoints of the features on the target rigid group pose are
then used to query the grid and find ε-coincident pivot features. Since different
features of a molecule cannot be too close in space, the number of pivot features
that can be matched to a target feature is bounded by a small constant and the
number of edges is thus linear in the number of vertices.

Let n be the maximal number of atoms in a ligand. In the worst case, both
ligands are rigid and the number of atom triplets that are constructed for each
one of them is O(n3). The maximal number of transformations for superim-
posing the target ligand on the pivot is thus O(n6) and clustering them takes
O(n12 log n) time [29]. The representative transformation of each cluster is com-
puted in O(n) time [28] and its feature match list is computed in O(n

√
n) time

[30]. The overall theoretical time complexity is thus O(n12 log n). In practice,
since the atoms of a molecule are not random 3D points and cannot penetrate
each other, the number of atoms that are close in space is bounded. Thus, by
considering only triplets of spatially close atoms, we get a linear number of atom
triplets per ligand, O(n2) poses, and an overall complexity of O(n4 log n).

Rigid Group Assembly into a Flexible Alignment. The input is a set of
candidate poses for each rigid group of the target ligand. We define a feasible
flexible alignment of the whole target ligand on the pivot as an assembly of input
poses that fulfills the following criteria: (i) there is exactly one pose for each rigid
group; (ii) poses of two adjacent rigid groups are consistent, namely they agree
on the location of their two shared atoms and cause no steric clashes between
non-shared atoms; (iii) there are no steric clashes between poses of atoms on
non-adjacent rigid groups. The goal is to find K feasible flexible alignments of
the target ligand on the pivot with the highest feature scores of the associated
feature match lists. This problem is NP-Hard (supplementary material). Below,
we first present a graph-theory algorithm that solves the problem in polynomial
time under the relaxation that: (*) steric clashes cannot occur between poses
of non-adjacent rigid groups (condition iii). Then, we explain how we use this
algorithm to find the K highest-scoring feasible flexible alignments that fulfill
all the three conditions.

Assembly Graph Construction. We construct a weighted N -partite DAG,
called assembly graph, where N is the number of rigid groups in the target
ligand (Fig. 1). Each partition is associated with all the candidate poses of a
specific rigid group. A vertex represents one pose for the respective rigid group.
A pair of vertices in two different partitions are connected by an edge if they
represent consistent poses of adjacent rigid groups. The rationale behind this
construction is that any feasible flexible alignment of the target ligand on the
pivot is represented by a tree in the graph and its feature score is the sum of the
weights of all its vertices and edges. The weight of a vertex is the feature score
of the represented rigid group pose. Adjacent rigid groups share the two atoms
of the connecting rotatable bond and thus may have common features. To avoid
double scoring of these features, we assign to each edge a non-positive weight
computed as follows. We merge the feature match lists of the two connected
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rigid group poses and define the weight of the edge as the feature score of the
resulting list minus the sum of the scores of the two separate feature match
lists. The partitions of the assembly graph are ordered according to the order
of the rigid groups in the rigid group tree of the target ligand (see Section 2.1).
The edges of the assembly graph are directed according to this order, from the
vertex in the partition with the lower index (source partition) to the vertex in
the partition with the higher index (target partition). The directionality of the
edges ensures that all the out-edges that start from a specific source partition
always end at the same target partition. This ordering is exploited in the next
stage of the algorithm.

Search for the K-Best Assembly Trees. Our aim is to find the K-best
(highest-scoring) trees in the assembly graph that include at most one vertex
from each partition. Such an assembly tree represents a feasible flexible alignment
of the target ligand with the pivot (under relaxation *), since at most one pose is
selected for each rigid group and the edges in the tree connect consistent poses of

Fig. 1. Assembly Graph. An N-
partite DAG. The vertices of a parti-
tion are circled and each represents a
different pose of the same rigid group.
Edges exist between consistent poses of
adjacent rigid groups. An example for
an assembly tree is depicted in red.

adjacent rigid groups. The K-best assem-
bly trees are computed by dynamic pro-
gramming in a bottom-up manner from
the leaves to the root. In each step the K-
best assembly trees rooted at vertices in a
particular partition are computed. Specif-
ically, the K-best assembly trees rooted at
vertex v in the current partition are com-
puted based on the K-best assembly trees
rooted at vertices in source partitions that
have out-edges to v. The order of the par-
titions and the directionality of the edges
ensures that the K-best assembly trees of
all vertices in source partitions with out-
edges to v have already been computed in
previous steps.

An assembly tree rooted at vertex v
is computed by combining assembly sub-
trees rooted at vertices in source parti-
tions and the corresponding in-edges of v
such that at most one subtree is selected
from each source partition. This guaran-
tees that in the resulting tree only one
pose is selected for each rigid group. Each
vertex v holds a sorted list of the K-best
assembly trees rooted at v. For a vertex
with no in-edges, the only possible assem-
bly tree consists of the vertex itself. For a vertex v with D in-edges, the K-best
trees are computed in two stages: Source Partition Merge and Tree Union. In
the first, Source Partition Merge, stage we select for each source partition of v
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all the vertices that have out-edges to v and merge their sorted list of K-best
trees into one sorted list with the K-highest scoring trees. The score of each tree
in the merged list is the sum of the score of the original tree and the score of the
connecting edge to v. In the second, Tree Union, stage the input is the merged
list of K-best assembly trees for each source partition of v. Any combination
of subtrees, each taken from a different input list, defines an assembly tree of
v. The K-best assembly trees of v are computed by selecting the K-highest
scoring combinations of assembly subtrees. The score of such tree is the sum
of the scores of the combined subtrees and the score of v. There are KD such
possible combinations. However, since we are interested only in the K highest
scoring ones, there is no need to enumerate all of them. This problem can be
generally stated as: given D sorted arrays of numbers, find the K D-tuples of
array indices with the highest sum of numbers. This problem can be efficiently
solved [31]. Once the lists of K-best assembly trees for all the vertices are com-
puted, we merge the lists of all vertices into one list and retain the K highest
scoring trees.

The construction of the assembly graph ensures that any two connected
vertices represent consistent poses of two adjacent rigid groups in the target
molecule. However, a tree in the assembly graph might present inconsistency
(steric clashes) between atoms on non-adjacent rigid groups. Thus, not all the
K-best trees found by the algorithm represent feasible flexible alignments. Due
to the geometry of drug-like molecules, the number of trees with inconsistent
poses is usually much smaller than that of the consistent trees. Therefore, we it-
eratively increase the number of searched assembly trees until K feasible flexible
alignments with a positive score are found (if exist).

An assembly tree does not necessarily contain poses for all the rigid groups of
the target ligand. To obtain a feasible conformation for the whole target ligand,
for each missing rigid group in the assembly tree, we set its pose according to the
transformation of its predecessor rigid group (in DFS order) in the rigid group
tree of the target ligand. Finally, for each new conformation of the target ligand,
we update the list of matched features with the pivot by applying a maximum
matching algorithm as described in the Rigid Group Alignment Section.

The algorithm works separately on each vertex. It first performs the merging
procedure (possibly multiple times) and then it performs the union procedure.
Let Dv be the number of in-edges of a vertex v. Dv =

∑
i Dv

i , where Dv
i is

the number of poses of rigid group i that have out-edges to v. The merging
complexity on the in-edges from rigid group i is O(K log Dv

i )[31]. The union
procedure complexity is O(KD′

v log D′
v + K log K), where D′

v is the number of
rigid groups that have poses with out-edges to v. The overall complexity for
a single vertex v is O(KDv log Dv + K log K), resulting in an O(K|E| log D +
|V |K log K) time complexity for all vertices, where D is the maximum degree of
a vertex in V . According to Rigid Group Alignment Section, |V |, which is the
number of poses, is O(n2). Thus, in the worst case, D is O(n2) and |E| is O(n4).
This leads to an overall time complexity of O(Kn4 log n + n2K log K).
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2.3 Multiple Matching

The input is the pivot, M target molecules and K pairwise alignments between
each target molecule and the pivot. Each pairwise alignment matches a set of
pivot features Fp to a set of features Fi of a target molecule with score S(Fp, Fi).
A selection of m (2 ≤ m ≤ M) target molecules and exactly one pairwise align-
ment for each one of them defines a multiple alignment. The consensus (matched)
pivot feature set F c

p of a multiple alignment is defined as the intersection of the
pivot feature sets matched by all its pairwise alignments. The score of a multiple
alignment is the sum of the fractions of the scores of its pairwise alignments
with respect to the consensus pivot feature set, that is

∑m
i=1 S(F c

p , F c
i ), where

F c
i is the feature set matched to F c

p in the ith target molecule. The goal is to
find for each m (2 ≤ m ≤ M) the highest scoring multiple alignments consisting
of exactly m target molecules. The consensus pivot feature sets of these multiple
alignments are pharmacophore candidates. This problem is NP-Hard even for
K=1 (proved by a reduction from the maximum k-intersection problem [32]).

There is an exponential number of O((K + 1)M ) combinations to construct
a multiple alignment from K pairwise alignments for each of the M target
molecules. An enumeration over all these possible combinations is impractical.
Moreover, we are interested in a method that will be scalable in the number
of input molecules. Therefore, a more applicable approach is to enumerate the
possible subsets of pivot features that can be matched by multiple alignments.
If n is the number of pivot features, then there are O(2n) such subsets. An enu-
meration over all these subsets is practical since the number of atoms, and thus
the number of features, in a typical drug-like molecule is small. We have adopted
this approach and enumerate only relevant pivot feature sets. These are subsets
of pivot features that are matched by at least two input pairwise alignments.

A relevant pivot feature set can be matched by several multiple alignments
depending on the selected target molecules and the selected pairwise alignment
for each one of them. Given a relevant pivot feature set Fp, the method represents
all the multiple alignments for which Fp is part of their consensus pivot feature
set in a data structure called combinatorial bucket (CB). Specifically, the CB of
Fp holds for each target molecule all the pairwise alignments for which the set
of matched pivot features includes Fp. Selecting at most one pairwise alignment
for each target molecule in the CB defines a multiple alignment for which Fp is
part of their consensus pivot feature set.

The method computes the relevant pivot feature sets and their CBs incremen-
tally. First, all the relevant sets of size one and their CBs are created. In each of
the following steps, all the relevant sets of size i are computed from relevant sets
of size i − 1. Specifically a relevant set of size i can be computed as the union of
two relevant sets of size i − 1. However, not every union of two sets of size i − 1
leads to a set of size i. Additionally, different pairs of sets of size i − 1 may lead
to multiple copies of the same set of size i. Thus, a naive enumeration over all
the pairs of sets of size i−1 is inefficient. Instead, an efficient enumeration based
on the following observation is applied. Let {fk1 , ..., fki} be a relevant set with
i pivot features sorted by their indices. We can uniquely build this set as the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



422 Y. Inbar et al.

union of two relevant pivot feature sets of size i−1, one without the first feature
{fk2 , ..., fki} and the other without the last feature {fk1 , ..., fki−1}. Thus, in step
i the method enumerates over all the relevant pivot feature sets of size i−1. For
each such set F ′

p = {fk1 , ..., fki−1}, the method looks for another relevant pivot
feature set F ′′

p of size i − 1 without the first feature fk1 and with an additional
feature fki (ki > ki−1), that is F ′′

p = {fk2 , ..., fki−1 , fki}. To find all the possi-
ble sets F ′′

p for a given F ′
p, the method enumerates over all the pivot features

indexed from ki−1 + 1 to n and checks if there is a relevant pivot feature set F ′′
p

as required. The CBs of F ′
p and F ′′

p are then combined by intersecting their sets
of pairwise alignments for each target molecule, meaning that the resulting CB
of the union pivot feature set contains a pairwise alignment if and only if it is
present in both original CBs.

The many union and intersection operations of sets are efficiently performed
using a bitwise representation of both the pivot feature subsets and the CBs.
Assuming that the number of features in a drug-like molecule is smaller than
the number of bits in a word (a standard of 64 bits), a pivot feature subset is
represented by a single integer word. This allows us to keep all the pivot feature
subsets in a hash table with a bitwise representation key. A molecule possesses
O(n) features, where n is its number of atoms. Thus, the complexity of the stage
is O(n|S|MK), where S is the set of all relevant pivot subsets. In the worst case,
S = O(2n) and the overall complexity is O(n2nMK).

2.4 Pharmacophore Clustering

This stage recieves as an input the candidate pharmacophores from all pivot it-
erations. Different pivot iterations may lead to similar pharmacophores (similar
spatial arrangements of the same feature types). Moreover, in case of intra molec-
ular symmetry, the same pharmacophore may be detected in different regions
of the pivot molecule. Therefore, a clustering stage is required to produce a set
of non redundant candidate pharmacophores. We keep for each cluster a feature
key and a representative pharmacophore. The feature key is simply the feature
content (e.g. 2 aromatic, 3 acceptors and 1 anion). The representative solution is
the highest scoring member. The clustering procedure enumerates the candidate
pharmacophores in a descending score order. First, a feature key to the current
solution is generated. Next, all clusters with this feature key are retrieved (using
a hash table). If there is a cluster that its representative has almost the same
spatial arrangement of features (according to types) as the current solution, the
solution is added to the cluster. Otherwise, a new cluster is created with the
current solution as its representative.

Overall Time Complexity. For M target ligands and a single pivot the pair-
wise and multiple alignment stages together take O(M(Kn4 log n+n2K log K)+
n2nMK) time. Since we try all the input ligands as pivots, the overall time
complexity is O(M2Kn(n3 log n + n logK + 2n). This analysis is based on the
assumption that the degree of each vertex in the assembly graph is O(|V |).
In practice, the degree is much lower. Let D be the maximum degree of a
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vertex in the assembly graph, then the overall time complexity is O(M2n4 log n+
nKM2(2n + nD log D + M2n logK)).

3 Results

Evaluation Procedure. We evaluated the method on a diverse dataset consist-
ing of 74 drug-like ligands divided into 12 test cases. Each test case included several
(crystal structure) complexes of the same protein receptor with different ligands.
The ligands were separated from their complexes and their structures were min-
imized. We then applied our method on the minimized ligand structures of each
test case (enumerating over all the possible pivots). The resulting candidate phar-
macophores were compared to the superposition of the ligand structures in their
bound modes. This reference superposition of the ligands was computed by super-
imposing the structures of the receptor from the different complexes. The rationale
behind this evaluation approach is that a pharmacophore of a receptor is the 3D
pattern of features shared by the active conformations of its ligands.

The evaluation procedure consists of two stages: (i) preparation of reference
pharmacophores from the reference superposition and (ii) comparison of the
candidate pharmacophores produced by our method to the reference pharma-
cophores. The reference pharmacophores are computed from the reference su-
perposition as follows. We iteratively select each ligand in the superposition to
serve as a pivot. Based on the extracted superposition, we compute the maximal
set of matched pivot features for each of the remaining M target ligands by
applying a maximal bipartite matching algorithm [30], where two features can
be matched if they have the same type and their distance is below ε. This results
in M pairwise alignments (one for each target ligand) that are given as an input
to the multiple alignment algorithm. Since this algorithm performs exhaustive
enumeration over all subsets of matched pivot features, it will produce all the
possible reference pharmacophores that can be extracted from the reference su-
perposition, including pharmacophores based on subsets of ligands. In the second
stage, a candidate pharmacophore matched by m input ligands is compared to
all reference pharmacophores of exactly m ligands. If there are less than three
spatially distinct common features, we compare the candidate pharmacophore
to the reference pharmacophores of m − 1 ligands and so on, in attempt to find
a significant set of common features. In each comparison we apply Geometric
Hashing[27] to produce a transformation that superimposes the candidate phar-
macophore on reference pharmacophore, such that the type of matched features
is the same and their distance is below ε after superposition. Each feature of the
candidate pharmacophore is considered a hit if after applying the transforma-
tion, there are at least two features from different reference ligands with the same
feature type in the distance below ε. We count the number of hits for the given
candidate pharmacophore and compare to the total number of features of both
the pharmacophore itself and the reference pharmacophore (see table in Fig. 2).

Test Cases: Our benchmark is mainly based on the FlexS dataset [25]. This
dataset consists of 77 X-ray complexes that are classified into 14 test cases
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# lig hits/found RMSD # ref. maxK

ACE 3 runtime 0:01

3 7/7 0.00 7 22

G-phosphorylase 4 runtime 0:03

4 9/9 0.36 9 5
3 13/13 0.76 13 5

Carboxyptd-A 5 runtime 0:04

5 6/6 0.27 6 12
3 10/10 0.48 10 3

Thrombin 3 runtime 0:04

3 6/6 0.31 4 12

Immunoglobulin 5 runtime 1:46

5 13/13 0.76 14 20
4 15/15 0.73 15 20
3 17/18 0.64 18 20

Endothiapepsin 5 runtime 0:37

5 3/5 0.31 6 594
4 8/8 0.38 10 116
3 9/13 0.62 13 33

Rhinovirus 8 runtime 0:17

8(4) 6/7 0.63 0 277
5(4) 8/10 0.65 0 44
4 5/5 0.46 10 92

Trypsin 7 runtime 0:01

3(0) 0/3 N/A 0 3

# lig hits/found RMSD # ref. maxK

Streptavidin 5 runtime 0:03

5 10/10 0.18 8 9
3 10/11 0.14 10 4

HIV-protease 10 runtime 3:27

10 3/4 0.28 4 1842
9 4/4 0.77 5 1910
8 4/4 0.37 6 20
7 5/5 0.50 6 308
6 5/6 0.56 7 829
5 5/6 0.55 8 13
4 6/8 0.77 9 308
3 16/18 0.63 12 50

Elastase 7 runtime 0:17

6(0) 0/3 N/A 0 68
5(3) 6/6 0.69 0 1
3 6/11 0.55 6 1

Thermolysin 12 runtime 0:29

9(7) 5/5 0.15 0 16
8(7) 5/5 0.25 3 56
7 6/6 0.40 6 264
6 5/6 0.31 7 44
5 6/7 0.49 8 286
4 12/12 0.59 12 8
3 12/13 0.59 14 8

Fig. 2. The Benchmark Results. The data presented for each case consists of name
of the receptor, the total no. of input ligands, runtime (mm:ss - on a standard PC),
and the details of the top-scoring candidate pharmacophore for every no. of input
ligands: (i) the no. of ligands that match it (# lig). If the no. of ligands in the reference
pharmacophore it was compared to is different, it is specified in brackets; (ii) the no. of
feature hits out of the total pharmacophore features found by the algorithm; (iii) the
feature RMSD between the common features of the reference pharmacophore and the
top scoring candidate; (iv) the maximal no. of features (# ref) in the reference for the
same no. of ligands; (v) maxK, which is the maximal rank of the pairwise alignments
that was used in multiple alignment.

according to their receptor. We have considered all cases, except for three cases
that are unsuitable for testing multiple alignments since each includes only two
complexes. In addition, we have considered another test case of three ACE in-
hibitors, which was used to evaluate MTree [16]. Overall, our benchmark dataset
consists of 12 different test cases, each with 3 to 12 ligands. The ligands vary
from small molecules with only several heavy atoms to peptide that have dozens
of rotatable bonds (see Table S-1 in the supplementary material).

The method was applied on the ligands of each test case using the same
parameter set. No specific ligand was used as a pivot. Therefore, the algorithm
iteratively selected each ligand to serve as a pivot. Then, the solutions (from all
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pivot iterations) were clustered, resulting in a non-redundant set of candidate
pharmacophores. The score for matching two features of different types was set
to 0, while the score for matching two features of the same type was 1, except
for the score of two matched hydrophobic features, which was 0.3. The value of
K given to the Flexible Pairwise Alignment algorithm was 1500. The value of
the maximal distance error ε between two matched features was set to 1 Å. In
order to account for inaccuracies in the crystal structures, the value of ε in the
evaluation procedure was set to 1.4-2.0 Å.

All results are on the web site and a summary is in the table of Fig. 2. In the
table we present a comparison of the top scoring candidate for every number
of input ligands to the reference pharmacophores. A candidate pharmacophore
is compared to a reference pharmacophore by: (i) the RMSD between the su-
perimposed common features and (ii) the number of feature hits out of the
total number of features in the candidate pharmacophore. In addition, we give
the maximal number of features in the reference pharmacophore for the same
number of molecules as in the evaluated candidate. Below, we summarize the
performance of our algorithm on the dataset, followed by two detailed examples.
In the supplementary material one can find a detailed discussion of all the test
cases including interesting issues like alternative binding modes when presented.

As detailed in the table, in all test cases, we found relevant candidate phar-
macophores with an RMSD below 1Å between their matched features. In some
cases our candidate pharmacophores were matched by more input ligands (Rhi-
novirus, Elastase and Thermolysin) or more pharmacophoric features (Throm-
bin, Streptavidin, Elastase - 3 ligands pharmacophore, HIV-protease - 3 ligands
pharmacophore) compared to the reference pharmacophores. In several cases
(Immunoglobulin, Endothiapepsin, HIV-protease, Thermolysin) one or two fea-
tures were missed compared to the reference pharmacophore. Additionally, for
the top scoring candidate pharmacophore of each test case, we have computed
the maximal rank of the pairwise alignments that take part in the respective
multiple alignment (maxK in the table of Fig. 2). This parameter helps us to
evaluate the number of pairwise alignments (K) required by the multiple align-
ment algorithm in order to find the correct solution. In all cases, except for
HIV-protease, the value of maxK was less than 1000. The running times of the
test cases are between one second for the three ACE inhibitors and three and a
half minutes for ten HIV-protease inhibitors.

The Rhinovirus case is interesting since the ligands can bind to Rhinovirus
in two alternative modes (Fig. 3a-b). The top-scoring candidate pharmacophore
for all the eight ligands has seven features, six of them are hits (Fig. 3c). Due to
reversed orientation of half of the ligands in the crystal structures, the candidate
pharmacophore was compared to the corresponding reference pharmacophore
of the four ligands. For five ligands, the top-scoring candidate pharmacophore
is larger with ten features (eight hits) (Fig. 3d). For four ligands the largest
reference pharmacophore consists of 10 features, while we find only five features
in our top scoring candidate for four molecules. This is due to the fact that the
10 feature pharmacophore was already found for five molecules.
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(a) (b) (c) (d)

Fig. 3. (a-b) The two binding modes of Rhinovirus ligands can be distinguished by
the relative location of their aromatic ring (a cyan sphere) in the protein binding site
(blue). (c) The top-scoring candidate pharmacophore of all eight ligands contains seven
features. (d) The top-scoring candidate pharmacophore for five ligands contains ten
features. In all figures, green, cyan and gray spheres represent HB-acceptor, aromatic
and hydrophobic features, respectively.

(a) (b) (c)

Fig. 4. The Elastase inhibitors case. (a-c) The top-scoring candidate pharma-
cophore for six, five and three input ligands consist of 3, 6 and 11 features, respectively.
Green, cyan and blue spheres represent HB-acceptor, aromatic and positively charged
features, respectively.

The Elastase binding site contains four specificity pockets. The tripeptidic
structure of Elastase inhibitors allows them to occupy several of these pockets.
Therefore, a significant reference pharmacophore was detected only for three
out of the seven input ligands. Our top-scoring candidate pharmacophore is
matched by six out of the seven ligands and consists of an aromatic ring and two
HB-acceptors, which are important for binding to one of the specificity pockets
(Fig. 4a). The top-scoring candidate pharmacophores found for five ligands is
more significant and includes all the features of the reference pharmacophore
of three ligands (Fig. 4b). In addition, our candidate pharmacophore for three
ligands consists of eleven features, six of which are hits (Fig. 4c).

4 Conclusions and Future Work

We have described a fully automated indirect method for pharmacophore eluci-
dation. Given a collection of (acyclic) drug-like flexible ligands that are known
to interact with a specific receptor, the goal is to find the highest scoring 3D
patterns of physico-chemical features that are shared by as many as possible
input ligands. This problem is NP-hard with respect to the number of ligands,
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the number of features and the number of degrees of freedom. The method pro-
vides a heuristic solution. Its time complexity is exponential in the number of
features, but polynomial in the number of ligands and the number of degrees
of freedom. In practice, since the number of atoms, and, thus, the number of
features in most drug-like ligands is small, the running time of the method are
immensely satisfying, taking seconds to minutes on a standard PC.

The performance of the method has been successfully evaluated on a bench-
mark dataset consisting of 74 drug-like ligands divided into 12 test cases. The
results show the ability of the method to deal with different types of drug-
like ligands including peptides with more than 30 rotatable bonds. The ligand
flexibility is fully taken into account in a deterministic manner, an attribute
that, to the best our of knowledge, is unique to our pharmacophore detection
method. The results also demonstrate that the method is capable of detecting
candidate pharmacophores that are shared by non-predefined subsets of input
ligands. This makes the method tolerant to the presence of outlier ligands and
may aid in distinguishing between pharmacophores of different binding modes.
In all test cases no prior knowledge on the receptor was assumed and the default
parameters were used. However, in ‘real-life’ drug-design practice, some data on
the receptor binding site or on the affinity of the ligands may be available and
can be easily taken into account by setting the parameters.

In future work we intend to improve the method so it will be able to find phar-
macophore patterns that are present on non-adjacent rigid groups of the ligands.
In addition, we would like to generalize the definition of the searched candidate
pharmacophores to deal with cases where a ligand is active despite lacking an
important feature for binding that other ligands possess. The presented phar-
macophore detection method will be a key component in the selection of new
leads for drug design by virtual screening of small ligand databases.
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Abstract. Our group has recently developed a compact, universal protein binding 
microarray (PBM) that can be used to determine the binding preferences of 
transcription factors (TFs) [1]. This design represents all possible sequence 
variants of a given length k (i.e., all k-mers) on a single array, allowing a complete 
characterization of the binding specificities of a given TF. Here, we present the 
mathematical foundations of this design based on de Bruijn sequences generated 
by linear feedback shift registers. We show that these sequences represent the 
maximum number of variants for any given set of array dimensions (i.e., number 
of spots and spot lengths), while also exhibiting desirable pseudo-randomness 
properties. Moreover, de Bruijn sequences can be selected that represent gapped 
sequence patterns, further increasing the coverage of the array.  This design yields 
a powerful experimental platform that allows the binding preferences of TFs to be 
determined with unprecedented resolution.  

Keywords: de Bruijn sequences, linear feedback shift registers, protein binding 
microarrays, motif, transcription factor. 

1   Introduction 

Detailed knowledge of the DNA binding specificities of TFs is crucial for both 
genomic studies attempting to map TFs to their target genes [2], as well as 
biophysical investigations of protein-DNA interactions [3].  Despite the importance of 
this data type, the binding preferences of the vast majority of TFs remain unknown, 
largely due to a historical lack of suitable experimental technologies.  While 
chromatin immunoprecipitation (ChIP) experiments [4] (and, more recently, ChIP-
chip experiments [5]) give specific examples of sequences bound by a TF in vivo, 
they do not provide an exhaustive characterization of the sequences that a TF can and 
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(just as importantly) cannot bind.  Similarly, approaches such as in vitro selection [6] 
typically identify only a limited number of high-affinity binding sites, making a direct 
quantification of relative binding preferences difficult. 

To address this challenge, our group has developed the protein binding microarray 
(PBM) technology for high-throughput characterization of the in vitro binding 
specificities of protein-DNA interactions [1,7,8]. Briefly, a DNA-binding protein of 
interest is expressed with an epitope tag, then purified and applied to a double-
stranded DNA microarray. The washed, protein-bound microarray is labeled with a 
fluorophore-conjugated anti-GST antibody. By scanning the array, quantitative 
information is generated regarding the preferences of the TF for each of the sequences 
on the array.  Prior work by our group and others has demonstrated that this is an 
effective technology that allows rapid and high-quality determination of the DNA 
binding specificities of TFs [1,7-10]. 

A limitation of previous PBM studies, however, has been the lack of a universal 
array that can be used for the majority of TFs, regardless of their structural class or 
genome of origin. Earlier studies have utilized either microarrays containing a limited 
number of binding site variants chosen for the TF under consideration [7,9], or large 
genomic fragments obtained from the same genome as the TF (specifically, S. 
cerevisiae) [8].  The former approach has the twofold disadvantage of requiring a new 
microarray for each additional TF assayed and also requiring some a priori 
knowledge of the DNA binding specificities of the TF; the latter approach suffers 
from the limitation that longer sequences can contain several binding sites for a given 
TF, making it difficult to acquire quantitative information on protein-DNA 
interactions.  Thus, a single microarray is desired that represents all possible binding 
sites of a given width k (i.e., all k-mers), in order to provide a complete survey of all 
candidate binding sites. 

Our group has recently developed such a universal array [1].  The key to our design 
is two-fold.  First, we have selected our double-stranded DNA probes to have a length 
(L) significantly longer than the motif widths (k) that we intend to inspect, so that 
each spot contains L-k+1 potential binding sites of width k. For a microarray 
composed of N spots, this increases the total number of k-mers represented from N (in 
the naïve construction where there is one k-mer per spot, as has been previously 
utilized [10]) to N(L-k+1). Second, we have designed these spots to completely cover 
all k-mer sequence variants, so that a maximal number of distinct k-mers are 
represented. Consider the circular sequence shown in Fig. 1A that contains all 16 2-
mer variants exactly once. Such sequences containing all 4k overlapping k-mers one 
time are named de Bruijn sequences [11,12] of order k, and the spots of our universal 
array are obtained by computationally segmenting appropriately chosen de Bruijn 
sequences, leaving an overlap between adjacent sequences in order to not omit any k-
mers.  With this design, we are able to represent a maximal number of sequence 
variants in a minimum amount of sequence. 

The implementation of this design, along with generated data for five TFs, has 
been presented in the work of Berger et al [1].  Here, we give an exposition of the 
underlying combinatorial and algebraic theory utilized in designing the array.  
Specifically, we provide a mathematical treatment of 1) the motivation for and 
utilization of linear feedback shift registers (LFSRs) to generate de Bruijn sequences; 
2) theoretical developments made by our group in order to design de Bruijn sequences 
that not only contain contiguous k-mers, but also k-mers with biologically relevant  
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Fig. 1. De Bruijn sequence of order 2 (A) and its associated de Bruijn graph (B) 

gaps; 3) methods for selecting de Bruijn sequences that are optimized for determining 
TF binding site motifs that are wider than the order of the utilized de Bruijn sequence; 
4) the utilization of complementary, independently generated de Bruijn sequences for 
use in replicate PBM experiments.  Finally, we note that de Bruijn sequences have 
previously been utilized in cryptography [13,14], random number generation [13,14] 
and the design of tags for DNA microarrays [15].  Recently, another group has 
independently suggested the use of de Bruijn sequences for use in PBM experiments, 
although that work did not consider the coverage of gapped k-mers and did not utilize 
LFSRs [16]. We hope that this work will be useful to individuals either seeking to 
design sequences for PBM experiments or analyzing data generated by a PBM utilizing 
de Bruijn sequences.  Additionally, we hope that the mathematical methods developed 
for this application will lead to other, un-anticipated biological applications. 

2   Results 

2.1   LFSRs and the Generation of de Bruijn Sequences 

For any alphabet Σ of size |Σ| and any word length k, there exist sequences 

( )
121 ...

−+Σ
=

k
ksssS  that are circular (i.e., 1111

..... −−+Σ+Σ
= kk

ssss kk ) and of length 

|Σ|k containing all k-mers exactly once when words are considered in a stacked 
fashion. Such sequences are known as de Bruijn sequences of order k, and their 
existence can be confirmed by considering the directed graph whose vertices are all k-
1-mers and whose edges are all k-mers, where two vertices are connected by an edge 
if the last k-2 letters of the first vertex are identical to the first k-2 letters of the 
second. Fig. 1B gives an example of such a graph (often referred to as a “de Bruijn 
graph” [12]), and we note that graphs of this form have previously been applied to the 
analysis of repetitive DNA [17] and sequence alignment [18]. Observe that a de 
Bruijn sequence is equivalent to a walk on this directed graph that traverses every 
edge (i.e., an Eulerian tour [12]). Since the number of edges going into each vertex is 
equal to the number of edges that exit it, Euler’s theorem guarantees that such paths 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Design of Compact, Universal DNA Microarrays for PBM Experiments 433 

exist [12]. Indeed, for a given choice of |Σ| and k, the number of paths is 
( )

k

k

Σ

Σ
−Σ 1

!
 

[12]; for example, for |Σ|=4 (i.e., the DNA alphabet) and k=9, the number of de Bruijn 
sequences is greater than 1090,000.  

De Bruijn sequences contain a maximum density of sequence variants, as they 
contain all distinct k-mers within a sequence of minimum length.  Moreover, for any 
m>k the |Σ|k sequences of length m represented in the de Bruijn sequence will all be 
distinct; thus, although not all m-mers are represented on an order k de Bruijn 
sequence, as many distinct m-mers as possible are represented within the given 

sequence length. Similarly, for all m’< k, each m’-mer is represented exactly 
'mk−Σ  

times, insuring that the sampling of m’-mers is uniform.  
Clearly, the regularity and variability of de Bruijn sequences makes them a promising 

tool for designing a universal PBM. An especially facile method of generating such 
sequences when |Σ| = pn, for p a prime and n any integer, is through the use of linear 
feedback shift registers (LFSRs) [13,14]. As background, recall that a Galois field 
GF(pn) is a set containing pn elements that is closed over the multiplication and addition 
{×, +} operations (one can show that such operations can be suitably defined if and only 
if the field contains a prime power of elements [19]).  For example, Fig. 2 gives 
multiplication and addition tables over GF(4) = {0, 1, α, α+1}  

x 0 1 α α+1

0 0 0 0

0 1 α α+1

0 α α+1 1

0 α +1 1 α

0

1

α

α+1

+ 0 1 α α+1

0 1 α α+1

1 0 α+1 α

α α+1 0 1

α+1 α 1 0

0

1

α

α+1

 

Fig. 2. Addition and multiplication tables over GF(4) 

In order to construct a de Bruijn sequence of order k over the alphabet Σ, take an 
arbitrary embedding of the alphabet into GF(|Σ|), and consider the following recursive 

linear equation for generating the i’th element of a sequence ( )
121 ...

−+Σ
=

kksssS  

from the previous k elements, where arithmetic is performed over GF(|Σ|): 

kiikiki ssss −−−−− +++= 02211 ... θθθ . (1) 

If the coefficients qiœGF(|Σ|) are chosen so that the polynomial ∑
−

=

1

0

k

i

i
i xθ is primitive 

[19], one can demonstrate [14] that the sequence S generated by this recursive 
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equation has periodicity |Σ|k-1 and contains every k-mer in GF(|Σ|) except the 
sequence of k consecutive 0’s (this word can be easily included to make S a true de 
Bruijn sequence by inserting an additional 0 into any of the subsequences of k-1 0’s 
appearing in S). Moreover, S will exhibit the following three properties characteristic 
of pseudo-random sequences [13,14]: 

 

1) Balance: The number of occurrences in S of each letter differs by no more 
than 1. 
2) Low autocorrelation: There is low correlation between pairs of letters 
separated by a distance j, for any j.  
3) Proportional runs: The number of j consecutive occurrences of the same 
letter ω is nk-j if ω≠0 and nk-j-1 if ω=0. 

 

Thus, de Bruijn sequences generated by LFSRs resemble random sequence, an 
advantageous property as it guarantees that any trends observed in the data are not an 
artifact of the method of sequence generation. Moreover, unlike random sequence, 
LFSRs represent a maximal number of sequence variants (a truly random sequence of 
equivalent length would represent only 1-e-1 ≈ 63% of k-mers on average [1]). Since 
the DNA alphabet contains a prime power of elements (4=22), LFSRs are available 
for use in generating de Bruijn sequences.  Indeed, there are (at least) two approaches 
for using LFSRs to generate de Bruijn sequences over the DNA alphabet. In the first 
and more natural approach, one takes an arbitrary embedding of {a, c, g, t} into GF(4) 
= {0, 1, a, a+1} where a2=a+1, and one then picks a primitive polynomial of degree 
k over GF(4) to use as a LFSR generating a sequence of length 4k-1. This is 
schematized in Fig. 2A, using the embedding {a↔0, c↔1, g↔a, t↔a+1} (again, 
under this embedding the generated sequences do not contain the sequence of k 
consecutive a’s). Alternatively, one can pick a polynomial of degree 2k over 
GF(2)={0,1} and use it to generate a sequence of length 22k-1 over the 0-1 alphabet. 
Here, one associates each element of the DNA alphabet with a pair of elements in 
GF(2), and one must traverse this sequence over GF(2) twice, considering both 
reading frames. This is schematized in Fig. 2B, where we have used the embedding 
{a↔00, c↔10, g↔01, t↔11}. Henceforth, we shall refer to the embeddings {a↔0, 
c↔1, g↔a, t↔a+1} and {a↔00, c↔10, g↔01, t↔11} of the DNA alphabet into 
GF(4) and GF(2), respectively, as the standard embeddings (note that both methods 
of utilizing LFSRs to generate de Bruijn sequences can be generalized to arbitrary 
number fields with a prime power of elements).  In the next section, we show that de 
Bruijn sequences generated by primitive polynomials over GF(2) and GF(4) actually 
behave differently with respect to the coverage of gapped k-mers. 

Our basic design, then, is to utilize LFSRs to generate de Bruijn sequences of order 
k, where k is as large as possible for a given set of array dimensions and spot lengths. 
The generated de Bruijn sequence is then computationally segmented into shorter 
sequences of length l corresponding to spots on the array, leaving an overlap of k-1 
letters between adjacent spots so as not to omit any k-mers. For example, consider an 
array composed of spots of length 30; then all 9-mers could be represented using 
fewer than 12,000 spots, well within the range of current array dimensions. Such an 
array would also contain nearly 1/4 of all 10-mers, 1/16 of all 11-mers, etc., and thus 
could be expected to yield substantial information about TFs having motif widths 
greater than 9.  
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Fig. 3. Generation of de Bruijn sequences over (A) 4-letter and (B) 2-letter alphabets 

2.2   LFSRs and the Coverage of Spaced Seeds 

In Berger et al [1], we performed a survey of known TFBS motifs in order to 
determine what value of k is required in order to design an array suitable for most 
TFs.  There, we observed that a majority of motifs contained <=9 informative 
positions. We also observed, however, that for nearly 25% of motifs, the pattern of 
informative positions was not contiguous and contained one or more gaps (i.e., 
positions with ≤0.3 bits of information when using the standard position-weight-
matrix representation [20]). While de Bruijn sequences of order k will, by definition, 
contain all contiguous k-mers, they do not necessarily contain all gapped k-mers. 
Therefore, we inspected the representation of gapped k-mers in de Bruijn sequences. 

We define a seed to be the set of all possible words over the DNA alphabet with a 
given (possibly gapped) pattern of positions, and we represent the seed with a 0-1 
string where 1’s are placed at the informative positions. For example, the seed “11” 
corresponds to the set {aa, ac, …, tg,tt} that contains all contiguous 2-mers, and the 
seed “1001” corresponds to the set {a(2)a, a(2)c, …, t(2)g, t(2)t} where the numbers 
in parentheses denote the gap size. Words with gaps will be said to be elements of 
spaced seeds, and those without gaps will be said to be elements of contiguous seeds. 
We shall use the variable z to represent an arbitrary seed and, for a seed z containing k 
informative positions, we say the order of z is k. Finally, a given LFSR L is said to 
cover a seed z if all its elements except the string composed of all a’s (e.g., aa and 
a(2)a for the order 2 seeds 11 and 1001, respectively) appear in the sequence 
generated by L (the reasons for ignoring the elements composed of only the letter a 
will be explained shortly). Similarly, we shall refer to the coverage of z by L with the 
variable c(L, z), which takes the value of 1 if the seed z is covered by the LFSR and 0 
otherwise (again ignoring the element composed of only the letter a). 

For a given sequence S over {a, c, g, t}, let Ak,S denote the set of all (potentially 
gapped) subsequences of k a’s that occur in S; for example, in the sequence shown in 
Fig. 2A A2,S = {a(4)a, a(9)a}, and in Fig. 2B A2,S = {a(1)a, a(5)a, a(6)a, a(7)a, a(8)a, 
a(12)a}. For z a seed of order k and S a sequence generated by a LFSR over GF(q), 
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where q equals either 2 or 4, one can demonstrate the following facts concerning the 
coverage of spaced seeds by LFSRs.  

 
Proposition 1. a) Under the standard embeddings of the DNA alphabet, z is covered 
by S if and only if Ak,S∩z=∅. b) There exists a jœ such that every element of z not in 
Ak,S occurs either 0 times or exactly qj times in S.  Also, the element of A k,S in z occurs 
qj-1 times. 
 

Proof: Consider the case where q=4.  Because our sequence S = (s1s2s3…) is 
generated by a LFSR, we know that for any i 

kiikiki ssss −−−−− +++= 02211 ... θθθ . (2) 

Given values of i and m where m¥k, let  ( )mis ,  denote the subsequence in S of m 

letters beginning at the letter si; also, let this same notation denote the vector of 

dimension m over GF(q) ( )mis ,  = (si+m-1, si+m-2,…,si). Consider the matrix 

⎥
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It is clear that for any i, ( ) ( )kiki sAs ,,1 =+  and, by induction, for any j¥0  

( ) ( )ki
j

kji sAs ,, =+ .  Also, observe that for any m ¥ k, ( )mis ,  can be constructed 

from ( )kis ,  by applying the mμk matrix 
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as ( ) ( )( )kimi smAs ,,

~=  (note that in ( )mA
~ , the entries ( ) ji

nA ,
 refer to the matrix element in 

row i and column j in the n’th power of A).  Consider a seed z having width m and 
containing k informative positions.  Let ( )kmA ,

~  be the kμk sub-matrix of ( )mA
~  when 

restricting to only those rows corresponding to the informative positions of z.  
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Consider the set ( ){ }141),(
~

, −<≤ k
ki iskmA  (i.e., the set of elements of z that occur in 

S).  ),(
~

kmA is either invertible or it is not.  If ),(
~

kmA is invertible, then its image is all 

4k elements of z, and every element of the seed occurs in the LFSR with the exception 
of the sequence that contains a 0 (equivalently, an “a” under the standard embedding) 
at every informative position, as the kernel of ),(

~
kmA  is trivial. Thus, z will be 

covered if the sequence with a’s at the informative positions of the spaced seed 
(which is an element of Ak,S) does not appear in S.  Similarly, this argument is 
reversible and so the converse holds; thus, Prop. 1a is proven.  If ),(

~
kmA is not 

invertible, then its kernel will contain 4j elements for jœ, its image will contain 4k-j 

elements, and each of these elements will be the image of 4j vectors ( )kis , .  Since 

every contiguous k-mer ( )kis ,  except the sequence of k consecutive a’s occurs in S, 

Prop. 1b holds and the proof is completed for the case q=4.  The proof for q=2 is 
nearly identical.  Now, however, our matrix A will have dimension 2kμ2k.  Note that 

here, the kernel for the matrix analogous to ),(
~

kmA will contain 2j elements for 

some j.                                                                                                                             
 

Thus, the spaced seeds that are missed correspond exactly to gapped patterns of a’s 
occurring within the LFSR and, for any spaced seed, the fraction of elements that are 
represented will be approximately either 2-j when using a polynomial over GF(2), or 
4-j when using a polynomial over GF(4). We inspected the coverage of seeds most 
likely to correspond to known motifs for LFSRs over GF(2) and GF(4), in order to see 
if some polynomials empirically provided better coverage than others. Here, it is 
known that the number of primitive polynomials of degree k over a field with q 

elements is given by the formula ( )
k

qk 1−φ  where f is Euler’s totient function [21] 

that returns the number of integers relatively prime to the input value [14,19]; also it 
is easily seen that the number of spaced seeds of width up to m and order k is given by 

the formula ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−m

ki k

i

2

2 .  

Because we could not see how to determine Ak,S (and thus the set of covered seeds) 
for a given LFSR other than by explicit computation, we focused our analysis on the 
7776 polynomials over GF(2) of order 18 and the 15,552 polynomials over GF(4) of 
order 9. For each of the de Bruijn sequences generated by these polynomials, we 
inspected whether each of the 44 seeds of widths 9§m§11 and order k=9 was covered. 

For a given LFSR L, let ( ) ( )∑=
ζ

ζχ ,
44

1
LLC  (i.e., the average coverage), where the 

summation is over all of the spaced seeds z with widths between 9 and 11. We were 
pleased to observe that, by a judicious choice of LFSR, it is possible to completely 
cover over ~86% (38/44) of these seeds when considering polynomials over GF(4) 
and ~82% (36/44) of these polynomials over GF(2).  Also, the mean coverage of 
polynomials over GF(4) was ~74±12%, significantly higher than average coverage of 
~44±12% for polynomials over GF(2).  
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2.3   Sampling k-Mers Larger Than the Order of the de Bruijn Sequence 

In this section, we demonstrate that the representation of spaced seeds is connected to 
the uniform sampling of words longer than the order of the shift register. As stated 
previously, the fraction of m-mers represented in an order k de Bruijn sequence is 4k-m 

(where m¥k). In this section, we demonstrate that if the sequence covers all spaced 
seeds of width §m and order k, then the sampled m-mers are well-spaced and 
regularly sampled (this will be made precise momentarily), facilitating interpolation 
to m-mers not represented on the array. Thus, a suitable selection of de Bruijn 
sequence to cover spaced seeds is valuable to determining TFBSs whose width is 
greater than the order of the generating de Bruijn sequence. 

Let d be the Hamming metric on words of length k over the DNA alphabet [21] (i.e., 
the metric that counts the number of mismatches between pairs of words).  For a de 
Bruijn sequence of order k, let m be an integer such that m>k.  We say that the 
sampling of m-mers is m,k-spaced if for each word w of width m occurring in the de 
Bruijn sequence, there does not exist a distinct word w’  in the de Bruijn sequence such 
that ( ) kmwwd −≤', .  Also, we say that the sampling of m-mers is m,k-equidistant if 1) 

for any choice of k-1 positions in w there exists a w’ occurring in the de Bruijn 
sequence that agrees with w at these k-1 positions and such that ( ) 1', +−= kmwwd , 

and 2) the number of words w’ appearing in the de Bruijn sequence such that 
( ) 1', +−= kmwwd is constant over the choice of w. 

A B

 

Fig. 4. Cartoon depicting all m-mers (grey vertices) and m-mers sampled by an order k<m de 
Bruijn sequence (black vertices). Vertices are connected by an edge if they are 1 mismatch 
away. (A) de Bruijn sequence that samples m-mers randomly. (B) de Bruijn sequence that 
samples m-mers regularly. 

Intuitively, m-mers are regularly sampled if they are m,k-spaced and m,k-
equidistant.  This is cartooned by the graphs in Fig. 4, where nodes represent the 4m 
possible m-mers, and the black nodes represent the 4k m-mers that are represented 
within a given de Bruijn sequence of order k.  In this graph, two m-mers are adjacent 
in the graph if they differ at only one position.  A randomly chosen de Bruijn 
sequence will sample a random collection of m-mers (Fig. 4A), yet an auspiciously 
chosen de Bruijn sequence (i.e., m,k-spaced and m,k-equidistant) will regularly 
sample m-mers (Fig. 4B). 
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One can then prove the following two propositions regarding m,k-spacing and m,k-
equidistance.  We note that they apply to general de Bruijn sequences, and not only 
those de Bruijn sequences generated by an LFSR. 

 
Proposition 2. The sampling of m-mers is m,k-spaced in an order k de Bruijn 
sequence if and only if all spaced seeds of width m’§m and order k are covered. 
 

Proof: Assume that the de Bruijn sequence covers all spaced seeds of width m’ and 
order k.  Assume (for contradiction) that there are words w and w’ such that 

( ) kmwwd −≤', ; then w and w’ will agree at at least k letters.  Consider the spaced 

seed that contains 1’s at the positions where w and w’ agree, and let m’ be the distance 
between the first and last 1 in this spaced seed (note that m’ may be less than m if w 
and w’ do not agree at the first or last positions). Then w and w’ will map to the same 
element of this spaced seed, and so the seed cannot be covered by the pigeonhole 
principle, giving a contradiction.  Conversely, assume that a given de Bruijn sequence 
is m,k-spaced.  Let z be a spaced seed of width m’§m and order k.   Every element of 
z that appears in the de Bruijn sequence must occur only once.  To see this, assume 
(for contradiction) that there is some element of z that occurs more than once.  Then 
there are m-mers w and w’ appearing in the de Bruijn sequence that agree at the k 
informative positions of the spaced seed.  Then ( ) kmwwd −≤',

~ , in violation of our 

assumption that the sampling of m-mers is m,k-spaced. Thus, z must be covered since 
the number of its elements that occur in the de Bruijn sequence is 4k, all of which are 
distinct.                                                                                                                            

 
Proposition 3. If the sampling of m-mers is m’,k-spaced for all k§m’§m, it is m,k- 
equidistant. 
 

Proof: For any m’§m, we know that all spaced seeds of width m’ and order k are 
covered, by Prop. 2. Let w be an m-mer and pick any k-1 informative positions in w. 
Since all spaced seeds of width m’§ m and order k are covered, there will be exactly 
three distinct m-mers w’ such that w’∫w and that occur in the de Bruijn sequence and 
agree with w at these k-1 informative positions (call this set W).  The elements of W 
will all be at a distance of ( ) 1',

~ +−= kmwwd  (so condition 1 is satisfied).  Also, take 

a different choice of k-1 informative positions in w, and consider the set of three 
words W’ agreeing with w at these k-1 informative positions.  W and W’ must be 
disjoint, since if there is a word in common between them, then it would agree with w 
at at least k informative positions, and then the de Bruijn sequence could not cover all 
spaced seeds of width m’§ m and order k.  This implies that every element has a 
constant number of m-mers at a distance of m-k+1, and so condition 2 holds.              

 
Finally, for the special case of m=k+1, one can state the following proposition giving 
analytic conditions relating m,k-spacing and m,k-equidistance to the choice of 
polynomial used for the LFSR: 

 
Proposition 4. a) A de Bruijn sequence of order k generated by a LFSR over GF(4) is 
k+1,k-spaced and k+1,k-equidistant if and only if none of the coefficients θi of the 
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generating polynomial ∑
−

=

1

0

k

i

i
i xθ  are equal to 0. b) A de Bruijn sequence of order k 

generated by a LFSR over GF(2) is k+1,k-spaced and k+1,k-equidistant if and only if 
it does not contain three consecutive coefficients (θi, θi+1, θi+2) for even i such that 

02
12 =+ ++ iii θθθ . 

 

Proof: Assume the case where the de Bruijn sequence is generated by the polynomial 

∑
−

=

1

0

k

i

i
i xθ over GF(4).  By Props. 2 and 3 it is sufficient to prove that all seeds of 

width k+1 and order k are covered if and only if all θi are non-zero.  Coverage of 
order k width k+1 seeds is equivalent to asserting that for any k+1-mer (s1,…sk+1) and 

any 1≤i≤k, there exists a value is~  such that  ∑ ∑
−

=

−

+=
=++

1

0

1

1

~
i

j
k

k

ij
jjiijj ssss θθθ .  Clearly, this 

can occur if and only if for all i 0≠iθ .  The proof for polynomials over GF(2) is 

nearly identical, but involves solving two such equations simultaneously.                   

2.4   Complementary de Bruijn Sequences and Replicate Experiments 

An additional advantage of our design is that, for any given value of k and desired set 
of represented gapped k-mers, if one acceptable de Bruijn sequence exists, there will 
in general be several that could be used (this is easily seen by, for example, permuting 
the letters or taking the reversal of the de Bruijn sequence).  In Berger et al [1], we 
exploited this fact by doing replicate experiments on distinct de Bruijn sequences, 
both of which were 11,10-spaced and 11,10-equidistant (i.e., they covered all 10-mers 
containing a single gapped position).  There, we observed that performing replicate 
experiments on distinct de Bruijn sequences, rather than the same de Bruijn sequence, 
improved our ability to correctly quantify the binding preferences of the well-
characterized TF Zif268.  We anticipate that this approach of performing replicate 
experiments on distinct de Bruijn sequences will be a valuable means for improving 
PBM experiments.  In this section, we inspect some formal aspects of this 
experimental strategy.  

The following proposition implies that all pairs of order k de Bruijn sequences 
generated by LFSRs will share a constant number of k+1-mers.   

 
Proposition 5. Let S and S’ be two de Bruijn sequences of order k, both generated by 
an LFSR over either GF(2) or GF(4).  Then exactly 4k-1 k+1-mers will be commonly 
represented on both S and S’. 
 

Proof: Assume that S and S’ are generated by the polynomials ∑
−

=

1

0

k

i

i
i xθ and ∑

−

=

1

0

'
k

i

i
i xθ , 

respectively, over GF(4).  Then S and S’ will share a k+1-mer (si+k+1,…si) if and only 
if 0

~
,'

~
,'

~
, =Θ−Θ⇔Θ=Θ SSS , where Θ=(θk-1,...,θ0), Θ’=(θ’k-1,...,θ’0) and 

( )iki ssS ,...,
~

+= .  Since the null space of a linear form must always be of dimen- 

sion k-1, there will be exactly 4k-1
 values that satisfy this equation.  The proof for 
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GF(2) is nearly identical, but involves finding the null space for two linear forms 
simultaneously.                                                                                                               

 
Thus, it is not in general possible to optimize the coverage of words longer than the 
order of the de Bruijn sequences in performing replicate experiments, as the number 
of k+1-mers represented on at least one of the two de Bruijn sequences will always be 
2*4k-4k-1.  Note that Prop. 5 also answers a natural question regarding the selection of 
the optimal order (k) to use for a given set of array dimensions (either on a single 
array or multiple arrays).  It is not immediately clear whether it is better to have 4 
different de Bruijn sequences of order 4k-1 or one de Bruijn sequence of order 4k, as 
each requires an equal number of spots of the same length.  Prop. 5 implies that a de 
Bruijn sequence of order 4k is preferable, as de Bruijn sequences of order 4k-1 will 
have overlap with respect to the k-mers that they represent. 

Finally, we note that, although it does not seem that complementary order k 
primitive polynomials can be utilized in order to maximize the coverage of m-mers, 
m>k, we have observed that suitable sets of complementary polynomials can be 
selected for the coverage of gapped k-mers.  Here, we have found by empirical 
inspection that if one polynomial misses a given spaced seed, then another polynomial 
can be identified that covers it.  Thus, this parameter can be optimized. 

2.5   Open Questions 

We see (at least) three broad areas in which further mathematical/algorithmic efforts 
could lead to improvements in array design.  First, assuming the use of LFSRs for 
generating de Bruijn sequences, there is need for an improved mathematical theory 
relating the coverage of spaced seeds to the generating polynomial.  In this work, we 
have presented an explicit formula for determining whether a given polynomial 
represents all k-mers with a single gapped position (i.e., k+1,k-spaced and k+1, 
k-equidistant de Bruijn sequences), but we have not yet been able to extend this 
theory to k-mers with multiple gaps. 

Second, only a small fraction of de Bruijn sequences correspond to sequences 
generated by an LFSR, and the utility of such non-LFSR-generated de Bruijn sequences 
remains largely unexplored.  In current applications we have utilized LFSRs as they 
provably satisfy pseudo-randomness properties that are advantageous, since they 
guarantee that there are no confounding correlations in the experimental data that are an 
artifact of the methods utilized to generate the de Bruijn sequences.  Additionally, 
LFSRs allow for the complete coverage of certain gapped k-mer patterns, which we 
have observed to be useful for determination of the binding specificities of TFs.  
However, it may well be the case that there are additional families of de Bruijn 
sequences that cover even more gapped k-mers while still resembling random sequence.  
Similarly, there may be additional desirable properties of de Bruin sequences that we 
have not yet considered, and for which LFSRs might not be optimal. 

Finally, when considering protein-DNA interactions, it is often a reasonable 
assumption to identify k-mers and their reverse complements, as this symmetry is 
present in double-stranded DNA.  In the case of PBM experiments in particular, this 
is a reasonable assumption to make if the DNAs are randomly fixed to the slide 
(although it is debatable whether or not this is appropriate in the case of end-attached 
DNA, as was the case for the arrays utilized in Berger et al [1]). The work presented 
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here could be extended to generate de Bruijn sequences modulo reverse complements 
(i.e., sequences where only the word or its reverse complement is present, but not 
both) as was done in a related work [16].  If such sequences could be generated that 
had the desired pseudo-randomness properties as well as coverage of gapped k-mers, 
then their utilization might be advantageous. 

3   Concluding Remarks 

We have presented the combinatorial design of a protein binding microarray.  
Importantly, this design has been optimized in several key aspects: 1) All k-mers are 
represented in a minimum amount of sequence, permitting a maximum number of 
binding site variants to be represented in a cost-efficient manner.  This allows the 
binding specificities of TFs to be assayed with word-by-word resolution.  2) The 
unbiased nature of the construction provides a design that can be used for TFs from 
any species and/or structural class, making it a universal platform. 3) Our design is 
flexible, allowing ever greater binding site coverage as array technology improves 
and feature density increases. For example, all 11-mers can already be represented 
with Agilent arrays [1], and all 12-mers with NimbleGen technology [22]; moreover, 
this number is expected to grow quickly.  Similarly, our design allows replicate 
experiments to be performed with distinct de Bruijn sequences, resulting in reduced 
experimental noise and greater coverage of sequence space.  4) We have utilized de 
Bruijn sequences generated by LFSRs which provably resemble random sequence.  
This guarantees that any statistical trends observed in data generated by a PBM 
experiment are not an artifact of how the sequences were constructed.  5) Our design 
not only maximizes the coverage of contiguous k-mers, but also gapped k-mers.  This 
simultaneously allows an interrogation of the binding specificities of TFs with gapped 
motifs and also improves the ability of the design to approximate the binding 
specificities of TFs whose width is greater than the order of the de Bruijn sequence. 

Indeed, our group has already implemented this design and applied it to determine 
the binding specificities of five TFs from different organisms and structural classes 
with an unprecedented level of resolution [1]. There, we demonstrated that this 
platform could be used to assay the binding preferences of individual binding site 
variants, allowing us to identify at least one case of positional interdependence in a 
binding site motif.  Similarly, we were able to approximate a binding site motif that 
was 12 bases in length using a de Bruijn sequence of order 10, attesting to the 
advantages of a careful and thorough coverage of gapped k-mers (point 5 above).  Our 
group is now using this technology to determine the binding specificities of many TFs 
from a range of organisms, providing a much needed data type for the biological 
community. Thus, this microarray design provides a powerful, general and robust 
platform, and its implementation provides an experimental tool that will allow 
effective determination of TF binding site specificities both now and in the future. 
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Abstract. There are a number of computational tools for assigning iden-
tifications to peptide tandem mass spectra, but many fewer tools for the
crucial next step of integrating spectral identifications into higher-level
identifications, such as proteins or modification sites. Here we describe a
new program called ComByne for scoring and ranking higher-level identi-
fications. We compare ComByne to existing algorithms on several complex
biological samples, including a sample of mouse blood plasma spiked with
known concentrations of human proteins. A Web interface to our software
is at http://bio.parc.xerox.com.

1 Introduction

Proteomics offers a direct view of biological systems at the molecular level and
can provide information, such as protein modification states and subcellular lo-
calization, that is not readily available from genomic sequence or RNA expression
data. Moreover, because proteins throughout the body are commonly released
into the bloodstream, plasma proteomics holds great promise for the discovery
of new biomarkers for early detection of diseases such as cancer [7]. Currently
biomarker discovery is severely limited by analytical sensitivity. Human blood
plasma is thought to contain over 10,000 different proteins, varying in abundance
over about 8 orders of magnitude [1], but state-of-the-art instrumentation now
detects only hundreds of proteins at a time [2,16,26,27].

High-throughput, “shotgun”, proteomics analyzes a biological sample with a
multi-stage pipeline: (1) digestion of proteins to peptides, (2) chromatographic
separation, (3) tandem mass spectrometry (MS/MS), (4) identification of pep-
tide spectra, and (5) integration of spectral identifications into higher-level iden-
tifications. Of the two computational stages, (4) and (5), the former has been
studied much more intensively. There are more than a dozen well-known pro-
grams for peptide identification, including database search programs, such as
SEQUEST [13], Mascot [24], Sonar, OMSSA [15], and X!Tandem [8]; de novo
sequencing programs such as PEAKS [20] and PepNovo [14]; and hybrid tools
such as GutenTag [29], InsPecT [30], and our own new tool, ByOnic [5].

By contrast, stage (5) is underserved, with only a few programs, notably Pro-
Found [33], DTASelect [28], Qscore [21], and ProteinProphet [22]. ProFound is
designed for single-MS mass fingerprinting, a less sensitive method than MS/MS.
DTASelect and Qscore are designed for use with SEQUEST. DTASelect collates

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 444–458, 2007.
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the peptide identifications for each protein, and then applies user-defined crite-
ria (such as thresholds for SEQUEST’s XCorr and Delta scores) to decide which
identifications to accept. Qscore is more automated, giving a protein score that
reflects the number and quality of peptide matches.

Although ProteinProphet currently supports mainly SEQUEST and Mascot,
it can in principle be used with any peptide identification program, so long as the
peptide scores are first mapped to peptide probabilities. A companion program,
PeptideProphet [17], can be used to compute such a mapping; PeptideProphet
uses the well-known expectation maximization (EM) algorithm to fit a mixture
of two Gaussians (one for true identifications and one for false) to the observed
score distribution. ProteinProphet then reuses the EM algorithm to make protein
identifications. It computes protein probabilities assuming that distinct peptide
matches are independent, and then recomputes peptide probabilities based on
the protein probabilities, iterating the peptide/protein loop until convergence.

Despite the availability of ProteinProphet, many—if not most—proteomics
laboratories still use very little automation for stage (5). The Human Proteome
Organization (HUPO) Plasma Proteome Project recently undertook a collab-
orative study of the same human serum and plasma samples by 18 different
laboratories [23,27]. Some 13 of the 18 laboratories used only simple thresholds
for protein identifications, such as requiring two Mascot peptide scores of at
least 20 or one Mascot score of at least 30. One laboratory used ProteinProphet
and another used DTASelect. (See Supplementary Table 1 in [27].) With such a
diversity of tools and standards, it is not surprising that the HUPO study found
a problem with reproducibility: less than 50% agreement between the proteins
found by two different laboratories using exactly the same set of spectra.

In this paper, we describe a new program called ComByne for integrating
spectral identifications into higher-level identifications. We demonstrate Com-
Byne using spectral identifications from our own database-search tool, ByOnic,
but the algorithm is more generally applicable. ComByne takes a p-value ap-
proach, modeling the probability that the peptide identifications would arise
by chance alone. We back up ComByne’s p-values with the use of reverse se-
quences [6], that is, deliberate false positives included for an empirical mea-
surement of the false discovery rate (FDR). ComByne uses more information
than previous tools, optionally incorporating chromatographic retention times
and score deltas (percent difference between the top and the second-best iden-
tifications). The most novel aspect of ComByne, however, is its use of “cor-
roboration”. A simple example of corroboration is the following: a semitryptic
peptide identification of ytygkpvpgh becomes more believable if another spec-
trum in the data set matches the tryptic peptide ytygkpvpghk. Similarly, an
identification of aslgs[-18]legeaeaeasspk becomes more believable if another
spectrum matches aslgs[+80]legeaeaeasspk, because phosphorylated serine
has a common neutral loss of 98 Daltons. We determined the contributions such
corroborations should make to overall protein scores using a simple combina-
tion of empirical and theoretical analysis. We demonstrate the effectiveness of
ComByne on several data sets, including a large phosphoprotein data set.
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2 Algorithms

The input to ComByne is a set of identifications (peptide, protein, and posi-
tion within the protein). There is typically only one identification per spectrum,
but an ambiguous peptide occurs in more than one protein, or is indistinguish-
able from a peptide in another protein, for example, aelvys and aeivys. Each
identification also includes a score and a delta—the percent difference in score
between the best and the second-best peptides. For the purpose of computing
deltas, we do not consider a deamidated peptide to be distinct, so ilnggtllglk

cannot be second-best to iln[+1]ggtllglk.

Scores to p-values. The first step of ComByne converts the scores and deltas
to p-values. Like all the other database search tools, ByOnic does not achieve
perfect separation of true and false peptide identifications. Figure 1 shows quite
substantial overlap of the distributions for true and false identifications. (Here
we defined true identifications to be matches to the top 50 plasma proteins, and
false identifications to be matches to reverse protein sequences.) The overlap is
such that the overall score distribution is not noticeably bimodal, and neither
distribution has Gaussian tails, so PeptideProphet would not find an accurate
model of the distributions.

For ComByne, we model only the false score distribution. The false distri-
bution varies less than the true distribution from sample to sample, and hence
we use a single fixed reference distribution, and then transform this distribution
to account for the effective database size and length of peptide. To build the
reference distribution, we used an empirical histogram up to ByOnic score 300,
and a fitted exponential distribution for scores above 300. A ByOnic score of 300
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Fig. 1. The figure shows a histogram of ByOnic scores for the top-scoring identifications
for about 10,000 ion-trap spectra of mouse blood plasma. Notice that the curve for
all identifications is not noticeably bimodal, and that the curves for true and false
identifications have considerable overlap.
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Fig. 2. The distribution of ByOnic noise scores (top matches to reverse protein se-
quences) varies with the size of the database, cleavage specificity, and the number of
modifications enabled. The length of the peptide has a large effect on the distribution;
here we define a short peptide to be one with at most 9 amino acid residues. ComByne
uses smooth curves fit to empirical distributions to map ByOnic’s scores to p-values.

corresponds approximately to a Mascot score of 30, and typically gives a false
positive rate of less than 10%. An exponential distribution makes theoretical
sense if we think of the score as arising stochastically: each database peptide of
the right mass picks a score at random from some unknown distribution f , and
the maximum of these picks is assigned to the spectrum. For this experiment,
as the number of picks goes to infinity, many choices of f (including Gaussian)
give a Gumbel or type I extreme value distribution, which has an exponential
right-hand tail.

As seen in Figure 2, the false distribution varies with the size of the database,
and whether we restrict attention to peptides with specific cleavage. There are
about 10 times fewer fully tryptic peptides (both cleavages after r or k, or at a
protein terminus) than semitryptic peptides (only one such cleavage). The length
of the peptide also has a major effect on the false score distribution, because
a database of 42 million amino acid residues contains a significant fraction of
all sequences of lengths 5 and 6, and even for lengths 8 and 9 a high score is
often achieved by a false database peptide that shares a prefix or suffix with
the true peptide. ComByne translates its reference distribution to account for
effective database size, and it stretches the distribution (by 12/n, where n <
12 is the peptide length) to account for the dependence upon length. These
simple (perhaps simplistic) transformations gave good agreement to empirical
distributions such as those shown in Figure 2. Thus ComByne maps each score
to a p-value, the probability that a randomly picked false identification would
give such a score. With a 42-MByte database, a ByOnic score of 300 for an
unmodified tryptic peptide of length at least 12 gives a p-value of 0.11; for a
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tryptic peptide with a modification it gives 0.15; for a semitryptic peptide it
gives 0.20; and for an 8-residue tryptic peptide it gives 0.28.

ComByne optionally incorporates deltas into the p-values,1 using a single,
empirically trained, approximately exponential, distribution that is then trans-
lated to account for database size. A delta of 0.10 (that is, a 10% drop from the
first- to second-best peptide) gives a p-value of 0.17 on a 42-MByte database;
a delta of 0.15 gives a p-value of 0.082; and a delta of 0.20 gives a p-value of
0.042. We model scores and deltas as independent and thus the overall p-value
of a long tryptic peptide scoring 300 with delta 0.10, on a 42-MByte database,
is 0.11 × 0.17 ≈ 0.019, meaning that only one false identification in about 50
would have numbers so good. We trim the delta p-value to the maximum of its
original value and the score p-value; this is an empirical improvement.

Initial Protein Scores. ComByne computes an initial score for each protein
simply by summing the logarithms of the p-values of all of the protein’s peptide
identifications (with no discount for duplicates). This crude approximation as-
sumes that peptide identifications are independent. ComByne sorts the proteins
by score, and then assigns each ambiguous peptide to only its highest-ranking
protein. The assignments to lower-ranking proteins can be removed entirely or
marked as “homologs” for later visual inspection.

At this point, ComByne optionally incorporates chromatographic retention
times into its peptide p-values. Other groups [25,32] have built software to make
use of retention time, typically using it as a filter to discard dubious peptide
identifications. ComByne uses a model developed by Krokhin et al. [18] with
coefficients trained by Ted Jones (PPD Inc., Menlo Park); this model com-
putes a quantity called “retention index” as a weighted sum of contributions
for each amino acid residue, along with peptide-length and N- and C-terminus
corrections. ComByne fits the observed retention times for well-identified tryp-
tic peptides from well-identified proteins (total log p-value < −20.0) to the
computed retention indices using robust regression (see for example [4]) with
a quadratic correction curve. It then computes the standard deviation σ of
residuals for the well-identified peptides; a σ of 3.0 minutes is typical for a 90-
minute run. Log p-values for peptide identifications are now adjusted by adding
log2 ((|r(P )| + 1.0)/(2σ)), where r(P ) is the retention time residual for peptide
P . This (admittedly ad hoc) adjustment can either increase or decrease the log
p-value: peptides eluting within about 2σ of their predicted times receive mild
bonuses, whereas ones with larger elution errors receive mild penalties. (Adding
1.0 to |r(p)| prevents overly large bonuses.) If the overall log p-value becomes
positive, the peptide identification is discarded. We also tried a more principled
p-value adjustment using an empirical model of the retention time residuals of
false identifications, but the results were less satisfactory.

1 There is some controversy in the literature over whether to use deltas, which depend
on the entire database, rather than just the top-scoring identification. To remove
this dependence, one possibility is to measure deltas by scoring variations of the
top-scoring peptide.
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Final Protein Scores. Final protein scores take into account correlations
among peptide identifications. The most obvious correlation between peptide
identifications is duplication. In almost any proteomic data set, abundant pep-
tides are found in multiple spectra. As pointed out by Nesvizhskii et al. [22],
duplication is not a sign of correctness, because spectra of the same peptide will
generally give the same false match if the true match is not in the database.
Indeed, we found almost the same percent of duplication (24% versus 22%)
when we searched a set of spectra against forward and reverse proteins. Hence,
ComByne, like ProteinProphet, discounts duplicates (even those with different
parent charge states) and uses only the best p-value from a set of duplicate
identifications.

Some peptide identifications, however, corroborate other identifications, so
that observing them together increases the confidence of correctness. For exam-
ple, the identification ahfsvmgdilssair corroborates ahfsvm[+16]gdilssair.
We write Prob[P ] ·Prob[P ′ | P ] for the probability of observing both a peptide P
and a modified version P ′. For the probability of observing P by chance, we use
the p-value as described above. For the probability of observing P ′, conditioned
on the observation of P , we use the better (that is, the smaller) of two p-values:
the chance of observing P ′ as an independent observation (that is, the p-value
determined by ByOnic’s score and delta), and the empirically trained chance of
observing such a corroboration, regardless of scores. The rationale here is that
the observation of P ′ is an unlikely event, regardless of score, and if the score is
good enough, then P ′ is “independent enough” to be counted in the same way
as any other peptide from that protein. On three training sets of 10, 000 spectra
each, run against a 42-MByte database of reverse proteins, ByOnic matched a
total of 8468 spectra to modified peptides, and only 10 of the 8468 were corrobo-
rated by unmodified peptides. So the p-value for corroboration in this case should
be about 10/8468 = 0.0012. To first approximation, the chance of corroboration
scales linearly with the number of peptide identifications divided by the size of
the database; ComByne makes this adjustment. An identification to a modified
peptide can receive only one “corroboration bonus” (having its p-value replaced
by a better one). Duplication takes precedence over corroboration, so that an
observation of P and two observations of P ′ is no better than an observation of P
and a single observation of P ′. We do not give corroboration bonuses to deami-
dated peptides, with parent masses differing from the unmodified parent mass
by 2 Daltons or less, as these identifications are not sufficiently independent, but
neither do we discount deamidated peptides as duplicates.

Similarly, we defined and trained corroboration bonuses for the following sit-
uations: (1) a semitryptic peptide sharing its starting or ending position with a
tryptic peptide (with a trained p-value of 0.0014 for a data set of 10,000 spectra
and a 42-MByte database), (2) a nontryptic peptide completely contained within
a tryptic peptide (p-value of 0.0012), (3) a tryptic peptide sharing its starting
or ending position with a longer tryptic peptide (p-value of 0.0019), and (4) a
phosphorylation and a loss of phosphate, for example s[+80] and s[-18], at the
same site (p-value of 0.0006).
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Finally, to account for the various sizes of proteins and remove the “large
protein bias”, we compute the expected sum of log p-values each protein in
the database would receive from the set of spectra if all identifications were
false, and start each protein with a compensating positive score (a handicap),
so that if the protein receives its expected share of identifications, without any
corroborations, its final score will be 0. Thus the final score for a protein can
be interpreted as a log E-value, the overall p-value of the protein’s peptide
identifications, normalized for the number of spectra in the data set.

Modification Sites. In some studies, the “bottom line” is not protein identi-
fications, but other information, such as modification sites within the proteins.
ComByne has the capability to score phosphorylation sites by summing the
p-values of all peptide identifications that include a phosphorylation modifica-
tion at the site. Phosphorylation modifications include both phosphorylation and
beta elimination, that is, s[+80], t[+80], y[+80], s[-18], and t[-18]. (Phospho-
rylated tyrosine rarely undergoes the neutral loss.) For simplicity, we count [+80]

and [-18] equally, even though the former is stronger and more direct evidence
than the latter. As above, duplicate peptides are discounted, and retention times
and corroborations are incorporated into peptide p-values. Because a modifica-
tion site is a single location in the database, no handicap is necessary to correct
for the varying lengths of proteins. It is tempting to make use of the log E-values
of proteins in the modification-site ranking, but doing so spoils the estimation
of the modification site false discovery rate (FDR) by preferentially removing
reverse proteins.

3 Experiments

We tested ComByne on three trypsin-digested samples.

1. 1200 LC-ESI-QTOF spectra of human blood plasma from PPD Inc. (Menlo
Park, CA). The sample was depleted of 6 abundant proteins using a multiple
affinity removal system, and cysteines were carboxymethylated (+58).

2. Approximately 40,000 LC-ESI ion-trap (Thermo LTQ) spectra from PPD
of mouse blood plasma (again depleted and carboxymethylated) spiked with
low concentrations of 13 human proteins. The human proteins were produced
recombinantly, and hence are contaminated only with low concentrations of
E.coli proteins.

3. Approximately 240,000 LC/LC (MudPIT) ESI ion-trap (Thermo LTQ) spec-
tra of human cell lysate, enriched for phosphopeptides, from the Yates lab-
oratory at The Scripps Research Institute. Of these spectra, about 10,000
are MS3 spectra, triggered by an MS2/MS3 scanning mode that looks for a
strong peak in the MS2 spectrum at M − 98, M − 49, or M − (98/3), where
M is the parent ion m/z, and then gates off ions of this mass for another
round of fragmentation and mass measurement. Such a peak is characteristic
of a phosphopeptide, which readily loses phosphoric acid (98 Daltons).

We first benchmarked ComByne versus a simple spectrum counting algorithm,
with both protein ranking algorithms using peptide identifications computed by
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ByOnic [5]. Spectral Count collates the matches for each protein. It sorts
the proteins by the number of matches, breaking ties by total score, and then
assigns each ambiguous peptide to its highest-ranking protein. Finally it sorts
the proteins by the number of unique matches, again breaking ties by total score.
Duplicate peptides do not contribute to the number of unique matches, but do
contribute to the total score.

We then benchmarked the combination of ByOnic and ComByne versus Mas-
cot and Spectral Count, Mascot and ProteinProphet, and X!Tandem and
E-Value Product. E-Value Product computes the product of the E-values of
peptide matches to each protein (including only matches with E-value at most
1.0, as recommended in the X!Tandem documentation), assigns each ambigu-
ous peptide to its highest-ranking protein, and then recomputes the products
of E-values. Only the best (minimum E-value) from a set of duplicate peptides
contributes to the product. On X!Tandem’s search results, E-Value Product con-
sistently outperformed Spectral Count.

We evaluate ranked lists by FDR, empirically measured using reverse protein
sequences. In this approach, ByOnic, Mascot, and X!Tandem search a database
containing both the forward (N to C) and the reverse (C to N) sequence for each
protein. If the list of the top 100 proteins includes 5 reverse proteins, then the list
is also likely to include about 5 unknown false positives (forward proteins). Of
course, this presumes that the ranking algorithm does not contain any unwitting
biases against reverse proteins, e.g., implicit use of trigram frequencies.2

3.1 Human Blood Plasma

Table 1 gives the results for data set (1), the 1200 LC-ESI-QTOF spectra. We
searched tryptic, semitryptic, and even nontryptic peptides, with the following
common modifications enabled: oxidized m, h, w, deamidated n and q, pyro-glu
from N-terminal e and q, and hydroxylated p. Human blood plasma has been
studied quite intensively [1,2,27], using very sensitive LC/LC (multidimensional
chromatography) assays, so expert inspection can be used to judge the plausi-
bility of protein identifications. All of ComByne’s identifications down to rank
60 are plausible, but ranks 61 and 65 are implausible. The implausible identifi-
cations start at the same point as the reverse sequences, and at an unimpressive
log E-value. ComByne is not quite perfect on this human plausibility test, as it
gives two known plasma proteins [27] lower ranks: Fibulin at rank 85 and Pro-
tocadherin at rank 87. ComByne, however, is much better than Spectral Count,
which ranks many more known plasma proteins (including Ig kappa, Comple-
ment C8, Ficolin, Complement C1r, Serum amyloid A-4, Afamin, Fibulin, and
Protocadherin) below the top reverse proteins.

On this data set, ComByne’s advantage has nothing to do with its more
advanced features, such as retention time or corroborations. We did not have
retention times—or even elution order—for these spectra, and corroborations
2 To guard against this possibility, we compared reverse sequences with decoys created

to match the bigram and trigram frequencies of forward sequences. The tests gave
essentially identical results.
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Table 1. This table shows ComByne’s proteins with ranks 40 to 65. With the exception
of 59 (the enzyme used for digestion), proteins 40–60 are all abundant plasma proteins.
Spec Count gives the rank of the same protein using the Spectral Count algorithm for
protein ranking; the number in parentheses is the number of reverse proteins with
higher ranks. For example, the Spectral Count algorithm gives Ig kappa rank 55, below
3 reverse proteins. A simple summarizing statistic is the rank of the highest reverse
protein: 60 for ComByne and 50 for Spectral Count.

Rank logE Description # Spec # Uniq Spec Count
40 -12.34 Clusterin precursor 3 3 40 (0)
41 -11.94 Ig lambda chain C regions 2 2 43 (0)
42 -10.54 Ig kappa chain C region 2 1 55 (3)
43 -10.44 Ig gamma-3 chain C region 2 2 44 (0)
44 -10.18 Transthyretin (Prealbumin) 2 2 48 (0)
45 -9.80 Apolipoprotein C-I 3 3 39 (0)
46 -9.58 Alpha-2-antiplasmin 2 2 47 (0)
47 -8.53 Complement component C8 alpha 1 1 58 (5)
48 -8.31 Apolipoprotein C-II 2 2 46 (0)
49 -8.11 Ficolin-3 1 1 60 (5)
50 -8.01 Complement C1r subcomponent 1 1 62 (5)
51 -7.98 N-acetylmuramoyl-L-alanine amidase 1 1 59 (5)
52 -8.01 Complement factor I 1 1 61 (5)
53 -7.05 Plasma retinol-binding protein 2 2 45 (0)
54 -4.21 Complement C5 precursor 3 3 41 (0)
55 -3.94 Serum amyloid P-component 2 2 49 (0)
56 -3.11 Apolipoprotein M 1 1 63 (5)
57 -2.95 Serum amyloid A-4 protein 1 1 67 (7)
58 -2.69 Gelsolin precursor 2 2 51 (0)
59 -2.55 Trypsin I precursor 1 1 126 (31)
60 -2.54 Afamin precursor 1 1 76 (11)
61 -2.44 Tripartite motif protein 1 1 118 (27)
62 -1.50 Reverse Tubby-like protein 4 1 1 68 (7)
63 -1.48 Arginase-1 (Liver-type arginase) 1 1 65 (6)
64 -1.17 Reverse HLA class II 1 1 66 (6)
65 -1.06 Headcase protein homolog 1 1 71 (9)

played essentially no role in determining ranks 40–90, because these proteins
are mostly “one-hit wonders” with single peptide identifications. ComByne’s
advantage derives almost entirely from its protein-length handicap and its careful
mapping of ByOnic scores to p-values.

3.2 Spiked Mouse Plasma

For this experiment, the sample consisted of mouse blood plasma spiked with 13
soluble human proteins at concentrations of 1 microgram per milliliter. Many of
the spiked proteins (leptin, prolactin, tumor necrosis factors 9, 11b, 13b, and α,
and fibroblast growth factors 4, 5, 16, 17, and 19) are of clinical interest, and one
spiked protein, human Apolipoprotein A-I, presents a “homolog problem” due to
the abundant presence of mouse Apolipoprotein A-I. Thus this sample provides
a realistic test bed for improving the sensitivity of analytical techniques, both
chemical and computational, for the purpose of biomarker discovery. Again we
searched all peptides, enabling oxidized m, h, w, deamidated n and q, pyro-glu
from N-terminal e and q, and hydroxylated p.

Table 2 shows the number of forward proteins and the number of spiked
proteins ranked above the fifth-best reverse protein for Spectral Count and three
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Table 2. A comparison of four algorithms on the spiked mouse plasma. ComByne1
includes neither retention times nor corroborations, ComByne2 includes only reten-
tion times, and ComByne3 includes both. The plasma sample was divided into three
replicates, each of which was run through the LC-ESI-MS/MS pipeline. The fourth
row shows the spectra from all three runs combined. For each algorithm, we show the
number of forward proteins and the number of spiked proteins that ranked above the
fifth-best reverse protein. Thus on the first replicate, ComByne1 found 122 proteins
and 9 spikes at 3.9% (= 5/127) false discovery rate, and Spectral Count found 93 and
4 at 5.1% FDR (= 5/98).

ComByne1 ComByne2 ComByne3 Spectral Count
Proteins Spikes Proteins Spikes Proteins Spikes Proteins Spikes

Rep 1 122 9 129 10 137 10 93 4
Rep 2 115 6 115 6 116 6 99 5
Rep 3 120 8 124 8 128 8 101 6
Pooled 140 9 143 9 144 9 96 4

versions of ComByne. We obtain similar results with other performance metrics.
In this experiment, each of ComByne’s advanced features plays a small role. The
data set includes retention times, and as shown in the table, when we incorporate
these times into the protein ranking, the performance improves.3 Corroborations
help only slightly, because the proteins of ranks 100–150, the “gray zone” of
dubious identifications, are mainly one- to three-hit wonders with few chances
for corroborations. Corroborations, however, are fairly common for abundant
proteins. Some 17% of all identifications are modified peptides and 21% of all
identifications are semitryptic peptides, and in each of these (overlapping) groups
about one-third of the identifications are corroborated. Overall about 12% of all
identifications are corroborated.

We also compared the combination of ByOnic and ComByne with three other
combinations: (1) Mascot and Spectral Count, (2) Mascot and ProteinProphet,
and (3) X!Tandem and E-Value Product. Because Mascot is relatively slow,
we searched fully tryptic peptides only, with the same modifications as above,
and for a fairer comparison, ComByne did not use retention time in computing
protein ranks. Figure 3 gives the results in a graphical form, showing the number
of reverse proteins as a function of the length of the list of proteins. The gray
zone starts at the first reverse, and the “black zone” containing almost exclusively
false identifications starts when the slope of the step function approaches 0.5,
meaning that half of all identifications are reverse proteins. For closer comparison
with X!Tandem, which uses a two-pass approach for peptide identification [9],
we also ran ByOnic in two-pass mode, searching first for unmodified peptides,
and then running the full search on a small protein database compiled in the
first pass. As shown in Figure 3, two-pass search can improve protein sensitivity
as well as running time. Finally, Figure 4 shows a more detailed comparison with

3 The use of retention time for the pooled set of spectra is not entirely justified, because
the spectra are from three separate chromatographic runs, but the runs are similar
enough, and ComByne’s algorithm, which sets the expected bonuses and penalties
based on the spread of well-identified peptides, is robust enough that the use of
retention time still helps.
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Fig. 3. A plot of the number of reverse proteins as a function of the length of the list
of proteins, for a fully tryptic 8-modification search. Thus for Mascot with Spectral
Count, the first reverse occurs at rank 63, the second at 73, and so forth.

ByOnic/ComByne at its most sensitive (first reverse at rank 138), with ByOnic
using a two-pass search and ComByne incorporating retention times.

3.3 Phosphorylation Sites

For data set (3), the “bottom line” is not protein identifications, but rather
phosphorylation sites. Phosphoproteins tend to have a number of phosphoryla-
tion sites, often rather tightly clustered [6], and a single peptide identification
can be the sole evidence for more than one site. To our knowledge, no other
peptides-to-proteins integration tool provides the capability to score modifica-
tion sites, so no exact comparison was possible.

We ran ComByne on all 200,000+ spectral identifications (ByOnic, all pep-
tides, but only phospho modifications) at once without using retention time.
These spectra are from 12 strong cation exchange salt fractions, and each chro-
matographic run includes interleaved MS/MS and MS3 spectra, with MS3 run
on an MS/MS peak at the parent m/z minus 98, 49, or 32.7, characteristic of a
neutral loss of phosphoric acid.4 The highest ranked phosphorylation site from
a reverse protein has rank 830, and there are only 4 reverse proteins among the
top 2000 sites. In some cases, the existence of phosphorylation sites is clear, but
the exact localization [6] remains ambiguous, for example, in the tryptic peptide
aessnssssddsseeeeeklk from nucleolar phosphoprotein p130, aa’s 349–369, we
find strong evidence (large deltas) for phosphoserine at positions 3, 6, 7, 12, and
13, weaker evidence for positions 4 and 8, and no evidence for position 9.

4 We analyzed the MS3 spectra as independent fragmentation spectra, but because
their quality was often low, a better approach would analyze them along with their
MS/MS progenitors by scoring each candidate against both spectra.
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Fig. 4. This screenshot shows the proteins of ranks 84–123 for two-pass ByOnic and
ComByne. A purple block indicates a spiked protein, known to be in the sample, and
a blue block indicates an E.coli protein, a likely contaminant. The first three columns
after the protein name give the numbers of peptides, unique peptides, and modified
peptides. The columns on the right give the ranks for Mascot and Spectral Count and
for X!Tandem and E-Value Product. A green block indicates that the protein ranked
above the first reverse; a yellow block indicates that the protein was ranked below the
first reverse; and a red block indicates that the protein was not detected. The column
of red and yellow shows the relatively poor performance of Mascot/Count.

This data set was also analyzed by Lu et al. [19] using SEQUEST and DTAS-
elect. DTASelect ranks sites at the spectrum level (as in [6]); thus each site
is ranked according to only its best spectrum. SEQUEST/DTASelect gave 804,
875, and 1015 phosphorylation sites at 1%, 2%, and 5% FDR (matches to reverse
proteins), whereas ByOnic/ComByne give 2000 sites at 0.2% FDR. We believe
that these numbers (especially our 0.2%) are underestimates, because in this
type of search, other modifications are more likely to match phosphorylations
than they are to match wholly incorrect peptides. Lu et al. [19] developed a bi-
nary classifier called DeBunker for distinguishing true and false phosphopeptide
identifications. DeBunker assigns a probability of correctness greater than 0.9 to
about 1100 of ComByne’s top 2000 sites, confirming that ByOnic/ComByne is
indeed finding more sites than SEQUEST/DTASelect. We have also validated
many of ComByne’s phosphorylation sites using two databases, Phosphosite
(www.phosphosite.org) and Phospho.ELM [12] (phospho.elm.eu.org).
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Fig. 5. ComByne outputs a list of phosphorylation sites, ranked by p-value, and a
matched list of peptide id’s supporting the site id’s. This screenshot shows the latter
list in Microsoft Excel. Column C gives the phosphopeptide, D the protein number
in the database, E the accession number and name, G the position of the peptide
within the protein, H ComByne’s rank (these peptide id’s support sites 122–125), J
and K ByOnic’s score and delta (as a score drop, not a percent), and L ComByne’s
log p-value (with −0.01 indicating a duplicate peptide). All four of the sites shown
in this screenshot (from Desmoyokin, USP42, DEK, and TAT-SF1) appear in either
Phosphosite or Phospho.ELM, curated databases of phosphorylation sites.

4 Discussion

We have explored the utility of various ideas in improving the integration of
spectral identifications into higher-level, more biologically meaningful, proteomic
identifications. As is often the case, the most straightforward ideas proved to be
the most effective. For example, more careful mapping of database-search scores
to p-values turned out to be more important than corroboration bonuses. In our
case, the scores were the output of a new program called ByOnic, but we expect
that the same observation holds true for SEQUEST and Mascot scores.

Corroboration bonuses are somewhat related to a new peptide identification
approach, called “spectral networks analysis” [3], in which pairwise similarities—
with mass shifts—between unidentified spectra are used to help make peptide
identifications in difficult (nontryptic, modified, or mutated) data sets. The pair-
wise similarities are discovered by “blind” searching, that is, without knowledge
that certain shifts such as +16 and, in the case of phosphopeptides, −98, are more
likely than other integers. Corroboration is a way to use anticipated pairwise sim-
ilarities, found by conventional database-search tools, to bolster the confidence of
low-scoring identifications that might otherwise be discounted or discarded.
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Abstract. Most tandem mass spectrum identification algorithms use
information only from the final spectrum, ignoring precursor informa-
tion such as peptide retention time (RT). Efforts to exploit peptide RT
for peptide identification can be frustrated by its variability across liquid
chromatography analyses. We show that peptide RT can be reliably pre-
dicted by training a support vector regressor on a single chromatography
run. This dynamically trained model outperforms a published statically
trained model of peptide RT across diverse chromatography conditions.
In addition, the model can be used to filter peptide identifications that
produce large discrepancies between observed and predicted RT. After
filtering, estimated true positive peptide identifications increase by as
much as 50% at a false discovery rate of 3%, with the largest increase
for non-specific cleavage with elastase.

Keywords: Mass spectrometry, proteomics, peptide identification, reten-
tion time, chromatography, machine learning, support vector regression.

1 Introduction

Full understanding of the cell requires accurate measurement and characteriza-
tion of its main biochemical actors, proteins. While much can be learned from
the study of individual proteins, in vivo a protein invariably acts in concert with
other biomolecules. These interactions differ according to cell type, the state of
the cell, and its response to external stimuli. Several technologies have the po-
tential to provide a comprehensive view of many or all of an the cell’s proteins.
One such technology is shotgun proteomics using liquid chromatography and
tandem mass spectrometry (LC-MS/MS)1 (McCormack et al., 1997; Yates, III,
1998).
1 Abbreviations used in this manuscript include retention time (RT), liquid chro-

matography (LC), mass spectometry (MS), tandem mass spectrometry (MS/MS),
support vector regressor (SVR), artificial neural network (ANN) and false discovery
rate (FDR).
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In a typical liquid chromatography (LC)-MS/MS experiment (Figure 1A),
proteins are digested to peptides, and the peptides are separated by LC on a
reverse phase column in order of increasing hydrophobicity. The peptides elute
into the mass spectrometer, where tandem mass spectrometry (MS/MS) mea-
sures the mass-to-charge ratio of the intact and fragmented peptides, yielding
a tandem mass spectrum. One LC-MS/MS experiment yields tens of thousands
of MS/MS spectra. The identity of the peptides that produced the spectra, and
thus the identity of the original proteins, can be automatically deduced by a
database search algorithm such as SEQUEST (Eng et al., 1994).

As with any high-throughput technology, shotgun proteomics practioners must
constantly battle false positive identifications (Cargile et al., 2004; Qian et al.,
2005). The need to reduce false positives has spurred a proliferation of methods
for increasing peptide identification confidence. However, most of these methods
use information exclusively from the MS and MS/MS stages of analysis, ignoring
information from the LC stage, such as retention time (RT). RT is the amount
of time that a peptide is retained on the LC column (Figure 1B, top). It has the
advantage of being almost entirely independent of the information contained in
the MS/MS scan, and can therefore be used to increase peptide identification
confidence.

The goal of this paper is to incorporate RT into the peptide identification
process to increase peptide identification confidence. Previous efforts along these
lines have been hindered by RT variability, even on identical columns or multiple
runs of the same sample (Palmblad et al., 2004). Most such methods train a
single RT predictor using a limited subset of highly-reproducible chromatography
conditions (Krokhin et al., 2004), or perform a normalization that attempts to
eliminate variability (Petritis et al., 2006; Strittmatter et al., 2004). In practice,
however, researchers use a large number of diverse chromatographic conditions,
making a static RT predictor less useful. In this work, we demonstrate how to
dynamically train a support vector regressor (SVR) to predict RT for peptides in
a given chromatographic analysis, using only data generated during the current
run using composition related features (Figures 2 and 1B, bottom).

This approach makes the method portable to new chromatography condi-
tions or sample preparation protocols, adapting to differences in column length,
digestion condition, peptide chemistry and MudPIT salt step. Our RT predic-
tions are better correlated with observed RT than those produced by a static
predictor trained on different data. Furthermore, by eliminating peptide identi-
fications with an observed retention time that deviates greatly from predicted
retention time, our method increases the number of true positive peptide iden-
tifications over a range of false discovery rates. For one data set digested with
a non-standard enzyme (elastase), we demonstrate an increase of approximately
50% in true positives at a false discovery rate (FDR) of 3%. This result compares
favorably with (Strittmatter et al., 2004) (a true positive increase of 15% at 3%
FDR, from Table 2), but with much less training data. Thus, the results pre-
sented here have implications both for traditional shotgun proteomics research
using trypsin, as well as possibly enabling new strategies using non-standard
enzymes.
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(A) (B)

Fig. 1. Experimental overview. (A) In mass spectrometry, proteins are digested
to peptides, which are then separated using liquid chromatography and analyzed in a
tandem mass spectrometer. The experimental procedure yields a chromatogram, MS
and MS/MS spectra, and (ideally) peptide and protein identifications. (B, top) For
reverse phase chromatography, each peak in a chromatogram corresponds to a peptide
retained on the column for an amount of time that depends on its hydrophobicity.
(B, bottom) We train a support vector regressor with composition-related features to
predict RT for unknown peptides from the same chromatography run.

1.1 Related Work

Understanding and predicting peptide RT has a long history. For reverse phase
chromatography, peptide RT is roughly proportional to peptide hydrophobicity
(Frenz et al., 1990). Many models assume that peptide RT is a linear function
of peptide amino acid composition (Meek, 1980; Browne et al., 1982; Guo et al.,
1987; Hearn et al., 1988; Bihan et al., 2004). More recent models augment the
compositional approach with parameters for peptide length or mass (Mant et al.,
1989), or terms for residue context (Mant and Hodges, 2006) or positional effects
such as the identity of the N-term residue (Krokhin et al., 2004). Still more so-
phisticated models include parameters for structural features or measured chem-
ical properties (Ba̧czek et al., 2005; Petritis et al., 2006).

The most accurate and sophisticated peptide RT predictor is that of
Petritis et al. (2006), first presented in simpler form in Petritis et al. (2003),
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Fig. 2. Overview of data flow for peptide identification improvement. For
each LC-MS/MS experiment, we start with a collection of peptide-spectrum matches
(PSMs, top). We use PSMs to a random proteome to filter the original PSMs, producing
high-confidence PSMs at a 10% false discovery rate. These filtered PSMs, along with a
second set of random PSMs, are used to train a support vector regressor and to select
a threshold for filtering PSMs based on their retention time, yielding a trained model.
The model and a third set of random PSMs are used to select the final set of real
PSMs at a desired FDR. Not shown is the five-fold cross-validation used to validate
this method.

which uses an artificial neural network (ANN) to predict a normalized form of
RT. The large amount of data required to train the ANN (for Petritis et al.
(2006) 345,000 nonredundant peptides) makes retraining for new chromatogra-
phy conditions impractical. Although one could in theory transform predicted
RT values for different conditions, it is not clear how to handle changes in pep-
tide elution order. A more recent, but less complicated, ANN has since been
published (Shinoda et al., 2006).

Recently, a handful of RT predictors have found practical application in enhanc-
ing confidence of peptide identifications.Palmblad et al. (2002) predictRT for each
peptide using least-squares regression to determine amino acid weights, and then
use a χ2 test to rank candidate peptides based on deviation from expected mass
and predicted RT. As the authors admit, their RT prediction is poor compared to
other competing efforts, and improvement in protein identification is modest.

Kawakami et al. (2005) use the sum of residue retention coefficients to pre-
dict RT for peptides and phosphopeptides, but they make no clear distinction
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between training and test data. When predictions are made on data not used in
training, the correlation between predicted and observed RT deteriorates, a sign
of overfitting.

By far, Strittmatter et al. (2004) is the most successful example of using RT
prediction to increase peptide identification confidence. They use the ANN of
Petritis et al. (2003) to exclude all SEQUEST peptide identifications with pre-
dicted normalized RT that deviates more than 10% from observed normalized
RT. The result is roughly a 50% decrease in estimated false positives, although
true positives also decrease, frustrating a straightforward interpretation.

The methods presented in this paper yield a reduction in false positives as
great as that in Strittmatter et al. (2004), but require reduced training data,
produced from a single LC-MS/MS run.

2 Methods

2.1 Data Sets

We analyze eight separate data sets (Table 1), chosen to represent a diverse set
of chromatography conditions. Exact sample preparation protocols are given in
the supplement (noble.gs.washington.edu/proj/rt); here we give only brief
descriptions to highlight major differences. All data sets are from the yeast
Saccharomyces Cerevisiae. The first three data sets are taken from the mid-
dle and end of a 12-hour, 6-step, 2-phase strong cation exchange and reverse
phase multi-dimensional protein identification technology (MudPIT) analysis
(Washburn et al., 2001) of a tryptic digest of the soluble S. Cerevisiae proteome.
The MudPIT was performed with C18 beads, while all subsequent analyses are
with C12 beads. The number after the C refers to the length of the carbon chain
on the beads to which the peptides bind. Different length chains interact with
the peptides differently. The next three data sets are reverse phase analyses of a
tryptic digest of the soluble yeast proteome, each with a different length column
of 20cm, 40cm and 60cm. A fourth identically prepared yeast sample was ana-
lyzed with the ion-pairing agent trifluoroacetic acid (TFA). The two final data
sets are from yeast samples digested with the non-specific enzymes chymotrypsin
or elastase. Chymotrypsin cleaves after aromatic residues F, W, and Y, and elas-
tase cleaves after small hydrophobic residues A, L, I and V. Summary statisics
for the data sets, and for the training and testing data sets extracted from them,
are shown in Table 1.

2.2 Training and Testing Set Extraction

A high-confidence set of training and testing data is extracted from each of the
eight data sets. The spectra are first searched against both the real and shuffled
versions of the S. cerevisiae proteome with SEQUEST (Eng et al., 1994) and
then identifications are filtered using the following criteria: charge state of +2,
peptide sequence ending in K or R (except for the chymotrypsin and elastin data
sets), and allowing any number of missed tryptic cleavages.
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We use the number of matches in the search against a shuffled proteome as
an estimate of false positive matches in a search against the real proteome. Both
searches use identical search criteria. High-confidence spectra identifications are
selected by setting an Xcorr threshold so that the number of matches to the
shuffled proteome above this threshold is 10% of the number of matches to the
real proteome; this is equivalent to a 10% FDR. If the number of real matches at
a 10% FDR is less than 200, then the top 200 spectra are used; this is because
regression performance deteriorated with less than 200 spectra. When multiple
spectra matched a single peptide according to these criteria, the spectrum with
the highest Xcorr is selected, to avoid bias in the regression towards common
peptides. The resulting set of peptides and retention times is split to form a 3:1
ratio between the training and testing data sets (Table 1) for each chromatogra-
phy run, which are then used to train and test the SVR. No peptides are allowed
to occur in both the training and testing data sets.

2.3 Support Vector Regression

As with other forms of regression, an SVR learns a function that relates a de-
pendent variable (in this case, RT) to a set of independent variables. An SVR
builds a regressor out of a subset of the training examples, known as support
vectors. Training examples that are within a tolerance value ε of the model pre-
diction are ignored (Vapnik, 1995). To generate the independent variables, each
peptide from the training and test sets is represented as a 63-element vector
comprised of the following: 20 elements to represent the total number of each
amino acid residue in the peptide; 40 binary elements to represent the iden-
tity of the extreme N-terminal (N-term) and penultimate C-terminal (C-term)
residues, respectively; and three additional elements to represent the identity of
the last C-term residue (either K or R), and the peptide length and mass. For
the non-specific enzymes, the ultimate C-terminal residue is used instead of the
penultimate, and the K or R term is set to zero.

An SVR is trained on each high-quality training set and tested by measuring
the R value between predicted and observed RT on a held-out test set. R value
is a statistical measure of the correlation between two data sets. The R value
for two data sets x and y of length n is given by r = Cov(x, y)/σxσy, where
Cov(x, y) = n

∑
xy −

∑
x

∑
y, the covariance of data sets x and y, and σx =√

n
∑

x2 − (
∑

x)2, the standard deviation of dataset x. It is important to note
that a separate SVR is trained for each data set in Table 1.

The SVR is trained and tested twice using two kinds of kernels: a linear
kernel, because it allows ready interpretion of the weight it assigns to each fea-
ture (Section 3.2); and a Gaussian kernel (also known as a radial-basis function
kernel), because it allows maximum flexibility in the functions that it can suc-
cessfully regress.

Hyperparameters for each kernel are chosen by three-fold cross-validation
on the training set. For both kernels, the SVR is trained with an ε insensitive-loss
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hyperparameter of 0.1; other values of ε did not yield radically different results.
Another hyperparameter used in the regression is the soft-margin penalty C,
which can be thought of as a bound on the weight that can be given to each
training example. C was initially allowed to range over ten orders of magnitude
from 10−3 to 107. For the final cross-validation, to decrease processing time, C is
constrained to be 10−1, 100, or 101 for the linear kernel, and 105, 106 or 107 for
the Gaussian kernel. The Gaussian kernel has an additional hyperparameter σ,
which corresponds to the width of the Gaussians used; it is set to 10−6, 10−7 and
10−8. R values are reported after hyperparameter selection on the appropriate
held-out test set (Table 1).

The SVR is implemented using the publicly available software package PyML
(pyml.sourceforge.net). Source code for producing the results presented here
can be found at http://noble.gs.washington.edu/proj/rt.

Table 1. Eight data sets used to train and test the support vector regressor.
Each column lists the total number of +2 spectra associated with peptides that satisfy
that data set’s trypticity requirements (Total), the number of high-confidence spectra
selected at a 10% FDR (Confident), and the subsets of the high-confidence spectra
used to train and test the performance of the regressor.

Data set Total Confident Train Test

Y-20CM 6929 2073 1554 519
Y-40CM 7220 2409 1806 603
Y-60CM 7459 2774 2080 694
Y-TFA 11977 3179 2384 795

Y-CHYMO 2191 200 150 50
Y-ELAST 4377 200 150 50

Y-MUDPIT-1 2227 280 210 70
Y-MUDPIT-2 3035 485 363 122

3 Results

3.1 Support Vector Regression

We first evaluate our dynamically trained regressor by comparing it to a pub-
lished, fixed-parameter regressor from Krokhin et al. (2004). We measure perfor-
mance by comparing correlation (measured by R value) between observed and
predicted RT for our SVR with the correlation between observed and predicted
relative hydrophobicity from the fixed-parameter regression. One of the kernels
(either Gaussian or linear kernel) outperforms the fixed parameter regression
across all data sets (Table 2 and Figure 3). Furthermore, the performance of
the fixed and learned regressors are qualitatively the same: data sets that had
relatively poor correlation for one method had similarly poor correlation for the
other. In general, the regression performs best on data sets with a large number
of high-confidence identifications (Table 1).
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Table 2. R values for a fixed regression compared to a learned regression
using the Gaussian or linear kernels. Correlation for eight data sets for fixed
parameters described in Krokhin et al. (2004) (Fixed) and parameters learned for each
dataset with a Gaussian or linear kernel. The Fixed values differ in the first and third
columns because they are evaluated on slightly different randomly selected subsets of
the high-confidence PSMs.

Data set Fixed Gaussian Fixed Linear

20CM 0.881 0.908 0.877 0.892
40CM 0.892 0.897 0.894 0.891
60CM 0.914 0.926 0.889 0.892

CHYMO 0.871 0.865 0.761 0.792
ELAST 0.823 0.850 0.843 0.856

TFA 0.818 0.842 0.882 0.905
MUDPIT-1 0.743 0.783 0.797 0.850
MUDPIT-2 0.806 0.803 0.791 0.828

R = 0.881

Fixed
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Fig. 3. Example of retention time prediction. Predictions of hydrophobicity,
a proxy for retention time (RT), made by a fixed parameter linear regression from
Krokhin et al. (2004) (left) are less accurate than RT predictions by a support vector
regression that is trained and tested on subsets of data from the same chromatography
run (right).

3.2 Residue Weights

An advantage of using a linear kernel for the SVR is that it allows calculation
of the weights for each feature, using the following formula:

ŵ =
∑

i

αix̂i (1)

where ŵ is the feature weight vector, x̂i is the ith training example (in this case,
the 63-element vector representing a peptide), and αi is the weight associated with
the ith training example by the SVR. Weights correspond to the feature’s relative
contribution to retention time. After performing the regression on each data set,
we calculate the weights given to each residue for peptide composition, shown in
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Fig. 4. Predicted retention time difference for real and random peptide-
spectrum matches. Shown are the Xcorr values and difference between observed RT
and RT predicted by the Gaussian kernel for matches to the real yeast proteome (black)
and the shuffled yeast proteome (gray) for the 20CM data set.
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Fig. 5. Contributions to retention time (RT). Shown are the support vector
regression weights for the linear kernel for the 20 features corresponding to peptide
amino acid composition; higher values indicate a positive contribution to RT. White
circles indicate the individual weights for each of the eight data sets; black circles
indicate the means for all data sets.

Figure 5. We observe several expected trends: hydrophobic residues such F and W
have higher weights, and hydrophilic residues such as K and R show lower weights.
While the SVR weights are largely consistent across chromatography conditions,
there are some notable differences, such as the relative weight of K and R. Weights
for different length columns (20CM, 40CM, 60CM) are qualitatively similar, but
differ in magnitude. The largest weights are associated with the non-specific cleav-
ages, while the smallest are associated with the MudPIT analysis (supplement).
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3.3 Improved Peptide Identification

In addition to measuring the R value of predicted RT on the test set, each trained
SVR is also tested for its ability to eliminate false positive peptide identifica-
tions from its respective chromatography run. We assess confidence of peptide
identifications by searching the spectra from each data set against a shuffled
version of the appropriate organism’s proteome sequence database; any hits to
this database above a particular Xcorr threshold are considered an estimate
of the number of false positives FP against the real database. Then, if P is
the number of positive hits to the real database, FDR can be calculated using:
FDR = FP/P . To reduce FDR, we eliminate identifications with observed RT
that deviate from the predicted RT by a constant amount of time, and then
measure whether this filtering step improves the number of true positives over
a range of FDR thresholds compared to identifications without filtering. An ex-
ample of the deviation of predicted and observed retention time for matches to
the real and random proteomes is shown in Figure 4.

The retention time threshold used to filter identifications is identified in the
following manner, as outlined in schematic in Figure 2. In addition to the PSMs
from the real yeast proteome, we use PSMs from three shuffled proteomes. The
first shuffled proteome is used to select identifications at 10% FDR, as described
in Section 2.2. The second shuffled proteome is used to calculate the true positives
across a range of FDR values between 0.5% and 10% (in 0.5% increments) for
a range of retention time thresholds between 0 and 240 minutes (in 10 minute
increments). The retention time threshold that produces the highest number of
true positives across the largest number of FDR values is selected as the optimal
maximum RT deviation threshold. We then determine the performance of that
threshold by calculating true positives across the same range of FDR values using
the third shuffled proteome. We repeat this procedure five times, and report
an average of the true positives obtained on each of the five iterations. This
is compared to an average of true positive performance without any retention
time filtration across the same five iterations. The multiple iterations are made
necessary by the high variance associated with false positive estimates from
shuffled proteomes (Huttlin et al., 2006).

The results, shown in Figure 6, show a consistent decrease in false positive
peptide identifications across all the data sets and most FDR thresholds. The dy-
namically trained SVR effectively adapts to variation in column length (Figure 6,
top), digestion conditions (Figure 6, middle) and MudPIT salt step (Figure 6,
bottom). The improvement in peptide identification is largest with the non-
specific digest elastase. Increases in true positives tend to be largest in the 2%
to 3% FDR range, and the Gaussian kernel outperforms the linear kernel in most
cases, except for the 60CM column. At a 3% FDR, the largest relative increase
in true positive peptide identifications is 52% for the Gaussian kernel on the
ELAST data set, from 509 to 772 identifications; the smallest increase is 15%
for the 60CM data set, from 1967 to 2270 identifications.
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Fig. 6. Improved peptide identification over varying conditions. The dynam-
ically trained SVR is able to cope with chromatographic differences due to variations
in column length (left), peptide chemistry (right) and MudPIT salt step (bottom).
Spectra from diverse chromatography conditions are searched against the appropriate
proteome to yield positive IDs and a shuffled proteome to yield an estimate of false
positive IDs. Shown are plots of false discovery rate vs. true positives. The solid curve
(Gaussian) and heavy dotted curve (Linear) are for the test data set after filtering with
the best classifier found on the training data using the Gaussian and linear kernels,
respectively, while the light dotted curve (Unfiltered) is without any filtering.
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4 Discussion

We have demonstrated that a dynamically trained support vector regressor is
capable of learning to predict peptide RT from a single LC-MS/MS run across a
variety of chromatographic conditions, adapting to variation in column length,
digestion conditions, peptide chemistry, and MudPIT salt step. Furthermore, us-
ing the SVR to filter peptide identifications results in an increase in true positive
identifications across almost all false discovery rates and data sets. Of special in-
terest is the improvement in identifications for samples with non-specific enzyme
cleavage, a form of analysis typically plagued by false positive identifications.

It is important to note that filtering identifications in this manner is not possi-
ble with other methods of predicting RT (such as calculating relative hydropho-
bicity, as in (Krokhin et al., 2004)), since these methods only predict relative, not
absolute retention time. This is highlighted by the difference in scales between
the learned and fixed retention time regression in Figure 3. Converting relative
to absolute retention time would require methods similar to those outlined here.

Our SVR method does not come without limitations. In particular, data sets
of low complexity would probably not produce a diverse enough set of peptides
to allow for accurate regression. In addition, poor quality data sets, with few
identifications (less than 100 above the 10% FDR), will also fail to yield good
regressions. Analysis of such data sets could benefit from improved selection of
high-confidence identifications, or from an approach that combines data from
the poor quality data set with data from higher quality data sets.

Acknowledgments. The authors would like to thank the NSF for funding
through grant T32 HG00035 and the NIH for funding through grant P41
RR11823, as well as anonymous reviewers for providing several useful suggested
improvements.
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Abstract. Liquid chromatography combined with mass spectrometry
(LC-MS) has become the prevalent technology in high-throughput pro-
teomics research. One of the aims of this discipline is to obtain accurate
quantitative information about all proteins and peptides in a biological
sample. Due to size and complexity of the data generated in these exper-
iments, this problem remains a challenging task requiring sophisticated
and efficient computational tools.

We propose an algorithm that can quantify even low abundance pep-
tides from LC-MS data. Our approach is flexible and can be applied to
preprocessed and raw instrument data. It is based on a combination of
the sweep line paradigm with a novel wavelet function tailored to detect
isotopic patterns. We evaluate our technique on several data sets of vary-
ing complexity and show that we are able to rapidly quantify peptides
with high accuracy in a sound algorithmic framework.

1 Introduction

Quantitative proteomics is increasingly developing into one of the cornerstones
of fundamental research in the life sciences and of clinical studies [17,18,21]. In
a typical experimental setting, the protein sample is subjected to a proteolytic
digestion yielding a mixture of peptides which is inserted into a chromatographic
column for a first separation. The peptides elute at different retention times due
to their interaction with the stationary phase of the column. The protein digest is
thus separated according to a physical property, like the peptide’s hydrophobicity
in the case of reversed-phase (RP) liquid chromatography. The fractions of the
analyte are transferred into a mass spectrometer where they are ionized and
separated by their mass/charge ratio.

The resulting data consists of a sequence of MS spectra (scans). Each scan
gives a snapshot of the peptides eluting from the column during a fixed time
interval. It consists of ion counts or intensities measured by the mass spectrom-
eter within a certain interval of mass/charge ratios. The scans are acquired at
(more or less equally spaced) periodic time intervals, and the collection of scans
constitutes what we will call an LC-MS map.

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 473–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Problemstatement. Many applications in proteomics, such as mass-spectrome-
try based diagnostics, rely on an accurate, and – given the size of the data – fast
quantification of proteins or peptides contained in a biological sample. Indeed, the
quantification problem lies at the very base of a whole proteomics pipeline, where
all subsequent steps depend on the quality of the data generated in the beginning.
In this work, we report on a fast and reliable approach to peptide quantification
tailored for very large LC-MS maps.

To accurately estimate the abundance of peptides in a biological sample, we
need to collect all data points that are caused by a charge variant of a pep-
tide, that is by all ions with identical sequence and charge. We will refer to this
problem as the peptide quantification problem. The detection of peptidic features
in LC-MS spectra can be considerably improved by exploiting prior knowledge
about the data produced during the experimental process: data points in an
LC-MS map belonging to the same peptide are locally highly correlated in the
mass over charge dimension as well as in the retention time domain. The atoms
contained in a peptide occur in different isotopic variants, and the distribution
of the naturally occurring isotopes gives rise to a characteristic isotopic pattern
of adjacent peaks in the mass spectrum. Similarly, each peptide elutes over a
certain interval of time from the column and can be observed in several consec-
utive scans. The elution profile ideally follows a normal distribution around its
centroid, but fronting and tailing effects are frequently observed in practice [3].

In addition to these local relationships, non-local correlations can also be
observed: different charge states of ionized peptides show up at distant m/z
values, and different peptides originating from the same protein have distant
RT (and m/z) values. For the remainder of this work, however, we will restrict
ourselves to local correlation effects.

Previous work. Several computational approaches to peptide quantification
have been developed recently. Some of them are embedded into a software frame-
work comprising other processing steps such as identification of proteins or align-
ment of LC-MS maps as well. A recent review of these software tools is given
in [22], while [16] gives a more general overview of the computational problems
in proteomics data analysis.

An algorithm for peptide quantification needs to address the following prob-
lems: in a first step, prominent data points (or seeds) in the LC-MS map need
to be found. These seeds are data points that are very likely to be in the re-
gion (in m/z and retention time dimension) of data that can be attributed to
a peptide charge variant. Second, we want to extend these seeding points to
regions of interest in the LC-MS map. Due to posttranslational modifications,
isotopic variants and different charge states of the same peptide, it is not feasible
to restrict the search to single points in the spectrum. Rather, we always need
to consider clusters of data points centered around the seeds. In the literature,
several approaches have been proposed to identify such regions based on the in-
tensity of the data points [1,6,15,14,27] or using image segmentation techniques
[12,26].
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The image-based approach usually starts by resampling the data to obtain a
gray-scale image from the LC-MS map [12,26]. But the dimensions of LC-MS
separation have quite different characteristics and require different handling. and
a resampling diminishes the resolution of the data and will almost certainly lead
to a loss of information.

If the set of candidate regions is chosen based on the intensity of single data
points or local maxima in the LC-MS map, it is likely to contain many false
positives, i.e. groups of data points caused by noise or contaminants of the
sample and not by peptides. In addition, these approaches are hampered by
the low signal-to-noise ratio of peaks at the beginning and end of the peptide
elution period. Sophisticated methods are required to estimate the background
noise in the spectra and to exclude outlier data points from the isotopic pat-
tern before a peptide abundance can be estimated [14,27]. In some cases, in-
formation from tandem spectra and database search is taken into consideration
to increase the confidence in detected seeds [5,14]. But due to the high error
rates of current peptide identification algorithms [8], this approach has its own
disadvantages.

After the extension one can employ an additional refinement step during which
a theoretical peptide model is adjusted to the selected data points [1,6,12,15].
The quality of this fit is taken as a measure of confidence that this region is
indeed caused by a peptide. Regions with poor correspondence to the theoretical
model are discarded. By summing the intensities of all data points in the regions
identified, we can obtain an estimate of the peptide that can be used for a relative
quantification. This sequence of finding seeds, extension and refinement is a
general concept, and the majority of algorithms follow these steps e.g. [1,6,12,15].

A typical proteomic sample consists of several thousand peptides and clini-
cal studies typically consist of hundreds of samples. It is therefore desirable to
quantify all peptides in a sample as quickly as possible. The refinement step
in particular takes considerable time and sometimes even requires a manual
validation of the peptide candidates. An efficient algorithm that is suitable for
real-word applications should thus aim for a low number of seeds. However, if
seeds or regions in the map are chosen based on their intensity alone, we will
obtain a large number of seeds, many of which will simply be caused by chemical
noise or contaminants of the sample.

Our contribution. In this work, we propose a new seeding stage based on
the sweep line paradigm [2], that allows to efficiently apply sophisticated iso-
topic pattern detection on large data sets. To our best knowledge, the presented
algorithm is the first technique that fully exploits the two-dimensional infor-
mation contained in LC-MS maps with an efficiency that scales to real-world
applications. In addition, the presented method does neither rely on lossy signal
pre-processing steps (baseline subtraction, noise reduction) nor on potentially
disturbing resampling of the often unequally spaced data sets. Noise and base-
line removal are implicitly and reversibly included through the use of a novel
isotope wavelet, and all steps of the algorithm have been specifically designed to
work even on unequally spaced spectra.
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We show that our algorithm results in the selection of fewer unnecessary
seeds while achieving the same accuracy as the significantly slower high-precision
approach presented in [6]. On the other hand, the presented approach does not
only reduce the number of false positives that have to be filtered out in the
later stages of the algorithm, but also has the potential to detect true isotopic
patterns that would most probably be ignored in any merely intensity-based
seeding approach: as we will demonstrate, the isotope wavelet transform often
identifies even hardly noticeable patterns that nearly vanish in the noise. This
is particularly important at the tails of the elution profile of a given peptide
where its signal intensity is low. In addition, the isotope wavelet allows for a
rapid, yet very accurate classification of any isotopic pattern candidate into one
of several possible charge states. Using this information, the subsequent model
fitting stage of our algorithm becomes (a) significantly faster since fewer charge
states have to be tested and (b) simpler and safer since a sensible initial solution
for the fitting process is already provided.

The presented algorithm has been developed using OpenMS [9], a software
library for shotgun proteomics, and is available to the community under the
GNU Lesser General Public License.

2 Methods

We follow the proposed sequence of seeding, region finding (extension) and re-
finement stage. But in contrast to previous approaches we employ a model-driven
technique to detect isotopic patterns in multiple scans which will be introduced
in the next two sections. Inspired by the sweep line paradigm, we collect sup-
porting information from neighboring scans to increase our confidence in the
detection. We conservatively extend this initial guess for the pattern region in
the extension phase. Finally, in our refinement step, we fit a theoretical model
to this region. This model is two-dimensional and consists of an average isotopic
distribution of a peptide with a given mass (for the mass/charge domain) and
an exponentially-modified Gaussian (for the time domain). The quality of this
fit reflects our confidence in this peptide candidate and regions of low quality
are discarded.

Modeling isotope distributions of peptides. The chemical elements of pep-
tides naturally occur in different isotopic variants. The mass differences between
light and heavy isotopes can be approximated by multiples of δav ∼ 1.00235 Da
[7]; for our data of intermediate resolution even δav = 1 can be used. Thus, we can
compute the theoretical spectrum of a peptide from its empirical formula. There
exist several algorithms for this task [10,24,28]. Here we use a straight-forward
algorithm, the only noteworthy detail being that e.g. the isotopic distributions of
C, C2, C4, C8, . . . are computed by ‘squaring’. The abundances of heavy isotopes
are approximated using an average amino acid, sometimes called ‘averagine’
which represents the amino acid composition observed in large protein databases.
The averagine [25] has the molecular formula C4.9384H7.7583N1.3577O1.4773S0.0417
and a total mass of 111.1254 Da. Fractional numbers of atoms are rounded to
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the next integer. We used protein sequences in a recent Swiss-Prot release to es-
timate the averagine composition and therefore our formula differs slightly from
previous works [25].

Wavelets to detect regions of interest. Detecting isotopic patterns in a typ-
ical mass spectrum is complicated by the large degree of disturbing influences
such as a signal baseline as well as electrical and chemical noise. Many efforts
have been made to develop techniques for the automated or manually assisted
reduction of these parasitics, but all of those ultimately lead to a certain dis-
tortion of the ‘real’ signal. In addition, it is often unclear if all significant noise
contributions have been successfully filtered out or if some remainder has still
leaked into the signal. An alternative route to identify features of interest with-
out explicit removal of disturbing influences relies on signal theoretic analysis of
the mass spectrometric scan, typically based on wavelets. The wavelet transform
naturally generalizes the well-known Fourier transform in that a signal is locally
split into components of different frequencies. This spectral decomposition can
be very useful for feature detection algorithms, since, in reality, baseline, elec-
trical noise, and the ’real’ signal usually live on different frequency ranges. By
computing a wavelet transformed version of the signal that corresponds to the
‘correct’ frequency range, disturbing components are automatically suppressed,
greatly simplifying the analysis.

Wavelet techniques involve an additional degree of freedom in the choice of
the analytical form of the so-called ‘mother wavelet’ the transform is based
on. Intuitively, we replace the mass signal by a measure of how well it locally
correlates with the shape of the wavelet. In [11], we have demonstrated that the
established Marr wavelet is well suited for the detection of individual peaks and
thus is a sensible foundation for a high-accuracy peak picking application. In
particular, if the scale of the wavelet transform (corresponding to the frequency
range considered) is chosen carefully, the Marr wavelet transform of a given
peak is to a large degree independent of neighboring peaks, even if they strongly
overlap. But while this property allows for astonishing accuracy in the separation
of overlapping peaks, it is clearly counterproductive for the detection of isotopic
patterns, where we explicitly want to base our analysis on the behaviour of the
spectrum in the neighbourhood of a given peak. Therefore, we designed tailored
‘isotope wavelets’, which are based on the mass distributions in typical isotopic
patterns as described above.

There exist other applications of the wavelet transform to mass spectrom-
etry data [4,23]. For example, [23] use wavelets to denoise the spectra prior
to database searching for the inference of the amino acid sequence. [4] employ
wavelet analysis to detect single peaks in low resolution spectra but not clearly re-
solved isotopic pattern for quantification as we do. However, our isotopic mother
wavelet is clearly novel and has not been used before. Furthermore, we are not
aware of any other work in which wavelet analysis is used for the quantification
task. make Since the shape of the isotopic patterns depends on the mass as well
as on the charge of the considered peptide, several wavelet functions must be
used. While the wavelet can adapt automatically to the considered mass during
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Fig. 1. Isotopic wavelets

the computation of the transform, each charge state requires its ‘own’ mother
wavelet. Therefore, if we assume peptides to be at most 4-fold charged, e.g.,
we have to compute four transformed versions of each scan. The actual wavelet
design process is technically cumbersome and out of scope of this work. Instead,
we show two exemplary isotope wavelets in Fig. 1.

With the isotope wavelet, regions of interest can now be detected by first
searching for local maxima in the transform. A ’real’ isotopic pattern will lead
to a chirp-like signal in the wavelet transform, since each of its mass peaks will
lead to a resonance with the wavelet, and we make extensive use of this special
shape to improve the specificity of our approach. Shape and regularity of the
wavelet transform of a candidate pattern are used to derive a score, denoting
how well the candidate fits the current wavelet type. Repeating the transform
with an isotope wavelet of each charge state yields a set of charge dependent
scores, leading to a powerful and robust charge prediction method.

Due to the design of the wavelet, we only need to compute one scale of the
wavelet transform, i.e. compute the correlation integral of the isotope wavelet
with the mass signal. While at first glance this seems to require O(n2) operations,
the real runtime is actually much smaller: the wavelet has finite and typically
small support that is independent of the length of the mass signal, so that the
transform can be performed in linear time.

Region extension using the sweep line paradigm. The sweep line algo-
rithm is a general paradigm from the field of computational geometry that has,
e.g., been used to detect intersections of line segments in an efficient manner [2].
The algorithm can be illustrated by an imaginary line sliding over the segments.
It keeps track of segments it encounters using a dynamic data structure. The
beginning or end of a line segment triggers an update of the datastructure and
a check for intersections is performed if the algorithm meets the endpoint of a
segment.

We follow the general sweep line paradigm, but compared to the line segment
intersection algorithm we are not searching for intersecting lines but adjacent
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and possibly overlapping isotopic patterns. Hence, we sweep across the LC-MS
map scan by scan and use our isotope wavelet to detect the starting positions of
isotopic patterns in each spectrum. That is, we apply the transform to each scan
and sweep across the time domain. A significant signal in the wavelet transform
triggers an event and we check if we detected a pattern in the previous scan
at the same mass with a small tolerance. The predicted monoisotopic masses of
each pattern in each scan are stored in a tree-based data structure.

This approach allows to quickly discard potential isotopic peaks that are not
supported by isotopic peaks in adjacent scans and to significantly reduce the
number of candidate regions for the next refinement step. Furthermore, our
wavelet function gives us an initial guess for the charge state of the peptide,
which further reduces the number of peptide models that need to be tested. Since
we scan through the LC-MS map in a linear manner, we can work efficiently on
secondary memory data structures storing the peak data, allowing to apply our
algorithm to very large data sets.

Refinement stage by model fitting. As stated above, we fit a two-dimensional
model to each potential peptide signal identified in the two previous steps of the al-
gorithm. The part of the model which is applied to the m

z domain relies on
the average isotopic distribution for the given mass region. In addition, we model
the imprecision of the mass analyzer by a normal distribution with variance σ2.
The resulting model for the isotopic distribution of a peptide is

φ(m) =
A√
2πσ2

imax∑

i=0

ai(m0)e−(m−m0−iδav)2/(2σ2) ,

where m0 = monoisotopic mass, ai(m0) = relative abundance of i-th isotopic
peak of a peptide with monoisotopic mass m0, imax = last isotopic peak consid-
ered, and A = area under curve.

The elution profile of the peptide is modeled by an exponentially modified
Gaussian (EMG). For computational efficiency, we use a simplified version [3].
Its density function is given by

emg(x) =
hw

s

√
2π

exp ( w2

2s2 − x−z
s )

1 + exp (− 2.4055√
2

[x−z
w − w

s ])

where parameter z controls the centroid, w the width, and h the height of the
elution profile. The parameter s represents the skewness of the distribution.
An earlier version of our algorithm modeled the elution profiles by a normal
distribution. Using the EMG makes our model much more robust in the pres-
ence of heading or tailing effects. Since the partial derivatives of the EMG can
be computed analytically, we use the Levenberg-Marquardt algorithm [13,19]
to minimize the least squared distance of the model to the selected region of
the LC-MS map. The quality of the model fit is measured using the squared
correlation between data and model. If the correlation is too low, we discard
the corresponding peptide region. The monoisotopic mass is estimated from the
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theoretical isotope distribution and the coordinate in retention time is taken as
the centroid of the fitted EMG.

Greedy Separation of Overlapping Isotopic Patterns. In high-resolution
spectra of complex samples, overlapping isotopic patterns might pose a severe
problem for an accurate quantification. Here, we propose a greedy approach
to this problem. If the wavelet transform detects overlapping isotopic patterns,
these are independently assembled during the sweepline stage and passed to
the model fit. Peaks that have a good correlation with the theoretical model are
removed from the spectrum. If the wavelet indicates that there might be another
isotopic pattern in the same region, a new model is fitted using the remaining
peaks in this area until no more isotopic pattern remain.

This approach is straightforward and similar to other methods already pub-
lished e.g. in [7]. More sophisticated approaches are imaginable and easy to in-
tegrate into our framework. However, we found that his greedy approach works
well in practice.

3 Results

We evaluate our approach on two different data sets. The first one was obtained
from a peptide standard mix consisting of nine peptides. Here, we systematically
introduced noise into the data set to evaluate the ability of our algorithm to
correctly detect and quantify peptides in noisy signals.

The second data set consists of human blood serum samples from a myoglobin
quantification study [20]. We use this data to show that we are able to perform
very precise quantification of peptides in complex samples. Furthermore, we
demonstrate that we are considerably faster than an approach which is of high
accuracy but slow since it selects the seeding regions in the LC-MS map based on
their intensity only [6] and therefore performs many time-consuming refinement
steps using a theoretical peptide model.

Stability analysis. As a first step, we show that our model-driven quantifica-
tion approach (SweepWavelet) is able to produce reliable results in the presence
of noise. We systematically introduce noise in an LC-MS map of standard pep-
tides. We are aware that performance evaluation on simulated datasets has its
caveats. However, by doing so we can measure performance on data with specific
characteristics.

The data set chosen – an artificial mix of 9 peptides that is described in
detail in [11] – is of very high quality with unusually low noise level. We thus
consider manual annotation of the unperturbed spectrum as the gold standard
against which we test our technique. In order to relate the noise level to the
intensity of the isotopic pattern of interest, we add uniformly distributed noise
with zero mean and an amplitude of 10%, 25%, 50%, and 75% of the intensity
of the monoisotopic peak, respectively. If this resulted in negative values, these
were replaced by zero. While this uniformly distributed noise does not provide
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Table 1. Feature detection on a spectrum with varying levels of uniform noise. The
percentages denote the amplitude of the noise in terms of the intensity of the monoiso-
topic peak of the pattern. The ‘#scans’ - row gives the number of scans (retention
times) in which the isotopic pattern was found as compared to the number found by
manual annotation in the unperturbed spectrum. The ‘charge’ - row indicates whether
the charge state was correctly assigned.

Oxytocine, 1007.5 Th, charge 1 Substance P, 674.5 Th, charge 2

0% 10% 25% 50% 75% 0% 10% 25% 50% 75%

#scans 11/11 11/11 10/11 10/11 0/11 16/20 16/20 13/20 12/20 13/20

charge � � � � n/a � � � � -

 0
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experimental signal
signal + 40% noise

Fig. 2. Experimental signal with artificial noise

a realistic model of all noise effects in a real spectrum, this experiment should
still give us with an idea of the stability of our method if applied to noisy data.

The combination of the isotopic wavelet for seeding with the sweep line ap-
proach leads to a robust feature detection (see Table 1). Even for extremely low
signal-to-noise ratios, the pattern is usually detected in a sufficient number of
scans to allow for accurate seeding, and correct charge prediction. The results
are exemplarily discussed for two of the peptides, with charges of 1 and 2, respec-
tively. Performance on the other peptides is very similar. An example where the
drastic amount of noise leads to severe distortion of the signal without hurting
our seeding and charge prediction can be found in Fig. 2.

It is of course not clear whether our approach to introduce noise into the
data comes close to real noise in mass spectra. Other possibilities would be to
introduce additional isotope distributions to simulate chemical noise or to model
instrument noise by adding single, poisson-distributed peaks. We decided to
distort existing isotope peaks since we wanted to test the ability of our algorithm
to detect deformed isotopic patterns. Adding further, artificial patterns would
merely increase the running time of our algorithm and not give any information
about its performance in the presence of noise. Single peaks caused by instrument
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noise would be simply filtered out during the wavelet transform as long as they
don’t resemble isotopic pattern by chance.

Accuracy and speed of quantification. We now apply our algorithm to a re-
alistic task, the quantification of myoglobin from human blood serum. Myoglobin
is a protein of low-molecular weight which appears quickly in blood after tissue
injuries and is considered as an important biomarker for myocardial necrosis. A
fast but accurate quantification of myoglobin in human blood samples is there-
fore important. Sample preparation and details of the absolute quantification
process have already been described elsewhere [20]. In short, the myoglobin was
separated from the highly abundant serum proteins by anion-exchange chro-
matography. The myoglobin fraction was trypsinized and the resulting peptides
were analyzed by reversed-phase liquid chromatography coupled to an ion-trap
mass spectrometer. To perform an absolute quantification, known amounts of
human myoglobin were added to aliquots of the sample. Absolute quantification
was then performed by determining the x-intercept of a linear regression using
the ratio of the eleventh tryptic myoglobin peptide and an internal standard
consisting of the tenth tryptic peptide of horse myoglobin. The LC-MS maps
were recorded using a quadrupole ion trap mass spectrometer (Bruker Dalton-
ics, Germany) coupled to a reversed-phase HPLC column.

We compare our approach to an algorithm [6] which was developed for this myo-
globin quantification study. This method (from now on referred to asCompLife05 )
carefully collects regions of data points with high ion count and fits a theoreti-
cal isotopic model to the data. This refinement step is similar to ours but uses a
simpler model. Regions having a sufficiently good correlation with the theoretical
model are considered as true peptides and quantification is performed by summing
the ion counts of all raw data points in the chosen region. Outlier points are ex-
cluded before quantification if their predicted intensity under the model is below
a given threshold. We consider this algorithm as representative for the common
approach that detects potential peptides based on the intensity of single, but high,
peaks in the LC-MS map, collects a cluster of raw data points and then refines this
selection by fitting a theoretical peptide model to the data.

Table 2 compares our algorithm to CompLife05 and to a manual quantifi-
cation by a human expert. The manual quantification was performed using the
Bruker Data Analysis software and Microsoft Excel. Peak areas were estimated
from extracted ion chromatograms smoothed by a Gaussian filter. The measure-
ments were performed on two independently acquired data sets. For the compu-
tational quantification, we used the OpenMS tools [9] to perform an alignment of
the LC-MS maps and to match corresponding peptides across the LC-MS maps.
No smoothing or other preprocessing steps were performed.

Manual and both automated measurements estimated the true concentration
of myoglobin with high precision. The regression results of SweepWavelet are
given in Fig. 3(a). Fig. 3(b) shows a good reproducibility of the peptide abun-
dances in the replicate measurements of the myoglobin study. Note that we do
not claim to perform a significantly better quantification than [6]. Marginal dif-
ferences like the ones presented above might be caused by favorable parameter
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Fig. 3. Accuracy and reproducibilty of quantification Figure (a) shows the
additive measurement as it was computed using our sweep line based algorithm. The
regression was performed using the ratio of the eleventh tryptic myoglobin peptide and
an internal standard consisting of the tenth tryptic peptide of horse myoglobin. (b)
gives the log-transformed peptide abundances estimated from two replicate myoglobin
samples.

Table 2. Results of absolute myoglobin quantification in human plasma. SweepWavelet
refers to our algorithm, CompLife05 is the approach with intensity-based seeding [6].
Column Manual gives the results obtained by a human expert.

SweepWavelet CompLife05 Manual

Myoglobin data set 1 True concentration [ng/μl] 0 .463
Computed concentration [ng/μl] 0.460 0.474 0.382

95% confidence interval [ng/μl] [0.351;0.581] [0.408;0.545] [0.315;0.454]
Relative deviation from true value [%] −0.65 +2.46 −17.42

Myoglobin data set 2 True concentration [ng/μl] 0 .456
Computed concentration [ng/μl] 0.432 0.502 0.420

95% confidence interval [ng/μl] [0.309;0.572] [0.381;0.640] [0.305;0.535]
Relative deviation from true value [%] −5.55 +10.10 −7.89

settings. But we do claim that we are able to perform a quantification of equal ac-
curacy at a much higher speed compared to a high-accuracy algorithm that was
developed and tailored for the myoglobin quantification task. Our approach is
therefore more suitable for large-scale studies and high-throughput experiments.

The run time of our algorithm on a set of myoglobin maps was measured on
a 3.2 GHz Intel Xeon CPU with 3 GB memory running Debian Linux (Table 3).
We used the same parameter settings as for the myoglobin quantification de-
scribed above. Peptide models up to charge 4 were fitted, i.e. we discarded
the charge prediction of the wavelet transform to obtain a fairer comparison.
Algorithm SweepWavelet discarded all isotopic pattern that occurred in less
than three consecutive scans and CompLife05 considered all signals up to an
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ion count of 4000 as potential seeds. Thus very week peptide signals were dis-
carded. Each data set consisted of about 1830 scans measured in full scan mode
(m

z range 500 - 1500 Th).
The new sweep line algorithm is faster on all data sets while CompLife05

detects about 6 times more seeds. Since the subsequent refinement step takes
considerable time, CompLife05 is significantly slower. Nevertheless this refine-
ment step helps to discard a large number of seeds in both algorithms. Note that
the number of peptides found by CompLife05 is always higher than the number
of peptides found by SweepWavelet. This has two reasons: the refinement step in
both algorithms is imperfect and a high number of seeds will necessarily result
in a higher number of false positives. Manual inspection of the results confirmed
this. Second, our wavelet apparently fails to detect poorly resolved regions that
show no isotopic pattern. But since mass spectrometers are evolving rapidly, we
anticipate that high-resolution instruments will become standard very soon and
this disadvantage will diminish.

Note that the seeds in Table 3 correspond to putative peptide signals identified
either by a combination of isotopic wavelet and sweepline algorithm or based on
their ion count by algorithm CompLife05. Column peptides gives the number
of signals that were classified as peptide charge variants for each algorithm.
SweepWavelet detects 200 peptides on average whereas CompLife05 finds 500.
A theoretical digest of Human Myoglobin yields only 19 peptides. The fact that
both algorithms claim to find a much larger number of peptides than one would
expect can be explained by several facts. The Myoglobin was extracted from
human plasma. Some other peptides or contaminants will inevitably remain in
the sample even after depletion and filtering. Some peptides occur in different
charge states and will be independently reported by each algorithm. Finally,
some signals will be false positives.

In this particular application, the high number of putative peptides was not
a problem since we performed the quantification using only two Myoglobin pep-
tides of known mass. We align the maps and filtered for the masses and expected
retention times of these two peptides. In more complex applications, such as a
difference detection in complex samples [16], normalisation and statistical testing
for differential expression are likely to eliminate these false positive signals.

Increasing the correlation threshold in the least-squares fitting stage of both
algorithms might decrease the number of false positives but also the probability
of missing important signals in large-scale applications. Note that this would not

Table 3. Running time, number of seeds and number of peptides after refinement on
three exemplary data sets of the myoglobin study

SweepWavelet CompLife05
Data set Time [min] # Seeds # Peptides Time [min] # Seeds # Peptides

Myoglobin 01 4.11 511 261 21.15 2652 521

Myoglobin 02 4.35 561 301 25.26 3537 557

Myoglobin 03 4.17 538 297 20.41 2549 492
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influence the running time since it is mainly determined by the number of seeds
on which the model fitting is performed.

4 Conclusions and Outlook

In this work, we have presented a novel algorithm for the peptide quantification
problem. It combines the sweep line paradigm and a tailored wavelet function
to scan for isotopic patterns in mass spectra. We have shown that this approach
is able to accurately detect monoisotopic masses and charge states of peptides
even in the presence of noise and that we can perform quantifications in complex
data sets with high accuracy (less than 0.65% and 5.55% relative error) in an
efficient manner.

Basing the feature detection process on an integral transform has a number
of important advantages from a signal theoretic point of view, but might also
be seen as a possible shortcoming of our algorithm: if the resolution of the data
falls below a certain critical threshold, the approach is no longer practical. In
our experience, however, our technique works well on real-world data. In addi-
tion, the resolution of available mass spectrometric data is ultimately going to
increase, while for poorly resolved data, slower techniques like the one presented
in [6] can typically be applied since the resulting maps are considerably smaller
than the ones considered here.

We focused on a label-free setting in which detected peptides have to be
mapped across data sets using additional computational tools. However, our
approach is flexible and can also be applied to experiments in which isotope
or mass tag labeling of peptides is applied. In this scenario, we have to search
for pairs of peptides in the same map – a computational problem which can be
solved by a range query for each detected peptide.

The application of our method presented here is the quantification of pep-
tides from LC-MS samples. But one can easily imagine other likewise important
applications such as the accurate generation of mass and time tags and peptide
mass mapping.

To summarize, instead of a tiresome and error-prone manual inspection, ef-
ficient algorithms as the one presented here allow high-throughput studies and
will emerge as a useful computational tool in quantitative proteomics.
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Abstract. Association, or LD (linkage disequilibrium), mapping is an
intensely-studied approach to gene mapping (genome-wide or in candi-
date regions) that is widely hoped to be able to efficiently locate genes
influencing both complex and Mendelian traits. The logic underlying as-
sociation mapping implies that the best possible mapping results would
be obtained if the genealogical history of the sampled individuals were
explicitly known. Such a history would be in the form of an “ancestral
recombination graph (ARG)”. But despite the conceptual importance of
genealogical histories to association mapping, few practical association
mapping methods have explicitly used derived genealogical aspects of
ARGs. Two notable exceptions are [35] and [23].

In this paper we develop an association mapping method that explic-
itly constructs and samples minARGs (ARGs that minimize the number
of recombinations). We develop an ARG sampling method that provably
samples minARGs uniformly at random, and that is practical for mod-
erate sized datasets. We also develop a different, faster, ARG sampling
method that still samples from a well-defined subspace of ARGs, and
that is practical for larger sized datasets. We present novel efficient algo-
rithms on extensions of the “phenotype likelihood” problem, a key step
in the method in [35]. We also prove that computing the phenotype like-
lihood for a different natural extension of the penetrance model in [35] is
NP-hard, answering a question unresolved in that paper. Finally, we put
all of these results into practice, and examine how well the implemented
methods perform, compared to the results in [35]. The empirical results
show great speed ups, and definite but sometimes small, improvements in
mapping accuracy. Speed is particularly important in doing genome-wide
scans for causative mutations.

1 Introduction

One type of genetic disease, or more generally any phenotype (observable trait),
is caused by a single mutation at a single locus, and that mutation has “high
penetrance”, meaning that the probability of the trait given the mutation is very
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large. Sometimes this type of disease is called “Mendelian”. In contrast, “com-
plex traits” can originate independently at many different loci; or a combination
of mutations is required to create a phenotype; or different combinations of mu-
tations can create the trait; or the penetrance of the mutations may be low.
Understandably, although many Mendelian traits have been mapped quite suc-
cessfully, mapping the genetic origin of complex traits remains a very challenging
problem.

Association, or LD (linkage disequilibrium), mapping is a current, intensely-
studied approach to gene mapping (genome-wide or in candidate regions) that is
widely hoped to be able to efficiently locate genes influencing both complex and
Mendelian traits. Indeed, one of the major motivations behind the international
HapMap project [16,17] is to provide SNP (single nucleotide polymorphism) data
from several populations, at a density of about one SNP per one to five Kb, to
facilitate association mapping (in humans). The association mapping approach
uses (sparse) data obtained from a number of unrelated individuals in a pop-
ulation, looking for sites, or small regions, whose states strongly discriminate
between those individuals (called “cases”) with the trait of interest, and those
without it (called “controls”). Association mapping relies on the assumption that
the cases (or a significant fraction of them) share a genealogical history that is
distinct from the history of the controls, and that over time, meiotic recombi-
nation has shortened the shared region(s) containing the causative mutation(s).
It follows from these assumptions that SNP sites near a causative mutation will
have states (alleles) that more highly correlate with the trait of interest than do
sites that are far from a causative mutation, and this is the general basis for as-
sociation mapping. The following papers provide good overviews and discussions
of association mapping [28,5].

The logic behind association mapping implies that the best possible mapping
results would be obtained if the true genealogical history was explicitly known
for the cases and controls. Such a history would be in the form of an “ancestral
recombination graph (ARG)” [7,26,13], also called a “phylogenetic network” in
[9,8]. The true ARG would explicitly show all the ancestral relations, the mu-
tations and the recombinations that lead to the extant SNP sequences of the
sampled individuals, starting from some ancestral SNP sequence. Quoting from
a recent paper (also see [23]):

Unless we have the actual disease variants in our marker set, the best
information that we could possibly get about association is to know the
full coalescent genealogy of our sample at that position. If we knew this,
the marker genotypes would provide no extra information; ... [35].

It is important to note that the concept of ARG in this paper is synonymous
with phylogenetic network, which is about a network showing ancestral relations
among samples. This use of the term “ARG” is similar to the usage of this
term in [23], and is different from a stochastic process called coalescent-with-
recombination. Even with this restriction, an ARG is still very informative about
the genealogical history of the samples.
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Despite the conceptual centrality of the genealogical history, few association
mapping methods have tried to explicitly deduce or exploit the underlying ge-
nealogical histories to map complex traits, particularly with recombination. Ini-
tial work on association mapping with ARGs by a full coalescent likelihood
approach suggests that this is indeed a very challenging problem [19], and most
existing genealogy-based mapping approaches [33,22,24,27] make some approxi-
mations (i.e. not using a full genealogical network) in modeling recombination.

Recently, however, a few papers have developed association mapping methods
that explicitly try to exploit recombination or some aspects of the “underlying
ARG space”, that is, the set of ARGs that can generate a given input set of SNP
sequences. Two papers, the first published in 2005 by Zollner and Pritchard [35],
and the second by Minichiello and Durbin [23], are the most highly developed
examples of these efforts.

The method of Zollner and Pritchard [35] explicitly uses some inferred infor-
mation on recombination for genealogy inference, although it does not generate
full ARGs. The method uses a rigorous stochastic framework and disease model
to map certain kinds of complex traits. The basic strategy in [35] is to generate,
and average over, some information from many samples of the ARG space for
the given data. In particular it generates (independent) subtrees embedded in
the ARGs, at different loci. Each such tree describes how the SNP sequences,
restricted to an interval of SNP sites, could have evolved. The quality of a sub-
tree is assessed using a rigorous statistical model (detailed later). A locus where
many generated subtrees have significant scores is then deduced as being near a
site that is causative for the trait.

The Zollner and Pritchard paper is an important advance because it defines a
formal disease model, and it uses a rigorous likelihood approach to evaluate the
significance of the mapping results. Moreover, it considers complex phenotypes
showing “allelic heterogeneity”, where the genetic basis for the trait can be a
mutation at one of several different sites, but the sites are located close to each
other. This is the case for example for BRCA1, or for mutations causative for the
ability to metabolize lactose in adults. However, the implemented method (based
on Markov Chain Monte Carlo) is very slow in practice, does not guarantee
proper mixing, and does not use the full ARG model. Moreover, the disease
model is somewhat limited and it would be desirable to extend it in several
natural directions.

More recently, Minichiello and Durbin [23] developed an association mapping
method that is similar to that in [35] at a high-level, but quite different in detail. In
[23], full “plausible” ARGs are explicitly generated by using heuristics that allow
rapid computation. There is no precise definition of what a “plausible” ARG is,
although the algorithm tries to locally reduce the number of recombinations used,
and can be viewed as producing an approximation to a “minARG” [29], i.e., an
ARG that globally minimizes the number of recombinations used to generate the
SNP sequences (in a model detailed below). There is no characterization of the
sampling bias that is caused when ARGs are created in this way.
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Our paper is centrally motivated by the paper of Zollner and Pritchard [35].
Our paper addresses computational, and some statistical, challenges from [35],
with results concerning all the essential steps of the method in [35]. Essentially,
we show that the statistical approach in [35] can be sped up and made practical
when full minARGs (or near-minimum ARGs) are sampled. We adopt the disease
model introduced in [35] and present new results in evaluating the “phenotype
likelihood”, used to assess the significance of a “marginal tree” (defined below).
However, some parts of our method are more similar to the method in [23], and
so some of our results also relate to that paper.

2 Definitions and Background

A single nucleotide polymorphism (SNP) is a single nucleotide site where exactly
two (of four) different nucleotides occur in a large percentage of the population.
A genotype comes from a pair of haplotypes. As in [35] we assume that haplotypes
can be determined from sampled genotypes, and to simplify the exposition, we
just say that haplotypes are sampled in the population. The set of haplotypes
sampled from a population is denoted by M , where M has n haplotypes (rows)
and m sites (columns). We assume at most one mutation in any sampled SNP site
in the evolution of the haplotypes, which is supported by the standard “infinite
sites model” in population genetics [13,14]. This is particularly justified in the
context of association mapping where the time-scale of interest is short enough
that two mutations at any single site are unlikely. In addition to mutation,
haplotypes evolve by (meiotic) recombination. Recombination takes two equal
length sequences (haplotypes) and produces a third sequence of the same length
consisting of some prefix of one sequence, denoted P , followed by a suffix, of the
other sequence, denoted S. The changeover point is called the “crossover point”
or “breakpoint”.

The evolutionary history of a set of haplotypes M , that evolve by mutations
and recombinations is displayed on a rooted, directed acyclic graph called an
“Ancestral Recombination Graph (ARG)” [7] (also in [26,13]), or a “Phylogenetic
Network” in [9,8]. An example of an ARG is shown in Figure 1(b); A formal
definition of an ARG is given in [9,8]. An ARG that derives a set of sequences
M and minimizes the number of recombinations assuming at most one mutation
per site is called a “minARG” [29]. The problem of finding a minARG for M , or
even determining the number of recombinations in it, is NP-hard [34,3], but there
are methods constructing minARGs for moderate-size haplotype data [29,21].
Other methods construct minARGs with some structural constraints [8,9,10].
We can also efficiently compute close upper bounds [11,12,31] and lower bounds
[15,25,30,1,2,31] on the number of recombinations in a minARG.

2.1 The Marginal Trees of an ARG

Let N denote an ARG for M . The following crucial observation is central in the
methods in [35] and [23] and in our method. For any site x, the full evolutionary
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(a) SNP data. (b) An ARG deriving the
data.

(c) Marginal tree for positions
between sites 1-3

(d) Marginal tree for posi-
tions near site 4

(e) Marginal tree to the right
of site 4 fits the phenotypes
well

Fig. 1. An example of the general association mapping method using ARGs. Figure
1(a) shows the input haplotypes M , where rows 1-3 are controls and rows 4-6 are
cases. Figure 1(b) shows an ARG for the haplotypes in Figure 1(a), with 00111 as
root sequence. A site mutation changes the state from that at the root to the opposite
state. Leaves are labeled with row numbers in the input matrix. Figures 1(c) is the
marginal tree embedded in the ARG at positions between site 1 and 3. Figure 1(d) is
the marginal tree near site 4. Figure 1(e) is the marginal tree to the right of site 4.
Note this tree shows a cut of an edge that clearly separate cases and controls.

history of the states of site x in the sequences M , is completely represented by
a subtree Tx of N , which can be extracted from N by removing, at each recom-
bination node v in N , one of the two directed edges entering v. In particular,
suppose b is the breakpoint for the recombination at v; then remove the edge
into v from the node labeled with the sequence P (providing the prefix for the
recombination), if site x is to the right of b; otherwise remove the edge into v
from the node labeled S. The resulting subtree, Tx, is a rooted directed tree
that details how each of the sequences in M obtained their polymorphism value
at x. An example is given in Figure 1. Tree Tx is called a marginal tree. The
next critical point is that if no recombination in N has occurred at a breakpoint
between sites x and y, then the marginal trees Tx and Ty are identical. Hence,
there is a single well-defined marginal tree for each interval between successive
breakpoints in N (along the linear ordering of the polymorphic sites), and also
for the two intervals before the first, and after the last, breakpoints.

3 The High-Level Strategy

Our high-level strategy involves sampling ARGs from the ARG space; then con-
structing the marginal trees for each sampled ARG; and then assessing the sta-
tistical significance of the marginal trees given the observed cases and controls,
and the disease model. To get the intuition behind this assessment, suppose the
disease is Mendelian. In that case a significant marginal tree is expected to have
an edge, such that there is a “larger than random” number of cases in the leaves
of the subtree below the edge, and few controls. A locus contained in marginal
trees that have high significance is then deduced as being near a site that is
causative for the trait. This basic idea is adopted in [23]. The general method,
in the Mendelian case, is illustrated in Figure 1, where the third marginal tree
corresponding to sites to the right of site 4, contains an edge that perfectly
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separates the cases from the controls. Therefore, the tree to the right of site 4
fits the observed phenotypes well. If no further sampling were done, we might
then conclude that the genomic region near site 5 is the most likely to contain
the causative mutation for the trait. Now, for complex diseases, the assessment
of the significance of a marginal tree is more involved. Then we need to compute
the probability, given the disease model, that the observed cases and controls
would have been derived on that marginal tree. If the disease model specifies low
penetrance or multiple causative mutations, then we would not expect a perfect
separation of the cases and controls as in Figure 1.

The above high-level strategy is in the same spirit as some parts of the meth-
ods in [35] and [23], but our method differs from, extends and sometimes outper-
forms those methods in several important ways. Most importantly, in contrast
to both earlier methods, our methods explicitly compute minARGs, or ARGs
that (empirically) use a number of recombinations close to the global minimum,
rather than other ARGs from the ARG space. There are several reasons we want
to generate minARGs (or near minimum ARGs) rather than other ARGs from
the ARG space. First, it is currently believed that in the human genome (and
perhaps others) there are many regions (haplotype blocks) where the recombina-
tion rate is low, but not zero. In those regions, we expect that minARGs reflect
the true genealogical history better than an ARG with many extra recombina-
tions. Also, the method in [23] has implicit (but not rigorous) rules for reducing
the number of recombinations used, and the use of minARGs better formalizes
that implicit effect.

Phenotype likelihood is defined as, given a marginal tree Tx at position x with
leaf labels, the probability Pr(Φ|X = x, Tx) of the observed phenotypes Φ of the
leaves being generated on Tx according to the following disease model assuming
disease mutations occur near x [35]. Here Φ is the collection of case and control
status for each sample sequence. The basic disease model that we adopt in this
paper is the one introduced by Zollner and Pritchard [35].

– The disease loci are not sampled, i.e. are not in the sampled SNP sites.
– Phenotypes are determined by mutations at disease loci and the disease

penetrance. There may be multiple independent disease mutations, but these
mutations occur relatively close together, so that they may all occur on a
single marginal tree.

– There are two alleles M0 (wild-type) and M1 (mutant) at a disease locus.
Mutations M0 to M1 occur at edges of the marginal tree according to Poisson
process with a rate of ν/2. There is no mutation from M1 to M0. Further-
more, mutations on different edges of a marginal tree occur independently.

– Multiple mutations on the same haplotype have the same effect on pheno-
types as a single mutation.

The concept of penetrance is important to this paper. Zollner and Pritchard
uses the haploid penetrance model to specify the effect of alleles M0, M1 on
phenotypes: Pφ,m is the probability of a haplotype exhibiting phenotype φ for
wild-type haplotype (m = 0) or mutant haplotype (m = 1). Here, φ ∈ {A, C}
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(i.e. cAse or Control). Since Pφ,m is for a single sequence (haplotype), we call it
haploid penetrance. In practice, penetrances are often not known. Zollner and
Pritchard used a numerical integration approach, averaging over a grid points of
penetrance (e.g. an evenly spaced 20 by 20 grid with range [0.0, 1.0], where each
point represents a possible penetrance PA,0 and PA,1). Thus in the following, we
assume penetrance is known when we compute phenotype likelihood.

Suppose we are given a (rooted) tree Tx. Let M be a binary vector with one
bit for each edge, indicating whether the corresponding edge has at least one
disease mutation or not. Then,

Pr(Φ|X = x, Tx) =
∑

M

P
nA,0
A,0 P

nA,1
A,1 P

nC,0
C,0 P

nC,1
C,1 Pr(M |x, Tx)

where nφ,m = number of sequences in the sample showing phenotype φ who have
mutation state m, and Pr(M |x, Tx) is the probability of the edge mutations
specified by M in Tx, which can be easily computed. Zollner and Pritchard use
the Peeling algorithm [6] to efficiently compute phenotype likelihood with haploid
penetrance. Understanding this is important for our new results on phenotype
likelihood in Section 5. Refer to [35] for more details.

4 Sampling Ancestral Recombination Graphs

4.1 Uniform Sampling of minARGs

Now we present two methods for sampling ARGs given a set of sequences M .
We first present a method to count the number of minARGs. With a simple
modification, the method can be turned into a uniform sampler of minARGs.

We begin by reviewing the self-derivability problem originally studied in [31].
In the following, we assume that M does not contain two identical sequences.
Often an ARG may derive sequences that are not present in input data M . We
call these sequences Steiner sequences. The self-derivability problem is to decide
whether there is an ARG N deriving M (assuming at most one mutation per
site) which only contains the input sequences in M . That is, N contains no
Steiner sequences. We call such an ARG, if it exists, a self-derived ARG. We
first describe algorithms for data with self-derived ARGs, and then extend to
more general case. Lemma 1 is a simple extension of a result in [31] and we omit
the proof here.

Lemma 1. A self-derived ARG is also a minARG.

Here, we give an algorithm (Algorithm 1) for counting the number of self-derived
ARGs for M . The algorithm runs in O(2n +n3m) time. Two ARGs are different
if they derive a different set of sequences. Moreover, the nodes (i.e. sequences) in
an ARG are derived in a particular linear time order. That is, for any two nodes,
we know which corresponding sequence is derived earlier. We consider two ARGs
to be different if the derivation order of the sequences in them are different, even
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if they are topologically identical and derive the same set of sequences. This to-
tal time-order property is quite convenient to avoid over-counting (as explained
later). Also, the time-ordering suggests ways to determine edge lengths for the
edges in an ARG, and this will be useful for the phenotype likelihood computa-
tion, discussed later. Moreover, true ARGs are total-ordered since genealogical
events are time-ordered.

For each subset S ⊆ Rows(M), we define N [S] as the number of the mi-
nARGs deriving sequences in S (and deriving no other sequences). Therefore,
N [Rows(M)] is equal to the total number of self-derived ARGs that derive hap-
lotype matrix M . For a subset of rows S and a single row r /∈ S, we denote
D(S, r) as the total number of ways of deriving r by sequences in S through an
unused mutation or a recombination. By ”unused mutation” we mean a mutation
at a site where all sequences in S have the same states (i.e. either all 0 or all 1)
and different from that of r. Note that if r is derived by an unused mutation, this
is only one way of deriving r and no two sequences in S can recombine to derive
r. Similarly, when r can be derived through recombination of two sequences in
S, r can not be derived through an unused mutation from a sequence in S. Thus,
there are the following mutually exclusive situations:

1. If a sequence in S can derive r by an unused mutation, then D(S, r) = 1.
2. If two sequences in S can derive r by a recombination, then D(S, r) ≥ 1.
3. Otherwise, D(S, r) = 0.

Algorithm 1

1. For each row r ∈ M , set N [{r}] ← 1.
2. Set sz ← 1.
3. while sz < n

3.1 sz ← sz + 1
3.2 For each subset of rows S ⊆ Rows(M) and |S| = sz, initialize N [S] ← 0.

3.2.1 For all r ∈ S, such that (a) N [S−{r}] ≥ 1, and (b) D(S−{r}, r) ≥ 1,
then N [S] ← N [S] + N [S − {r}] × D(S − {r}, r).

The correctness of Algorithm 1 is easy to establish from the total time-ordered
property. The key observation is that since the ARG is fully time ordered, each
way of choosing r generates a different ARG. Intuitively, picking r means we
choose to derive r immediately after the sequences in S − {r} in the ARG. Two
ARGs generated by picking r1 and r2 respectively at the same stage are different
because the time order of r1, r2 is different.

Now we show that Algorithm 1 can be converted to a uniform sampler of
minARGs for data M when M is self-derivable. This is presented in the following.

Algorithm 2

1. First count the total time-ordered minARGs using Algorithm 1.
2. Initialize S, the set of current underived rows, to Rows(M). Do:

2.1 Choose a sequence r from S as the last sequence in S to derive, with
probability N(S−{r})×D(S−{r},r)

N(S) .
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2.2 Choose uniformly at random (and remember) a derivation way (i.e. either
through a mutation or a recombination) for r from total D(S − {r}, r)
possible ways of derivation.

2.3 Let S ← S−{r}. Go to Step 3 if |S| = 1 (i.e. the only remaining sequence
is the root sequence). Otherwise, continue on step 2.1.

3. Construct an ARG (starting from the root) according to the (reverse) order
for each sequence r and the chosen way of deriving r.

It is easy to show that the above algorithm is indeed a uniform sampler of self-
derived minARGs. Here is the intuitive idea behind this method. We construct a
uniformly sampled time-ordered minARG backwards in time. That is, we decide
how to derive the last sequence first. For a given data, we choose a sequence
r as the last sequence to derive in the minARG with probability equal to the
ratio of the number of minARGs with r as the last sequence to the total number
of minARGs. This ensures that the last sequence is picked uniformly. We pick
the rest of sequences uniformly backwards in time. Thus, the generated ARG is
sampled uniformly. We remark that the (exponential) set-up time for the uniform
sampling is the dominant portion of the running time. Note however that once
the counting is performed, sampling of an ARG takes O(n2) time.

A remaining issue is that the above uniform sampling method only works for a
special type of data M , namely the data where M is self-derivable. The method
can be extended to handle general data for moderate-sized datasets as follows.
When the number of needed Steiner sequences and the number of candidate
Steiner sequences are small, we can simply add Steiner sequences to M in order
to make the expanded dataset self-derivable. This and several other ideas that
we have implemented make uniform sampling of minARGs practical in a range
of data we report in Section 6. Recall also that association mapping is often done
on candidate regions or on windows in a genome, and these also fall in the range
of practicality for minARG generation. The efficiency of our minARG sampling
method depends largely on the number of haplotypes (and number of Steiner
sequences needed) of M . Our experience indicates that minARGs can often be
found (within practical amount of time) for data with up to 30 haplotypes when
the data is self-derivable, and up to 20 haplotypes when the number of sites is
small and one or two Steiner sequences are needed.

Remarks. The above uniform sampling can be extended to weighted sampling,
where larger weights are assigned to more likely operations. Weighted sampling
may improve the mapping accuracy. We omit the details here.

4.2 ARG Sampling for Larger Data

The performance of the uniform sampling method degrades with the increase of
the number of haplotypes in M or the number of needed Steiner sequences. To
sample ARGs for larger data, we need heuristic sampling methods.

The efficient ARG sampling method presented here samples a special type
of ARGs, where sequences are derived by a derivation pathway. Constructing a
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single ARG by a derivation pathway has been previously used in [31], and implicit
application of the pathway is also used in [20] for estimating recombination rate.
In this paper, we develop an ARG sampling method based on minimum pathway.
Minimum pathway is a way of deriving a new sequence from a set of derived
sequences using the fewest recombinations. Thus, we also explicitly reduce the
number of recombinations here. We also sample uniformly derivation paths from
minimum pathways. We call the ARGs constructed from pathways as pathway
ARGs, and this sampling method pathway sampling.

The detailed description of the pathway ARG sampling method together with
a uniform sampling method of a derivation path from the minimum pathway for
a fixed derivation order is deferred to the full version of this paper.

5 Phenotype Likelihood

5.1 More on Phenotype Likelihood

An alternative to the the phenotype likelihood (denoted as PL and described in
Section 3) in [35] is that, instead of summing over all possible subsets of mutated
edges, we seek one subset of edges in the marginal tree where disease mutations
occur, which maximizes the probability of the observed phenotypes caused by the
chosen mutations [4]. Due to the lack of a better name, we name the maximized
probability as maximum phenotype likelihood (MPL). More precisely, MPL is
equal to MAXM (Pr(Φ|M, X = x, Tx) ∗Pr(M |X = x, Tx)), where M is a vector
indicating on which tree edges mutations occur. It is easy to demonstrate an
efficient procedure (details omitted) for computing maximum likelihood with
haploid penetrance by dynamic programming (a variant of the peeling algorithm
used in [35]). Initial experiments show, however, mixed results of using MPL as
the scoring scheme. Thus, in this paper, we adopt the original PL scheme as the
scoring scheme.

5.2 Expected Phenotype Likelihood

An important computational problem for a statistical method is assessing statis-
tical significance of the results. For the phenotype likelihood problem, a natural
question to ask is whether the given phenotypes are indeed caused by disease
mutations (i.e. the alternative model) or just some random noise (i.e. the null
model). Imagine that we randomly permute phenotypes of leaves in a given tree
(i.e. without changing the number of cases). A commonly used scheme to assess
statistical significance is to compute a P-value, which is the adopted method
in [35]. In practice, computing the P-value is often through permutation tests.
Permutation tests may not give accurate result and are time-consuming, and
may be the bottleneck of whole genome scan for trait mapping [35].

Besides the P-value, other statistics may provide hints on statistical sig-
nificance, including, for example, the expected phenotype likelihood. It might
be possible to develop another scheme for assessing significance involving the
expected likelihood. Unlike the permutation tests used in [35], our method
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computing the expected phenotype likelihood is an exact method, running in
polynomial-time and fully deterministic. In the following, we show that the ex-
pected value of phenotype likelihood with haploid penetrance can be efficiently
computed. With some small modifications, we can also compute variance of
phenotype likelihood with a polynomial-time algorithm (details omitted). For
simplicity, we assume the marginal tree T is binary. Note that if the given T is
not binary, we can easily transform T to a binary tree T ′ without changing the
phenotype likelihood [4].

We define Lr(s, m, k) to be expected (randomized) phenotype likelihood for
the subtree under node (i.e. sequence) Ks where node Ks has disease mutation
state m and the subtree contains exactly k case haplotypes. Recall that m is
either 0 (Ks is a wild-type) or 1 (Ks is a mutant). The base case when Ks

is a leaf is easy. We have, Lr(s, 0, 0) = 1.0 − PA,0, Lr(s, 1, 0) = 1.0 − PA,1,
Lr(s, 0, 1) = PA,0, and Lr(s, 1, 1) = PA,1.

Now consider an internal node Ks with k case haplotypes under Ks. Denote
the number of leaves (both cases and controls) under Ks as kt,s. Denote the
two children of Ks as Ksl

and Ksr . Denote μl is the probability of at least one
mutation occurs at edge from Ks to Ksl

. Similarly, μr is defined for Ksr . There
are up to O(k) different way of splitting the k cases into two subtrees under Ksl

and Ksr . Suppose in one way of splitting, we have k1 cases in subtree under Ksl

and k − k1 cases in subtree under Ksr . The probability of such split is equal
to the probability of a randomly chosen kt,sl

balls from total kt,s balls (with k
black balls) such that k1 black balls are chosen. This is equal to:

Ps(s, k, k1) =

(
k
k1

)( kt,s−k
kt,sl

−k1

)

(
kt,s

kt,sl

)

Therefore, we have the following recursions (whose proof is omitted) :

Lr(s, 1, k) =
∑

k1

Ps(s, k, k1)Lr(sl, 1, k1)Lr(sr, 1, k − k1)

When d = 0, we need to consider the probability of edge mutation as well.

Lr(s, 0, k) =
∑

k1

Ps(s, k, k1) ∗ ((1 − μl)Lr(sl, 0, k1) + μlLr(sl, 1, k1)) ∗

((1 − μr)Lr(sr, 0, k − k1) + μrLr(sr, 1, k − k1))

Note that the expected phenotype likelihood is precisely Lr(r, 0, nc), where
Kr is the root of the tree and nc is the number of cases. The above recursion can
be easily implemented in a dynamic programming algorithm with O(n3) running
time.

5.3 Diploid Penetrance

Zollner and Pritchard used haploid penetrance in phenotype likelihood compu-
tation. Since we are mostly interested in diploid samples, diploid penetrance,
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rather than haploid penetrance, seems more natural. A diploid sample contains
two haplotypes, and its phenotype is decided by the joint mutation status of
the two haplotypes. In diploid penetrance, we have Pφ,00, which is the prob-
ability of a diploid sample exhibiting phenotype φ if both of its haplotypes
are wild-type haplotypes. Similarly, Pφ,01 (resp. Pφ,11) is the probability of a
diploid sample exhibiting phenotype φ if exactly one (resp. none) of its hap-
lotypes is wild-type haplotype. An important question stated but unanswered
in Zollner and Pritchard [35] is how to efficiently compute phenotype (denoted
Prd(Φ|X = x, Tx)) likelihood using diploid penetrance model.

The main difference between Prd(Φ|X = x, Tx) and Pr(Φ|X = x, Tx) is that
the diploid likelihood considers a diploid individual as a single entity rather than
two haplotypes as in haploid likelihood. Similar to the haploid penetrance case,
we can define the maximum likelihood problem with diploid penetrance. For
easy reference, we name the problem of computing Prd(Φ|X = x, Tx) Diploid-
Phenotype-Likelihood or DPL. We name the problem regarding maximum like-
lihood as Max-Diploid-Phenotype-Likelihood or MDPL. Theorem 1 says that
diploid likelihood problems are NP-hard, whose proof is deferred to the full ver-
sion of this paper.

Theorem 1. The MDPL and DPL problems are both NP-hard.

6 Experimental Results

The described methods are implemented using C++ in an association mapping
program, which we name as Trait Mapping tool with ARG (TMARG). For test-
ing statistical significance of phenotypes, TMARG uses the PL scheme with hap-
loid penetrance as the scoring scheme. Different from LATAG (program devel-
oped in [35]), we take maximum of PL values over penetrance grid points, rather
than taking average. Initial experiences show that taking maximum slightly im-
proves mapping accuracy. However, taking maximum also appears to give less
repeatable mapping results.

TMARG takes a matrix of haplotypes or phase-known genotypes and their
phenotypes (i.e. case/control status) as input, and provides point estimate for
the complex trait loci. TMARG supports both uniform sampling of minARGs
in a sliding window, and pathway ARG sampling for the entire data. TMARG
currently only allows data consisting of binary SNPs. For unphased or noisy
data, we suggest to first preprocess the data using haplotype inference programs,
such as PHASE [32]. To evaluate the effectiveness of our program, we test with
both real biological data and simulated data. We compare TMARG with both
LATAG and MARGARITA (the program developed in [23]). When running
MARGARITA, we sample 50 ARGs and perform 10000 permutations for each
data.

The first data is the Cystic Fibrosis (CF) data [18], which has been analyzed by
many association mapping methods. It contains 23 binary markers over 1.8 Mb.
There are 94 disease haplotypes and 92 control haplotypes. The most common
mutation is located 885 Kb from the left end of the region. We use program
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PHASE 2.1 [32] to impute missing data. The uniform sampling scheme gives the
point estimate at 1096 Kb, while the pathway sampling scheme gives 915 Kb.
For each method, we perform 50 independent runs, while in each run we sample
50 genealogies. The reported results are the consensus point estimates over the
50 runs. The LATAG’s point estimate is at 867 Kb, while MARGARITA’s point
estimate is at 870 Kb.

The second data contains 50 simulated datasets used in Zollner and Pritchard
[35], which we call ZPS data. These data were intended for testing effectiveness
of gene mapping methods regarding complex traits. Each ZPS data contains
30 diploid cases and 30 diploid controls (with known phases). Each data typi-
cally contains between 45 to 65 binary markers. The generation of these data
essentially follows from the disease model in Section 5. Typically 10-25 disease
mutations (including many redundant) are generated for each data. One reason
that these data may not be easy for mapping is that only part (10 to 33 among
60) of case haplotypes do actually carry disease mutations while some (0 to 9
among 60) control haplotypes also carry disease mutations. Table 1 lists our
mapping result using TMARG, comparing to LATAG/MARGARITA.

Our simulation results show that TMARG is comparable with LATAG and
MARGARITA for CF data and slightly outperforms the other two programs in
accuracy for the ZPS data. Note that we only tested MARGARITA with one
settings and its mapping result may change when using different settings (e.g.
more permutations per data). We note that both uniform sampling and path-
way sampling methods are comparable to MARGARITA in speed and are much
faster than LATAG for the data we tested (when same number of samples are
generated). For example, for the CF data, LATAG takes 8 hours for each run,
while our sampling methods take a few minutes. As seen in Table 1, pathway
sampling method appears to be slightly more accurate than the uniform sam-
pling method and sampling more ARGs per data may slightly improve mapping
accuracy. On the other hand, uniform sampling appears to produce more repeat-
able results than the pathway sampling. We remark that more simulation tests
on both real biological and simulated data are needed to further validate our
proposed methods and compare our methods with LATAG/MARGARITA.

Table 1. Mapping for simulated data in Zollner and Pritchard [35]. We test both
Uniform and Pathway sampling schemes. We measure the accuracy by the average
point estimate error, standard error and percentage of data with point estimate within
0.1 cM distance from the true trait loci for the 50 datasets. The units of all the point
estimates are cM. The results of TMARG are consensus from 10 independent runs,
where each run sample 50 or 5000 genealogies.

U P P LATAG MARGARITA

Sample Num 50 50 5000 50 50

Ave. Err. 0.184 0.180 0.166 0.19 0.229

Std. Err. 0.215 0.210 0.197 0.23 0.255

% < 0.1 cM 50% 50% 56% 54% 44%
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Abstract. Currently, large-scale projects are underway to perform whole
genome disease association studies. Such studies involve the genotyping of
hundreds of thousands of SNP markers. One of the main obstacles in per-
forming such studies is that the underlying population substructure could
artificially inflate the p-values, thereby generating a lot of false positives.
Although existing tools cope well with very distinct sub-populations,
closely related population groups remain a major cause of concern.

In this work, we present a graph based approach to detect population
substructure.Our method is based on a distance measure between indi-
viduals. We show analytically that when the allele frequency differences
between the two populations are large enough (in the l2-norm sense), our
algorithm is guaranteed to find the correct classification of individuals
to sub-populations.

We demonstrate the empirical performance of our algorithms on sim-
ulated and real data and compare it against existing methods, namely
the widely used software method STRUCTURE and the recent method
EIGENSTRAT. Our new technique is highly efficient (in particular it is hun-
dreds of times faster than STRUCTURE), and overall it is more accurate than
the two other methods in classifying individuals into sub-populations. We
demonstrate empirically that unlike the other two methods, the accuracy
of our algorithm consistently increases with the number of SNPs geno-
typed. Finally, we demonstrate that the efficiency of our method can be
used to assess the significance of the resulting clusters. Surprisingly, we
find that the different methods find population sub-structure in each of
the homogeneous populations of the HapMap project. We use our signifi-
cance score to demonstrate that these substructures are probably due to
over-fitting.

1 Introduction

Studying the etiology of common complex disease such as cancer, or Parkinson’s
disease, is an important task in the search for better treatments and diagnosis
tools for these diseases. A common practice towards this task is to perform an
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association study, in which the genetic variation of a set of cases (individuals
carrying the disease) and a set of controls (background population) is compared,
and large discrepancies between the two populations indicate an association of
a specific locus with the studied phenotype.

There are different forms of genetic variations that can be studied in the
context of association tests, the most common one is single nucleotide poly-
morphisms (SNPs), which are nucleotides in the genome that are found to be
varying among different individuals. In general, these SNPs are bi-allelic, that is
only two alleles are found in the population. SNPs are commonly used in asso-
ciation studies, as the SNP variation is believed to capture most of the human
genetic variation [4,5,6], and furthermore, recent technology (e.g. Affymetrix or
Illumina) allows the genotyping of hundreds of thousands of SNPs per individ-
ual for a couple of hundred dollars. Thus, whole genome association studies, in
which hundreds of thousands of SNPs are genotyped for thousands of individuals
is becoming a common practice.

The validity of the results of an association study heavily depends on the
statistical analysis performed. One of the main growing concerns is that pop-
ulation substructure may raise spurious discoveries. In association studies, the
discrepancies in the SNP-allele frequencies between the cases and the controls
are believed to imply an association of the SNP with the disease, but if the cases
and controls were collected from two very different populations, this discrepancy
may be explained by the difference between the two populations, and hence the
SNP is not necessarily associated with the disease. Even subtle differences in
the population structures of the cases and the controls may result in spurious
associations. In particular, this problem is becoming more acute when large scale
association studies are performed(see for e.g., [8,15]).

There are many computer programs that try to cope with this problem,
most notably the widely used software STRUCTURE [13] and a recently devel-
oped method EIGENSTRAT [14]. STRUCTURE uses a Markov Chain Monte Carlo
(MCMC) approach to find population substructure of a given population us-
ing DNA variation data. EIGENSTRAT is based on principal component analysis
(PCA). Mathematically, this problem can be seen as a clustering problem, in
which the different clusters correspond to different populations. Such clustering
problems have been studied under a variety of different theoretical frameworks
that share close similarities. For instance the max-cut of a graph shares proper-
ties with the eigenvectors of the corresponding (adjacency or Laplacian) matrix
and therefore Spectral methods or PCA, STRUCTURE and finding max-cuts of
graphs share close mathematical relationships [1,2,3,12].

STRUCTURE has been used extensively in genetic studies (cited more than 700
times), and it has been shown to find population substructure quite accurately in
many examples. Even though STRUCTURE performs very well in terms of accuracy,
it is quite inefficient, and it may take weeks to run over one whole genome data-
set. Furthermore, even though STRUCTURE outputs a likelihood score which assists
in interpreting the results, it is not clear whether this likelihood score can be
used to determine whether there is actually a significant presence of population
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substructure. Finally, as the MCMC is inherently a heuristic approach, it is hard
to know which parameters to set for the algorithm; in particular, as we show in
this paper, there is no uniform set of parameters that performs well for all the
data-sets.

In order to cope with these problems, we introduce a new graph based method
for clustering populations. We concentrate in this paper on the clustering of two
populations, although the method can be easily extended to multiple popula-
tions. Our technique is based on a simple paradigm. We define a distance be-
tween every pair of individuals, and we then search for a maximum cut in the
graph induced by these distances. From that cut, we perform a local search that
maximizes the likelihood of the data, similar to the criterion used in STRUCTURE.
The main advantage of our method is that it is extremely efficient, and at the
same time very accurate. Furthermore, since eventually the algorithm optimizes
the same score function as that of STRUCTURE, it can be viewed as a fast method
that finds a local optimum for this criterion.

It is important to note that the efficiency of our method allows us to measure
the significance of the population substructure by running our algorithm on
thousands of permutations of the data. For instance, we find that both our
method and STRUCTURE find a population substructure in the YRI population,
genotyped by the HapMap project [10]. On the other hand, after the permutation
test, we observe that the p-value is 0.75, indicating that this partition is probably
just an artifact. Since STRUCTURE is too slow to perform such a test, our method
gives a rigorous alternative to the significance estimators of STRUCTURE.

We measured the performance of our method and compared it to STRUCTURE on
the HapMap populations, as well as on simulated data. We find that our method is
at least as accurate as STRUCTURE, and an order of magnitude more efficient. Fur-
thermore, we find that the accuracy of STRUCTURE degrades when many SNPs are
used (thousands), while the accuracy of our method consistently improves when
the number of SNPs increases. We have also compared our method to EIGENSTRAT,
a recent program that corrects for population stratification using the eigenvalues
of the genotype covariance matrix [14]. In [14] they suggest a method based on
principle component analysis, that assigns each individual a vector representing
its ancestral composition. Although their method is not specifically designed for
clustering populations, we have adapted their method in a natural way and com-
pared it to the method developed in this paper. We found that EIGENSTRAT is quite
efficient, but it appears not to perform very well on many of our datasets. We be-
lieve that this is due to the fact that the principal component analysis fails when
the sub-populations structures are not independent.

Technically, our method is based on a distance defined between pairs of indi-
viduals. There are many possible distance measures, and the resulting algorithm
is very sensitive to the choice of the distance measure. Surprisingly, one of the
most natural measures, i.e., the Hamming distance, performs quite poorly. We
therefore use as a starting point the mother-father distance defined in [3]. This
measure satisfies the property that the expected distance between two individ-
uals drawn from the same sub-population is zero while the distance between
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individuals from two different sub-populations is positive. Furthermore, in [3] it
is shown that the max-cut induces the correct partitioning asymptotically, at
least when the sub-population sizes are equal. Our final distance uses a more
complicated procedure which takes into account the genotypes of the whole pop-
ulation in order to determine the distance between a pair of individuals. We show
empirically that this procedure is advantageous and that the resulting distance
better represents the population structure. This distance measure may be of
independent interest, as it may be used in other population based applications.

2 Problem Formulation

We consider the setting in which a set of n individuals are genotyped over m
SNPs. The problem of population stratification focuses on the assignment of each
of the individuals to a population cluster. In practice, an individual could belong
to more than one cluster, (for instance when the individual’s ancestors come
from two or more different populations). In this paper, however we concentrate
on the simpler case, in which each individual is assumed to belong to exactly one
population. Furthermore, we assume that the number of populations K is known.
We will observe later that this assumption is not too restrictive, as one can test
for the validity of the solution. Our goal is to cluster the set of individuals into
K clusters, based on their genotype information.

In order to define the problem mathematically, we first introduce a random
generative model for the individuals’ genotypes. Each genotype is represented
by a vector g ∈ {0, 1, 2}m, where gj represents the minor allele in SNP j, that
is, gj = 1 for heterozygous, and it is 0 and 2 for the homozygous major or minor
alleles respectively. A population is characterized by the minor allele frequency
in each of the SNPs. Thus, a population i is defined by an m-dimensional vector
pi = (pi

1, . . . , p
i
m), where pi

j represents the minor allele frequency of popula-
tion i in position j. The random generative model assumes that all individuals
are sampled independently, and that for each individual g, the different SNP
values are sampled independently, where gj is sampled from the distribution
{(pi

j)
2, 2pi

j(1−pi
j), (1−pi

j)
2} (e.g., the probability that gj = 1 is 2pi

j(1−pi
j)). This

model has been used by previous approaches, and in particular by STRUCTURE.
The assumption that the different SNPs are independent can be justified if the
SNPs are physically distant from each other (and thus, they are in linkage equi-
librium). We define the distance between two sub-populations i, i′ as:

d(i, i′) =
√∑

j

(pi
j − pi′

j )2

Formally, we assume that we get as an input an n×m genotype matrix A, where
the rows R(A) denote diploid individuals and the columns C(A) represent SNP
sites. Each entry in A is in {0, 1, 2}. We search for a classification θ : R(A) →
{1, . . . , K}, that assigns every individual to a particular sub-population. Let θ̂ be
the correct classification. Our objective is to minimize the number of errors made
by the algorithm, that is, we would like to minimize |{r ∈ R(A) | θ(r) �= θ̂(r)}|.
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2.1 The Graph Based Approach

It is convenient to think of the above problem as a clustering problem in a
graph. In this case, we construct a complete graph G = (V, E), where vertex set
V corresponds to the set of individuals, and edge set E is the set of all pairs of
individuals. We assign a distance for each edge, which will intuitively represent
the genomic distance between the two individuals. Then, the main idea of the
algorithm is to find a max-K-cut in the resulting graph. This makes sense since
G captures the fact that the genomic distance between two individuals from
the same sub-population is small, while the distance between two individuals
from different sub-populations may be large. Clearly, the resulting algorithm is
sensitive to the choice of the distance measure.

The most natural distance measure is the Hamming distance, which counts
the number of differences between the two vectors. However, we observe that in
practice the Hamming distance does not provide very good results1. We there-
fore follow [3], and start from the so called Mother-Father distance (MF). The
MF-distance satisfies the property that the expected distance between two indi-
viduals from the same population group is 0 and the expected distance between
two individuals of different populations is positive. Actually, it is not hard to see
that the MF-distance is the only pair-wise distance measure that satisfies this
property (up to a constant factor).

Formally, for any two individuals r1, r2, we define δj(r1, r2), the MF-distance
at SNP j as follows. We set δj(r1, r2) = −1 if r1j = r2j = 1, δj(r1, r2) = 2
if r1j = 0, r2j = 2 or r1j = 2, r2j = 0, and 0 otherwise. We then define the
MF-distance δ(r1, r2) to be the sum of the MF-distances over all SNPs. That is,
δ(r1, r2) =

∑
j δj(r1, r2).

We can now compute the expected distance between two individuals r1, r2
from populations i and i′ E[δ(r1, r2)]:

=
∑

j

E[δj(r1, r2)]

=
∑

j

2(pi
j)

2(1 − pi′

j )2 + 2(pi′

j )2(1 − pi
j)

2 − 2pi
j(1 − pi

j)(2pi′

j (1 − pi′

j ))

= 2
∑

j

(pi
j(1 − pi′

j ) − pi′

j (1 − pi
j))

2 = 2
∑

j

(pi
j − pi′

j )2 = 2d(i, i′)2

Consequently, if i �= i′, then the expected MF-distance between two individuals
of different populations is positive. On the other hand, if i = i′, then d(i, i′) = 0,
and the expected MF-distance between two individuals of the same population
is zero. It is further shown in [3], that if the distance between two different
sub-populations d(i, i′) >>

√
1.5(m log n)0.25, then with high probability, all the

pair-wise distances within a sub-population are at most d(i, i′)2, while pair-wise
distances across the two sub-populations are at least d(i, i′)2. In that case, the

1 For example, when p1
j = 2/3, p2

j = 1, the expected distance within population 1 is
larger than the expected distance across.
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max-K-cut algorithm may be reduced to a connected component algorithm.
Furthermore, it can be shown that even with much smaller separation of the two
populations, the max-cut on the graph with MF-distances produces the correct
cut [3].

2.2 Triplets-Based Distance

Even though the MF-distance has some very nice properties, our empirical stud-
ies (see Appendix A) show that the max-cut solution obtained from this distance
is sometimes biased towards an unbalanced partition. Intuitively, although the
expected value of the MF-distance is monotone with the distance between the
populations, unbalanced cuts may be chosen by the algorithm by pure chance.
It is therefore essential to find a distance measure that has smaller variance than
the MF-distance.

We build on top of MF-distances to obtain a more sensitive distance measure,
which we call the triplet distance. The main idea of the triplet measure is to
utilize information from all genotypes to determine the distance between a pair
of individuals.

We will now formally define the triplet distance for a pair of individuals r1 and
r2. The triplet distance depends on two parameters a, b that will be fixed later.
For every third individual in the population, r, we consider the unordered set
{r1, r2, r}, which we refer to as a triplet. For each such triplet, we define two indi-
cator variables Xr and Yr such that Xr = 1 if δ(r1, r2) ≥ max(δ(r1, r), δ(r2, r)),
and Xr = 0 otherwise. Similarly, Yr = 1 if δ(r1, r2) ≤ min(δ(r1, r), δ(r2, r)),
and it is zero otherwise. We define the triplet-based distance as da,b(r1, r2) =∑

r(aXr + bYr). In other words, to compute the triplet distance of r1 and r2, we
consider every third individual r and if δ(r1, r2) is the largest among the three
MF-distances, then we add a and if it is the smallest, then we add b.

We now find the expected triplet distance da,b(r1, r2) for a pair of individuals
r1, r2. We will implicitly assume that all MF-distances are different (this is true
if the number of SNPs is sufficiently large). For a triplet (r1, r2, r), we consider
the following two cases. First, assume that all three individuals are from the
same population. Then by symmetry, Pr(Xr = 1) = Pr(Yr = 1) = 1

3 . Otherwise,
if r1, r2 are from population i, and r is from another sub-population i′, we will
bound the probability Pr[δ(r1, r2) ≥ δ(r1, r)]. Intuitively, this probability should
be small if the distance d(i, i′) is large enough. Formally, we know that

E[δ(r1, r2) − δ(r1, r)] = −2d(i, i′)2.

Furthermore, δ(r1, r2) − δ(r1, r) is the sum of m random variables that lie in the
interval [−2, 2]. This is because, if δ(r1, r2) = −1 then δ(r1, r) �= 2 and vice-versa.
Therefore, we could use the following tail bound, known as Hoeffding bound[9]:

Theorem 1. Let X1, . . . , Xn be n independent random variables, and let a, b
be such that for every i, a ≤ Xi ≤ b. Denote X = X1 + . . . + Xn. Then,

Pr(X − E[X ] > α) ≤ exp
(

−2α2

n(b − a)2

)

.
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Thus, using the Hoeffding bound, we get Pr[δ(r1, r2) − δ(r1, r) > 0]

= Pr[δ(r1, r2) − δ(r1, r) + 2d(i, i′)2 > 2d(i, i′)2] ≤ exp
(

−d(i, i′)4

2m

)

If d(i, i′) = (6tm logn)0.25 for t > 1, we get by the union bound that with
very high probability all triplets satisfy the property that edge distance within
a sub-population is lesser than any edge distance across two populations. The
probability that this event does not happen is smaller than 1

n3t−2 . We now use
these observations to compute the expected triplet distances. Assume that r1, r2
are from sub-population i, and that Pi is the frequency (prior) of this sub-
population in the entire population. Then,

E[da,b(r1, r2)] = E[a
∑

r

Xr + b
∑

r

Yr]

≤ n

(

a
Pi

3
+ b(1 − 2Pi

3
)
)

+
|a| + |b|
n3t−2

≈ n

(

a
Pi

3
+ b(1 − 2Pi

3
)
)

Similarly, for r1, r2 from different sub-populations i, i′, it is easy to see that

E[da,b(r1, r2)] ≥ an
2 − |a|+|b|

n3t−2 ≈ an
2

If we know the frequency of the sub-populations in the entire population, then
we can take P = maxi Pi. For instance, if we set a = (2/P ) − 2, b = −1 we get
that the expected distance between individuals from two different populations is
positive, while the expected distance between individuals of the same population
is non-positive. For a balanced cut, selecting a = 4, b = −1, gives positive ex-
pected distance between individuals of different populations and zero otherwise.
In practice, even though we do not know the correct value of P , we try different
values of P to determine a, b, each giving different partitions. We then pick the
partition with the largest likelihood score, where the likelihood score is similar
to the one used for STRUCTURE, as we now describe.

Recall that A is the input genotype matrix with R(A) being the genotypes
of the n input individuals, θ : R(A) 	→ {1, . . . , K} is the classification of indi-
viduals to sub-populations and pi is an m-dimensional vector of the MAF of
sub-population i. Given θ, the maximum likelihood estimate of pi is obtained
by simply counting the allele frequencies in each of the sub-populations defined
by the partition. The posterior probability is given by

Pr[θ, pi|A] ∝ Pr[θ] Pr[pi] Pr[A|θ, pi]

We set the priors for θ and pi to be fixed and uniform, and thus maximizing the
posterior is equivalent to maximizing the likelihood L(A|θ, pi) = Pr[A|θ, pi].
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Algorithm (GRAPH-TRIPLETS). We can now describe the whole algorithm. The
algorithm begins by computing the MF-distance for each pair of individuals.
Then, for every pair of individuals r1, r2, we compute X(r1, r2) =

∑
r Xr, and

Y (r1, r2) =
∑

r Yr. The algorithm then proceeds in iterations. In each iteration
we pick a value for P , and we search for a partition that maximizes the likelihood
score, based on the prior information that one of the sub-populations is of size P .
We take values of P ranging from 0.5 through 0.9 in 0.1 increments. Each such
value determines the values of a and b. The triplet distances are then computed
for each pair of individuals, by setting da,b(r1, r2) = ((2/P ) − 2)X(r1, r2) −
Y (r1, r2). These distances induce a complete graph G = (V, E), where the
vertices represent individuals and the edges are weighted by the triplet distances.
We are then interested in finding the maximum K-cut.

Unfortunately, finding the max-K-cut of the graph is an NP-hard problem
even when K = 2 [7]. We therefore use the Kernighan-Lin heuristic [9], which
is a hill-climbing method to find the optimal cut. The algorithm for the case
when K = 2 is presented in Figure 1. The algorithm randomly partitions the
vertices V (G) into two disjoint sets V1 and V2. The algorithm then proceeds in
rounds each of which involves performing |V (G)| iterations. At each iteration we
move a vertex u from one side of the cut to the other. The vertex u is chosen
so that the resulting cut is maximized. Unlike standard local search techniques,
the algorithm swaps u even if this results in the reduction of the cut-size. Once
a vertex u is swapped, it cannot be swapped again until the next round. At the
end of a round all vertices have been swapped, and the best partition in that
round is chosen for the next round. We repeat until the cuts in the beginning
and the end of a round are identical, and thus no improvement can be achieved.
In Figure 1, set Vx(Vx′) denotes the vertex set of V1, V2 that currently contains
x (does not contain x) and cut(V1, V2) denotes the cost of the cut.

Using Kernighan-Lin, for each setting of a, b we find a max-K-cut and we select
the one that maximizes L(A|θ, pi). Finally, we perform a greedy local search by
moving a vertex from one side to another, if it improves the likelihood. This final
step, typically improves the accuracy by a little in practice.

3 Results

To evaluate the performance of our method, we compared GRAPH-TRIPLETS to
two state of the art methods that deal with population stratification, namely
STRUCTURE and EIGENSTRAT, which are described below.

STRUCTURE [13] is a well established package that uses Markov Chain Monte
Carlo method (MCMC) to heuristically maximize the posterior probability. Struc-
ture can be seeded with a number of different parameters. We used K = 2, to
denote that the program should look for two sub-populations. By default, the pro-
gram assumes that the allele frequencies of the two populations are independent.
For closely related sub-populations, however, the software allows for a mode in
which the frequencies are assumed to be correlated. We ran the program on both
modes, with the parameter turned off and on. The default number of MCMC and
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kernighanLin(graph G)

1. randomly partition V (G) into V1, V2

2. α ← 1
3. while α = 1 do (* rounds *)

(a) α ← 0, χ ← V1 ∪ V2

(b) while |χ| > 0 do (* iterations *)
i. u ← argmaxx∈χcut(Vx \ {x}, Vx′ ∪ {x})
ii. χ ← χ \ {u}
iii. if u ∈ V1 then V1 ← V1 \ {u}, V2 ← V2 ∪ {u}
iv. else V1 ← V1 ∪ {u}, V2 ← V2 \ {u}
v. if cut(V1, V2) > cut(V ∗

1 , V ∗
2 ) then V ∗

1 ← V1, V
∗
2 ← V2,

α ← 1
(c) V1 ← V ∗

1 , V2 ← V ∗
2

Fig. 1. Kernighan-Lin heuristic to find max-cut of graph G

Burnin iterations is 2000 each. We varied this number to analyze the trade-off
between run-time and accuracy. We used the default values for the rest of the
parameters.

We note that STRUCTURE is a software that does much more than just cluster-
ing individuals. Among other things, it can cope with admixed populations, and
it can incorporate linkage disequilibrium into its model. We have not compared
our method to these modes of STRUCTURE, as it is beyond the scope of this paper,
and our algorithm is not optimized for such tasks at this point.

EIGENSTRAT [14] is a relatively new software tool, which corrects population
sub-structure by the spectral properties of the covariance genotype matrix. In
a nutshell, EIGENSTRAT takes A an m × n input genotype matrix, where rows
are SNPs and columns are individuals and normalizes each entry of A by sub-
tracting the row mean (minor allele frequency of the SNP) and dividing by the
row’s standard deviation. It then takes the largest eigenvectors of the covariance
n × n matrix Ψ , and uses those to correct for population sub-structure. Even
though EIGENSTRAT is not explicitly described as a genetic clustering method,
we adapt their algorithm in a natural way, resulting in a clustering algorithm in
which the clusters are determined by using the sign of the entries of the high-
est eigenvector of Ψ . We implemented this clustering algorithm in MatLab and
compared it to our method. We refer to our implementation as Spectral in the
results presented.

Datasets. For the evaluation, we used datasets from two different sources. First,
we used simulated data generated using the following model. Each sub-population
i is represented by an m-dimensional vector of allele frequencies pi, and an indi-
vidual of the population is sampled by randomly and independently picking allele
counts according to the allele frequency distributions of the sub-population. For
simulations, we assumed that all SNPs within a sub-population had the same al-
lele frequency, i.e., for any i, pi

j = pi
j′ .
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Fig. 2. Comparison of accuracy on simulated data. GRAPH-TRIPLETS is consistent in its
accuracy and converges to the correct partition with increase in SNPs or increase in
distance. On (a) MAF of sub-populations 1 and 2 were 0.1 and 0.13 respectively. On
(b) the number of SNPs was fixed to 1000 and MAF of sub-population 1 was fixed at
0.1. We used an average of three randomly generated data sets to obtain every point.
Error bars indicate highest and lowest values obtained.

We have also used the publicly available data from the International HapMap
consortium [10]. This data-set consists of four population groups: Utah residents
with ancestry from northern and western Europe(CEU), Yoruba in Ibadan, Nige-
ria (YRI), Han Chinese in Beijing, China (CHB) and Japanese in Tokyo, Japan
(JPT) with 90, 90, 45 and 44 individuals respectively. The Central Europeans
and Yoruba Africans consisted of thirty trios each, and therefore in order to avoid
these dependencies, we used the 60 parents from each of the two populations,
ignoring the 30 children. To obtain a test set where the SNPs are independent,
we sampled m SNPs uniformly at random from chromosome 10. We evaluated
the programs on each of the six pairs of populations, with different numbers of
SNPs, ranging from 1000 to 8000.

Evaluation Measures. There are many possible ways to evaluate the performance
of the algorithms. We chose to let each of the program separate the genotypes
of two populations (say Africans and Chinese in the HapMap data) into two
clusters, and the error rate of such an experiment would be the number of indi-
viduals misclassified (for instance, the number of Africans classified as Chinese).
We have also compared the running-time of the methods. In summary, our ex-
periments show that the graph-based method is significantly faster while being
at least as accurate as existing methods.

Simulated Data. On simulated data, we studied closely related populations. We
fixed the minor allele frequency of one population to be 0.1 for each of its SNPs,
while for the other population the minor allele frequency varied from 0.12 to 0.19.
On all the data presented, STRUCTURE running on default parameters fails to find
two sub-populations, i.e., it returns solution with all individuals in one cluster. We
therefore only report STRUCTURE running for 2000 iterations with the correlation
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Fig. 3. Comparison of run-times on simulated and real data. GRAPH-TRIPLETS is hun-
dreds of times faster than STRUCTURE.
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Fig. 4. Comparison of accuracy on HapMap Chinese/Japanese. GRAPH-TRIPLETS is
accurate and converges to the correct partition with increase in SNPs. It is unclear
what parameters of STRUCTURE to use. We used the average of four randomly drawn
data sets to obtain every point. Error bars indicate the highest and lowest values
obtained.

mode turned on. Figure 3(a) shows that GRAPH-TRIPLETS is an order of magni-
tude faster than STRUCTURE. Figure 2 shows that it makes substantially less errors
overall than STRUCTURE and the spectral clustering which is based on EIGENSTRAT.
It is conceivable that STRUCTURE would find better solutions if it uses even more
time, although this seems rather prohibitive. We note that the performance of
STRUCTURE seems not to be monotonic with the number of SNPs used.

HapMap. For the HapMap datasets, we considered all six pairs of populations.
For most pairs, all methods worked perfectly (no errors were made) with as few
as 200 SNPs. The only hard instance was the Chinese-Japanese pair. For this
pair, none of the methods could give a perfect clustering prediction even when
8000 SNPs were used. As can be seen from Figure 4, the spectral method and
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GRAPH-TRIPLETS seem to produce lesser errors than the classification returned
by STRUCTURE. Furthermore, we used the two different modes of STRUCTURE
(with or without correlations), and the results were inconclusive regarding which
one works better on this dataset, as when small number of SNPs were used
(1000, 2000 or 4000), the correlation mode seemed to perform better. When
more SNPs were used (8000 SNPs, 2000 or 4000 iters), the ‘no correlation’ mode
of STRUCTURE was better.

As before, Figure 3(b) demonstrates that GRAPH-TRIPLETS is much more ef-
ficient than STRUCTURE. Specifically, the run time for GRAPH-TRIPLETS ≈ 300
times faster for 1000 SNPs and ≈ 1000 times faster for 8000 SNPs.

4 Significance of Clusters

An obvious and important question to consider is whether the clusters ob-
tained from the methods are significant. In practice, we could run STRUCTUREor
GRAPH-TRIPLETS with K, the number of sub-populations set to 2. When the
software returns a solution, with individuals divided into two populations, there
is no guarantee on whether the input set of taxa actually even contains two sub-
populations. To test the significance of the clusters, one could perform the sta-
tistical tests described by Pritchard et al. [13], which as the authors themselves
point out either uses dubious assumptions or does not work for large number
of SNPs in practice. Alternatively, we could examine the change in the likeli-
hood function or use information based evaluation such as minimum description
length to decide on whether there is truly two sub-populations or not.

A simple and direct approach is to permute the alleles in each site independently
such that the input no longer has sub-structure. We can then re-run the algorithm
on the new input. The p-value is simply the fraction of times, the permuted input
had solution larger (or more likely) than that of the original input.

However, such tests can only be performed if the algorithm to find clusters
is very efficient. Here, we simply considered a randomly drawn data set with
8000 SNPs from each of the HapMap populations. We ran structure (default
parameters) and triplets with K = 2. We report the number of errors made (size
of the smaller set) along with the p-value which can be efficiently computed
using the triplets method. We believe that the computation of this p-value is a
great benefit in practice that our new technique can offer. The results for 1000
permutations is presented in Table 1.

Table 1. Triplets can be used to compute p-values directly

Errors

structure Triplets Triplets p-value

Central Europeans, CEU 21 2 0.01

Yoruba Africans, YRI 26 20 0.75

Chinese, CHB 17 16 0.267

Japanese, JPT 18 12 0.929
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5 Conclusion

The problem of population stratification is an increasing concern in the context
of disease association studies. In particular, its influence on whole genome as-
sociation studies (for e.g. [8,15]) are severe. Even though existing methods for
clustering individuals based on their SNPs provide relatively accurate predic-
tions, there is no rigorous theory that ensures the convergence of these methods
to the correct solution. Furthermore, there is no study that compares these
methods on a variety of datasets, both real and simulated. Our paper has been
motivated by these two concerns.

In this paper, we suggest a graph based method for detecting population
stratification. The distance measure used in our method builds on the Mother-
Father distance that was suggested in [3], where it has been rigorously and
analytically shown that if the sample size is large enough, the measure will
represent the correct distance between individuals, and therefore our algorithms
will converge to the true population clusters. We believe that this theoretical
foundation for our algorithm is an important advantage that proves itself in
practice. In particular, we show that our algorithm is consistently at least as
accurate as STRUCTURE and EIGENSTRAT.

One of the questions we raised in this paper is the validity of the population
substructure found by the clustering algorithm. We have demonstrated that the
different methods will tend to cluster the individuals in two clusters, even if
in reality there is only one population. In order to assess the significance of
these partitions, we suggest a permutation test, which seems to give the correct
significance scores on the HapMap populations. This permutation test can only
be carried out if the clustering methods are highly efficient. As our method runs
in seconds over thousands of SNPs and hundreds of individuals, this was feasible.

We note that our paper focuses on the clustering of two populations while
STRUCTURE and EIGENSTRAT can do much more than that. In particular, they
can deal with admixed populations, correlated populations, and linkage disequi-
librium. We hope that a combination of the existing methods such as STRUCTURE
and EIGENSTRAT, together with our graph based approach may lead to improved
tools for these cases as well.
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A Appendix: Empirical Comparison of MF with Triplets

To motivate our choice of triplet based distance instead of MF-distance, we
show empirically that the triplet distance gives a better separation of the two
populations into two clusters. In order to do so, we randomly generate two sub-
populations according to the following model. We generate the two populations,
such that one population has minor allele p1 for all the SNPs, and the other
population has minor allele p2 for all the SNPs. Furthermore, each of these sub-
populations has the same number of individuals. We measure the cut distance of
the correct cut using the MF-distance and the triplet distance. Let dmf and dt be
the correct cut weight for mother-father and triplets. We then find 10, 000 ran-
dom balanced cuts of the graph and measure the cut weights. We then measure
the fraction of times the random cut cost was larger than dmf or dt respectively.
We call this measure the balanced p-value. We also measured the max-cut for
10, 000 randomly generated unbalanced cuts, where 0.25-fraction of the vertices
were on one side. We call this measure the unbalanced p-value.

The results of the various simulation tests are shown in Figure 5. Figure 5(a),
shows that the balanced p-values are similar for triplets based distance and for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



An Efficient and Accurate Graph-Based Approach 517

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.105  0.11  0.115  0.12  0.125  0.13  0.135  0.14  0.145  0.15

p-
va

lu
e

MAF of sub-population 2

Balanced cut p-value Vs Separation of sub-populations

MF
Triplets

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.12  0.14  0.16  0.18  0.2

p-
va

lu
e

MAF of sub-population 2

Unbalanced cut p-value Vs Separation of sub-populations

MF
Triplets

Fig. 5. Comparison of MF and Triplet distance measures. Figure (a) shows that when
only balanced cuts are considered, the distance measures provide comparable p-values.
Figure (b) shows that more often unbalanced cuts in the MF distance contains cost
larger than that of the correct cut. In both figures MAF of sub-population 1 was fixed
to 0.1. For Figure (a) we used 100 individuals in each population and for Figure (b)
we used 10 individuals in each population. We used parameters a = 2, b = −1 for the
triplets.

the MF-distance, and that the balanced p-value of both methods quickly go
down to zero. More importantly, Figure 5(b) shows that triplets clearly has a
lower p-value in the case of unbalanced cuts. While MF-distance contains several
unbalanced cuts of high weight, on the triplets, the correct cut has cost typically
higher than all other cuts. This provides an evidence that the triplet distance is
advantageous.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 518–532, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

RB-Finder: An Improved Distance-Based Sliding 
Window Method to Detect Recombination Breakpoints 

Wah-Heng Lee1,2 and Wing-Kin Sung1,2 

1 Genome Institute of Singapore 
2 National University of Singapore 

leewhc@gis.a-star.edu.sg, ksung@comp.nus.edu.sg 

Abstract. Recombination detection is important before inferring phylogenetic 
relationships. This will eventually lead to a better understanding of pathogen 
evolution, more accurate genotyping and advancements in vaccine development. 
In this paper, we introduce RB-Finder, a fast and accurate distance-based window 
method to detect recombination in a multiple sequence alignment. Our method 
introduces a more informative distance measure and a novel weighting strategy to 
reduce the window size sensitivity problem and hence improve the accuracy of 
breakpoint detection. Furthermore, our method is faster than existing phylogeny-
based methods since we do not need to construct and compare complex 
phylogenetic trees. When compared with the current best method Pruned-PDM, 
we are about a few hundred times more efficient. Experimental evaluation of RB-
Finder using synthetic and biological datasets showed that our method is more 
accurate than existing phylogeny-based methods. We also show how our method 
has potential use in other related applications such as genotyping. 

Keywords: Recombination detection, sliding window, phylogeny, genotyping. 

1   Introduction 

Recombination is the exchange of genetic material between two genomes. It violates 
the assumption in molecular phylogenetics that there is only one evolutionary history 
in a sequence data set. This exchange of DNA subsequences may cause a change in 
phylogenetic relationships in the affected region. Conflicting phylogenetic information 
from different regions of the alignment will eventually lead to the reconstruction of 
some lower quality phylogenetic tree [1]. Thus, it is important to detect recombination 
before inferring phylogenetic relationships.  

A breakpoint is defined as the location where a recombination event occurs in a 
sequence. Generally, the detection of breakpoints depends on the strength of a recombi- 
nation event, which is affected by factors such as the mutation rate and the time at which 
the recombination event took place [2]. The unpredictable conditions at which recombi- 
nation events occur make the task of finding breakpoints difficult. For recombination 
events which make little changes to the sequence, the detection of breakpoints may even 
be impossible [3]. This underlines the importance of developing sensitive and accurate 
methods for detecting recombination.  
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There are many approaches to detect recombination within alignments. See Posada 
[1] for a comparative study on the performances of 14 different recombination 
detection methods. We focus on a particular class of methods which uses a sliding 
window to detect recombination. Sliding window approaches are preferred over those 
that use a global reference tree because they can localize breakpoints more accurately 
and thus detect weak recombination events in the presence of strong recombination 
events [4]. Given a length-N alignment of a set of sequences, window-based methods 
make use of a sliding window to detect recombination. A length-w 'sliding window' is 
defined as a window enclosing the alignments from positions i to i+w.  Suppose b is a 
breakpoint, we would expect the immediate left and right neighboring windows  
[b-w…b-1], [b…b+w] of b to enclose alignments that are significantly different. 
Hence, to find the exact positions of the breakpoints (if any), the sliding window 
approach performs an exhaustive search by sliding a length-w window across the 
alignment and for every possible position i (w ≤ i ≤ N – w), it compares the 
alignments enclosed by neighboring windows [i-w…i-1] and [i…i+w]. Typically, 
recombination is detected by comparing and noting significant differences in distance 
measures (distance-based) or in phylogenetic trees’ topologies (phylogeny-based) 
computed for the alignments in [i-w…i-1] and [i…i+w]. 

Distance-based window methods such as PhyPro [2] and DSS [5] are fast and fairly 
accurate. PhyPro computes, for every sliding window, a test statistic known as the 
minimum distance vector correlation using only non-conserved sites of an alignment. 
Then, they estimated the p-value for the null hypothesis of no recombination by 
permuting the alignment 1000 times and counting the number of times the original 
minimum distance vector correlation was smaller than the minimum distance vector 
correlation for each permutation. In DSS, a length-500 window is slid along an 
alignment of DNA sequences. For each window, two distance matrices (one for each 
half of the window) are calculated according to some Markov model of nucleotide 
substitution. A sum-of-squares statistic is then computed for each distance matrix. 
Since each distance matrix encodes the phylogenetic relationships in its corresponding 
window, the presence of recombination will result in a big difference in the two sum-
of-squares statistics for the two matrices. Unfortunately, distance-based methods tend 
to suffer from information loss when estimating recombination. Phylogenetic 
information is lost when only pair-wise distance comparisons are made using 
conventional distance metrics that measures only the global homology between two 
sequences.  

On the other hand, phylogeny-based window methods such as PDM [6], Pruned-
PDM [7] and RECOMP [8] try to generate the most likely phylogenetic trees for the 
alignments enclosed in neighboring windows and compare them to estimate 
recombination more accurately. The PDM and Pruned-PDM method focused on 
estimating the topology changes based on a likelihood score. To reduce the 
uncertainty of tree estimation from short sequence alignments enclosed by the sliding 
window, they used a distribution of trees instead of a single tree as reference. 
Although accurate, their methods are very slow due to the need for Markov chain 
Monte Carlo simulations. RECOMP was then developed to provide a faster means of 
detecting recombination. Using a sliding window, a set of trees is generated for each 
window based on a maximum parsimony heuristic. Recombination is determined by 
comparing four different measures such as the Robinson-Foulds distance of sets of 
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trees in adjacent windows. An accuracy comparable to Pruned-PDM is claimed but 
the interpretation of the four measures as an indication of recombination is sometimes 
not straight-forward and may even be ambiguous at times. 

Regardless of distance-based or phylogeny-based methods, a sliding window 
approach has a major concern: the selection of window length. In previous works, the 
window length is usually arbitrary chosen within the range of 200-500. However, 
window length affects the sensitivity and accuracy of window-based methods to 
detect recombination. Recent works have shown that their results are most accurate 
when the given window length is approximately the recombinant subsequence length 
[5, 7]. If the length of the recombinant is not known in advance, an algorithm using 
different window lengths may produce vastly different analysis results on the same 
dataset. Furthermore, there may be problems in detecting recombinant regions shorter 
than the given window length due to the noise caused by the original sequence on 
either side of the recombinant subsequence included in the window (Fig. 1(c)(d)). 

(a) (c)

(b)
(d)

i

S1

S2

S’2

[i-w…i-1] [i…i+w]

S1

S2

S’2

[i-w…i-1] [i…i+w]

i

Alignment

noise

 

Fig. 1. Window length sensitivity problem when window length w is longer than the 
recombinant subsequence (S’2) length. (a) and (b) show the introduction of alignment noise into 
the computation of any distance measure or phylogenetic tree of the alignment in [i…i+w]. (c) 
shows the result of running Pruned-PDM on a synthetic dataset SD3 with breakpoints at site 
1000, 2000, 3000 and 4000 using a length-500 window [7]. (d) shows the result of running 
Pruned-PDM on the same dataset using a length-600 window. Here, the breakpoints are 
inaccurately detected at sites 700, 2600, 3200 and 4200. 

This paper presents RB-Finder, a distance-based window method for finding 
recombination breakpoints. By avoiding the computationally expensive and complicated 
comparisons of phylogenetic trees of phylogeny-based methods, our algorithm is faster 
and thus more scalable to analyze big datasets. Moreover, we minimize information loss 
experienced by conventional distance-based methods by introducing a new distance 
metric that takes into consideration important details such as the distribution of 
mismatches, number of consecutive matches and the locations of common subsequences 
in an alignment. To improve the accuracy when using non-optimal window lengths, we 
propose using a weighting strategy that assigns different weights to positions enclosed 
in a window with respect to a putative breakpoint. The idea is to lessen the contribution 
of less important regions of a window when computing a distance measure for the 
alignment. Subsequently, we applied our weighting strategy to our new distance metric  
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and describe a fast, simple and intuitive algorithm to detect recombination. Experiment 
results using simulated and real datasets show that the accuracy of RB-Finder is better 
than that of most existing methods. In addition, we present an application of RB-Finder 
in genotyping by analyzing a set of 13 HIV recombinant sequences. In our analysis, we 
detected almost all reported breakpoints of the 13 sequences and made several novel 
findings regarding their genotypes. Specifically, we found irregularities in the 
genotyping of 6 sequences which may trigger new considerations when assigning 
genotypes. Refer to http://www.comp.nus.edu.sg/~bioinfo/RBFinder/Supp.htm for 
supplementary. 

2   Method 

There are two sources of inaccuracy when using distance-based window methods to 
detect recombination. Firstly, the use of conventional distance metrics, such as 
hamming-distance and edit-distance that measure overall homology results in 
phylogenetic information loss. Secondly, recombination detection is too sensitive on 
the choice of window length. To improve the information content of conventional 
distance measures and to reduce the impact of different window lengths on 
recombination detection, we employed three techniques on which our proposed 
recombination detection algorithm RB-Finder is based on:  

 
1. Instead of using base-by-base comparison, the similarity of an alignment is 

computed using the number of shared (k,m)-mers, that is, length-k alignments with 
at most m mismatches. This measure takes into account the different mutation rates 
along the alignment by varying its mismatch threshold m automatically. This 
avoids the effect of random point mutations which causes inaccuracy in distance 
measures using base-by-base comparison. 

2. Given a window instance, we use a weighting strategy that assigns heavier weights 
to positions nearer the putative breakpoint and lighter weights to positions further 
away from the putative breakpoint. This reduces the effect of alignment noise as 
seen in Fig. 1(a)(b) when computing the similarity score. 

3. Use contiguous chains of (k,m)-mers to form Contigs. Contigs have even 
distribution of mismatches and thus, are better estimations of long common 
subsequences in an alignment. 
 
We describe the above techniques in detail in Sections 2.1, 2.2 and 2.3. Using the 

three techniques, we describe a recombination detection score to indicate the presence 
of breakpoints and formally present the algorithm RB-Finder in Section 2.4. 

2.1   Using (k,m)-Mers as the Basic Unit of Similarity Measurement 

Conventional distance measures such as hamming-distance and edit-distance that 
perform base-by-base comparisons are susceptible to noise caused by random 
mutations. Furthermore, they compute only overall sequence homology and omit 
important details about the distribution of mismatches and the distribution of 
contiguous matches that may provide further indication of recombination. A possible 
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solution is to use shared (k,m)-mers as the basic unit of similarity measurement in 
place of base-by-base comparisons. 

 
Definition 1. Let A be a length-n alignment of two sequences S1, S2. Let A[x… x+k-1] 
be a length-k sub-alignment from position x to position (x + k-1) of A. A[x…x+k-1] is a 
shared (k,m)-mer iff A[x…x+k-1] has less than m mismatches. This is shown in Fig. 2. 

ACGGTGAGTGCATGCATGCATGCTAGTCAAAATGCTGAGTTTTCAGTGCTAGTGTGTCGATTGCTCTA 
ACGTTAAGATCATACCTGGCCGATAGTCAGGATGCTGAGTATTCCCTGCTAGGGTGTCGAGTTCTCTA 

S1
S2

A [i-w…i-1] [i…i+w]

(5,1)-mer 

mi,L = 1 mi,R = 0
mi = 1

(5,0)-mer 

ACGGTGAGTGCATGCATGCATGCTAGTCAAAATGCTGAGTTTTCAGTGCTAGTGTGTCGATTGCTCTA S1
S2

A [i-w…i-1] [i…i+w]

(5,1)-mer 

ACGTTAAGATCATACCTGGCCGATAGTCAGGATGCTGAGTATTCCCTGCTAGGGTGTCGAGTTCTCTA 

i

i

(5,1)-mer 
Contig(i-20,1) Contig(i-5,5) 

Contig(i,6) Contig(i+11,11)
 

Fig. 2. A diagram showing how shared (k, m)-mers are defined in each window of a putative 
breakpoint i of an alignment A of two sequences S1, S2. Top: Shared (k, m)-mers for [i-w…i-1] 
and [i…i+w] using original mismatch thresholds mi,L = 1 and mi,R = 0 respectively. Bottom: 
After normalization (mi = 1), the number of shared (5,1)-mers in each window reflects more 
accurately the relative sequence homology. Hence, kmdi,L = 6 and kmdi,R = 16. Note that 
consecutive shared (k, m)-mers form a Contig which we will elaborate in Section 2.2. 

Essentially, by counting the number of shared (k,m)-mers, we can identify homologous 
regions of two sequences with an underlying rate of random mutation. Here, the 
selection of values for k and m is vital as k determines the specificity of homologous 
regions found and m estimates the underlying random mutation rate. Note that k should 
be small but at least of length (log2n + 1) to ensure specificity. Clearly, the selection of a 
global value for m is not feasible because the underlying rate of random mutation varies 
across the alignment. Hence, a localized value of m must be chosen for each  
sub-alignment enclosed by a window instance. We describe a heuristic to automatically 
determine m for a window instance: Given a length-w window [i…i+w] with parameters 
k and m, let Km and K’m be the number of shared (k,m)-mers and the number of  
non-shared (k,m)-mers respectively (note that Km + K’m = w – k + 1). Starting with m = 
0, we iteratively increase m until Km > K’m. Denote }'|min{ mmi KKmm >= . At this 

point of time, a majority of (k,m)-mers in the window are shared (k,m)-mers having less 
than mi random mutations. This becomes a reasonable estimate of the underlying 
random mutation rate of the alignment enclosed by [i…i+w]. Hence, we use mi as the 
mismatch threshold in [i…i+w].   

To detect recombination in an alignment of two sequences S1 and S2, we compute 
and compare a similarity score based on the shared (k,m)-mers of the two neighboring 
windows [i-w…i-1] and [i…i+w] of a putative breakpoint i. Let mi,L and mi,R  be the 
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mismatch thresholds of [i-w…i-1] and [i…i+w] respectively. Clearly, we cannot 
compare any similarity score of [i-w…i-1] and [i…i+w] when mi,L  ≠ mi,R . Thus, we 
need to normalize mi,L and mi,R  so that shared (k,m)-mers in [i-w…i-1] and [i…i+w] 
are defined based on a single mismatch threshold under the assumption of a common 
random mutation rate. Note that if i is a breakpoint or has high mutation rates, then 
the sequence homologies in the alignment enclosed by one window would be quite 
different from that enclosed in the other window (ie mi,L  ≠ mi,R). We exploit this 
observation and use the normalized mismatch threshold at i, mi = max(mi,L, mi,R) to 
define shared (k,m)-mers in both [i-w…i-1] and [i…i+w] (Fig. 2). In this way, the 
window with the lower mismatch threshold will have many more shared (k,m)-mers 
than the other window with the higher mismatch threshold. Thus, any irregularities at 
i such as recombination and high mutation rates would be shown as a huge 
discrepancy in the number of shared (k,m)-mers in [i-w…i-1] and [i…i+w]. Formally, 
we denote the number of shared (k,m)-mers between S1 and S2 in each neighboring 
window of a putative breakpoint i as the km-distance (kmd): 

For [i-w...i-1], kmdi,L(S1, S2) = | Pi,L | . (1) 

For [i...i+w], kmdi,R(S1, S2) = | Pi,R | . (2) 

where Pi,L = {j | i-w ≤ j ≤ i-1-k and A[j…j+k-1] is a shared (k, m)-mer} and Pi,L = {j | i 
≤ j ≤ i+w-k and A[j…j+k-1] is a shared (k, m)-mer}. Recombination is then inferred 
by some metric computed based on the magnitude of difference between kmdi,L and 
kmdi,R. This is further elaborated in Section 2.4. 

2.2   Contigs as a Better Estimation of Long Common Subsequences 

The previous section championed the use of shared (k,m)-mers over base-by-base 
comparisons when measuring homology between two sequences. However, they are 
too short to truly represent the degree of homology between two sequences. A better 
indication of homology between two sequences would be the number and length 
distributions of long common subsequences. Now, the question is how do we obtain 
long common subsequences of two sequences enclosed by a window with only short 
shared (k,m)-mers? Note that a length-L common subsequence of S1 and S2 is a tiling 
of (L – k + 1) consecutive shared (k,m)-mers when k ≤ L. In this paper, we define a 
common subsequence of S1, S2 as a chain of consecutive shared (k,m)-mers, which is 
known as a Contig.  

 
Definition 2. A Contig is a length-L common subsequence of two sequences S1 and S2 
formed by a chain of consecutive shared (k,m)-mers shared by S1 and S2. It has two 
parameters, namely the starting position p and the member size s. Here, p refers to the 
position of the Contig nearest to a putative breakpoint i and s = L – k + 1, the number 
of consecutive shared (k,m)-mers chained to form the Contig. Thus a Contig can be 
written as Contig(p, s). (See Fig. 2) 

 
It is easy to see that any length-L’ sub-Contig of a length-L Contig where k ≤ L’ ≤ L is 
guaranteed to have less than (m/k * L’) mismatches. In addition, Contigs have an even 
distribution of mismatches. On the contrary, long common subsequences may have 
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concentrations of mismatches in localized regions, despite passing the overall 
mismatch threshold. This creates a dilemma of whether to split a long common 
subsequence into shorter ones at regions where there are many mismatches. Our 
definition of Contigs avoids this problem and thus more reflective of the localized 
similarity between two sequences.  

This leads to the assessment of a position i being a true breakpoint by two criteria: 

1. A Kolmogorov-Smirnov (KS) test on the Contig length distributions in [i-w…i-1] 
and [i…i+w] at 99% confidence interval. This is because if i is a breakpoint, the 
Contig length distributions in [i-w…i-1] and [i…i+w] will be significantly different 
due to the distinct difference in sequence homology of the alignment enclosed by 
each window. 

2. A high score for the metric computed based on the magnitude of difference 
between the similarity scores in [i-w…i-1] and [i…i+w].  

Note that in the previous section, the km-distances, kmdi,L and kmdi,R, were used as 
the similarity scores for the alignment enclosed by [i-w…i-1] and [i…i+w]. In the 
next section, we shall describe a weighting strategy to improve the km-distance to 
incorporate the concept of Contigs. Similarly, we elaborate on the metric to detect 
recombination in Section 2.4. 

2.3   Breakpoint Specific Positional Weighted Distance Measure 

Depicted in Fig. 1(a)(b), the alignment noise affect the detection of breakpoint. We 
solve the issue by assigning weights to all positions enclosed by [i-w…i-1] and 
[i…i+w] with respect to a putative breakpoint i. More specifically, we assign heavier 
weights to positions in [i-w…i-1] and [i…i+w] near to the putative breakpoint i while 
lighter weights to positions in [i-w…i-1] and [i…i+w]  that are further away from the 
putative breakpoint. We justify our proposed weighting strategy to solve the window 
length sensitivity problem based on Fig. 1(a)(b):  In Fig. 1(a) where i is a true 
breakpoint, positions that are furthest away from i are most likely to contribute to 
alignment noise if the window length is too large. Thus, by assigning these positions 
the lightest weights when computing the km-distance for each window, alignment 
noise is reduced. In Fig. 1(b) where i is not a true breakpoint, the alignment near i in 
[i-w…i-1] and [i…i+w] will not experience a sudden significant change. Since 
positions near i are assigned heavier weights, the km-distance in [i-w…i-1] and 
[i…i+w] will most likely not have a sudden significant change too. 

Clearly, a good implementation of our weighting strategy requires a suitable 
function or a suitable family of functions that assigns a weight to a position in 
neighboring windows [i-w…i-1], [i…i+w] based on its absolute distance from a 
putative breakpoint i. Let S1 and S2 be two aligned length-n sequences with a putative 
breakpoint at position i with neighboring windows [i-w…i-1], [i…i+w]. Let x be the 
relative distance of a position j in [i-w…i-1], [i…i+w] from the breakpoint i, that is x 

= j-i, and -w ≤ x ≤ w. Next, we define a positive weight function Fi : X → +ℜ  where X 
= {x | -w ≤ x ≤ w}. Fi(x) satisfies the properties that (i) Fi(x) = Fi(-x) and (ii) Fi(x) is 
decreasing when |x| increases. For simplicity, we set Fi(0) = 1 and Fi(w) = Fi(-w) = 0. 
A family of functions satisfies the above properties is as follows: 
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Note that k control the decreasing rate of Fi(x). In our application, we need moderate 
decreasing rate and hence we set k=2 by default. In this case, Fi(x) is in fact a reverse 
parabola shape.  

Next, we describe how this weighting strategy incorporates the notion of Contigs 
in the km-distance. The idea is to assign a weight to each shared (k, m)-mer based on 
which Contig it belongs to. In this way, shared (k, m)-mers belonging to the more 
informative Contigs (closer to the putative breakpoint) are assigned heavier weights 
than those belonging to Contigs that are more prone to alignment noise (further away 
from the putative breakpoint). More specifically, our weighting strategy assigns each 
Contig(p, s) and its member shared (k, m)-mers a weight based on its starting position, 
Fi(|i-p|). Since Contigs do not overlap in a window, the weight assigned to each 
Contig and its member shared (k, m)-mers is unique. Consequently, given Contig(p1, 
s1) and Contig(p2, s2) with assigned weights Fi(|i- p1|) and Fi(|i- p2|) respectively,  
Fi(|i- p1|) > Fi(|i- p2|) iff |i- p1| < |i- p2|. 

Thus, given a putative breakpoint i and the two neighboring windows [i-w…i-1] 
and [i…i+w], we compute the improved Breakpoint specific positional Weighted 
Contig-Alignment (BWCA) score for the alignment of S1 and S2 in each neighboring 
window of a putative breakpoint i: 

 

              For [i-w…i-1], (4) 

              For [i…i+w], (5) 
 

where Ci,L = {Contig(pj, sj) | i-w ≤ pj ≤ i -1} and Ci,R = {Contig(pj, sj) | i ≤ pj ≤ i + w} 
are the sets of Contigs in [i-w…i-1] and [i…i+w] respectively; Si,L = {sj | Contig(pj, sj) 
∈  Ci,L} and Si,R = {sj | Contig(pj, sj) ∈  Ci,R} are the corresponding set of member 
sizes of the Contigs in Ci,L and Ci,R; Pi,L = {pj | Contig(pj, sj) ∈  Ci,L} and Pi,R = {pj | 
Contig(pj, sj) ∈  Ci,R} are the corresponding set of starting positions of the Contigs in 
Ci,L and Ci,R.  

Similarly, we elaborate in Section 2.4 how recombination is inferred by some 
metric computed based on the magnitude of difference between BWCAi,L and 
BWCAi,R. 

2.4   The RB-Finder Algorithm to Detect Recombination 

We have presented three techniques to address the main criticisms (accuracy and 
efficiency) of distance-based window methods to detect recombination. Next, we 
empirically investigate the effectiveness of our km-distance and BWCA scores to 
detect recombination as opposed to using a conventional distance measure such as the 
Kronecker delta function. Our simulations show that in real datasets where 
recombination events are more complex and harder to detect, our highly sensitive 
BWCA score stands a better chance of detecting the breakpoints than other distance 
measures (refer to supplementary for simulation details). 
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We make use of the BWCA score and propose the RB-Finder algorithm to detect 
recombination in a multiple sequence alignment. Given a length-n alignment of M 
sequences, the idea is to move a length-w sliding window along the alignment and, for 
each position i, computes a Recombination Detection Score (RDSi) based on the 
highly sensitive BWCA score and two key observations to differentiate recombination 
and high mutation rates. At the real breakpoint i, two concurrent observations are 
prevalent: (1) there exists two sequences Sα, Sβ  in the alignment M such that the 
BWCA score increase significantly and suddenly across i, ie BWCAi,L(Sα, Sβ) – 
BWCAi,R(Sα, Sβ) << 0 and (2) there exists yet another sequence Sγ (Sγ ≠ Sβ) such that 
the BWCA score decreases significantly and suddenly across i, ie BWCAi,L(Sα, Sγ) – 
BWCAi,R(Sα, Sγ) >> 0. The first observation is made when there is a transfer of genetic 
sequence from Sβ to Sα at i resulting in a sudden increase in homology between Sα and 
Sβ. The second observation is that after the recombination event at i, Sα is no longer as 
homologous to some sequence Sγ as compared to prior the recombination event. From 
a phylogeny point of view, the two observations are in effect looking for the most 
divergent branch between the phylogenetic tree in [i-w…i-1] and the phylogenetic 
tree in [i…i+w]. This is shown in Fig. 3. 

a) b)S

S

S

i

[i-w…i-1]
S SS

[i-w…i-1] 

S SS

[i…i+w]

[i…i+w]

 

Fig. 3. (a) shows that Sα is a recombinant of Sβ at position i to (i+w). (b) shows the phylogenetic 
trees in [i-w…i-1] and [i…i+w] respectively. In [i…i+w], Sα is phylogenetically closer to Sβ, 
than in [i-w…i-1], resulting in BWCAi,L(Sα, Sβ) - BWCAi,R(Sα, Sβ) << 0. Concurrently, Sα is 
phylogenetically further away from Sγ, resulting in BWCAi,L(Sα, Sγ) - BWCAi,R(Sα, Sγ) >> 0. Sα is 
the most divergent branch between the phylogenetic tree in [i-w…i-1] and [i…i+w] and thus 
detected to most likely contain recombination. 

At every putative breakpoint i, we examine each of the M sequences for the two 

observations. Specifically, for each sequence Sα ∈ M at i, we find Contigs with each 

of the other sequences Sβ (Sβ ∈ M and Sα ≠ Sβ) in neighboring windows [i-w…i-1] 
and [i…i+w]. The KS-test is then used to filter sequences whose distributions of 
contig lengths with Sα in both windows are not significantly different at 99% 
confidence interval. We then compute the BWCA scores of Sα with sequences that 
pass the KS-test in neighboring windows [i-w…i-1] and [i…i+w]. We obtain the most 
significant increase in BWCA score across [i-w…i-1] and [i…i+w] for Sα, that is, 

BWCAi,incr(Sα) = max{BWCAi,R(Sα, Sβ) – BWCAi,L(Sα, Sβ) | Sβ∈ M and  Sα ≠ Sβ}. 
Similarly, we also obtain the most significant decrease in BWCA score across [i-w…i-

1] and [i…i+w] for Sα, BWCAi,decr(Sα) = max{BWCAi,L(Sα, Sγ) – BWCAi,R(Sα, Sγ) | Sγ∈ 
M and Sα ≠ Sγ ≠ Sβ}. Subsequently, we compute RDSi(Sα), the recombination detection 
score for Sα accordingly as shown in Table 1: 
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Table 1. The formula to compute the RDS for a sequence based on the 2 observations 

Scenario Observations 
Present RDSi(Sα) = Reason 

1 (1) and (2) BWCAi,incr(Sα) * BWCAi,decr(Sα) Recombination 

2 (1) 0 

Homologous regions not 
caused by recombination, 
most probably conserved 

regions 
3 (2) - BWCAi,decr(Sα) High rates of mutation 

4 None 0 
No significant change in 

homology 

Note that scenario 1 produces a distinctly high RDSi(Sα) that indicates Sα has a 
recombination event at position i. On the other hand, scenario 3 produces a negative 
RDSi(Sα) to clearly indicate high mutation rates. The other scenarios are deemed 
uninteresting in recombination detection and assigned RDSi(Sα) = 0. 

Finally, we select the highest RDS among the M sequences to representing the RDS 
for breakpoint i: 

RDSi = max(RDSi (Sα)) (6) 

It is easy to see that if RDSi(Sα) < 0 for all Sα ∈ M, then RDSi < 0. This would 
indicate that the region around i suffers from high mutation rates. Conversely, a high 
RDSi would mean that i is most likely a true recombination breakpoint. We present 
the pseudo-code for the RB-Finder algorithm below in Fig. 4. 

3   Evaluation of the RB-Finder Algorithm 

Evaluation of our recombination detection algorithm is carried out by applying our 
algorithm to three synthetic and one biological datasets used in two previous papers 
[7, 8]. The three synthetic datasets (SD1, SD2 and SD3) each contains a 5500-bp 
alignment of eight sequences (S1, S2, …., S8) whose evolution was simulated with the 
Kimura model [10]. For SD1 and SD2, two recombination events were simulated: an 
ancient event affecting the region between sites 1000 and 1500, and a recent event 
affecting the region between sites 2500 and 3000. To test whether the detection 
method can successfully differentiate between recombination and rate variation, a 
mutational hotspot between sites 4000 and 4500 was introduced. The average branch 
length of the underlying phylogenetic trees for SD1 and SD2 are 0.1 and 0.01 
respectively. The third synthetic dataset SD3 contains an ancient event affecting the 
region between sites 1000 and 2000, and a recent event between sites 3000 and 4000. 
The branch lengths of the tree were drawn from a uniform distribution on the interval 
[0.003, 0.005]. SD3 was deliberately created by Husmeier et al. [7] to thwart previous 
algorithms cited in their paper. The biological dataset used in our experiment is a 
length-3049 gap-removed ClustalW [11] alignment of 10 Hepatitis B virus sequences. 
It consists of two recombinant strains (D0329 and X68292) and eight non-
recombinant strains (V00866, M57663, D00330, M54923, X01587, D00630, M32138 
and L27106). 
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Fig. 4. The pseudo-code for RB-Finder algorithm 

We ran our algorithm using (k,m)-mers with k=20 while m is automatically 
determined depending on the point mutation rate, and two window lengths 500 and 
600. Note that the optimal window length to detect recombination in three of the four 
datasets (SD1, SD2 and Hep B) is 500 since all the recombination events that 
happened in these three datasets are of span 500 nucleotides. Thus, a window length 
of 600 would generate alignment noise and decrease accuracy of recombination 
detection in the three datasets. We shall see from the following results that the effects 
of alignment noise on recombination detection using our algorithm were minimal. We 
also compare our results with that from Pruned-PDM since it has the highest 
accuracy. 

We only show our results for SD3 (refer to supplementary for the analysis results 
for SD1, SD2 and HepB dataset) since it is a difficult dataset to analyze because there 
are only subtle differences in the alignment. Despite the very low rate of evolution in 
SD3, our algorithm detected recombination breakpoints at sites 1000, 2000, 3000 and 
4000. In addition, our algorithm also detected a mutational hotspot around site 5000. 
The results for SD3 using window lengths 500 and 600 are shown in Fig. 5. This time, 
Pruned-PDM not only produced inaccurate breakpoints, but also failed to detect the 
breakpoint at position 2000.  

The results of the four datasets are consistent with the DSS, Pruned-PDM and 
RECOMP methods. Through the use of our proposed weighting strategy and two key 
recombination-identifying observations, our algorithm is able to compute recombination 
breakpoints of a given alignment in a matter of minutes. Compared to Pruned-PDM 
which takes hours to analyze the same dataset, our algorithm is very much faster and 
achieves similarly accurate results. Unlike RECOMP which gives the user a choice of 
four graphs to decipher the recombination breakpoints, our algorithm generates 
 

RB-Finder{ 
Given an length-N alignment of M sequences,length of (k,m)-mer k, 
and sliding window length w, 
for each position i from 1 to (N – w){ 

Declare neighboring windows [i-w…i-1] and [i…i+w] ; 
for each sequence Sα in M { 

  Determine m to define a shared (k,m)-mer; 
  for each sequence Sα’ in M { 
   Obtain set of Contigs in [i-w…i-1], Ci,L 
   Obtain set of Contigs in [i…i+w], Ci,R       
       If(KS(Pi,L, Pi,R) <= 0.01) { 
    Compute BWCAi,L (Sα , Sα’); 
    Compute BWCAi,R (Sα , Sα’); 
      } 
  } 
  Compute BWCAi,incr(Sα); 
        Compute BWCAi,decr(Sα); 
  Compute RDSi (Sα ); 
    } 
    Compute RDSi ; 
} 

} 
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w = 500 w = 600 

 

Fig. 5. Top: Results of our algorithm on SD3 with window lengths of 500 and 600. The circles 
highlight the recombination breakpoints at position 1000, 2000, 3000 and 4000 respectively. 
The rectangles highlight the high mutation regions which we detected. Bottom: Results of 
Pruned-PDM on SD3 with window lengths of 500 and 600. When w = 600, the breakpoint at 
position 2000 was undetected. Other breakpoints are also inaccurate. 

only a single graph and thus prevents ambiguity of deciding which graph best 
represents the correct recombination breakpoints. An example of this ambiguity is 
shown in their results for the SD3 dataset [8]. In their analysis, three of four graphs 
wrongly indicated that there is a recombination breakpoint at position 5000. Hence, it 
is difficult for the user to correctly infer that the recombination breakpoint detected at 
position 5000 by the three graphs is incorrect based on the remaining graph. In our 
analysis, we correctly identify the region around position 5000 as a mutational 
hotspot. This example also illustrates another advantage that our algorithm has over 
previous methods. Previous algorithms cannot differentiate normal regions from 
mutation hotspots. A useful feature of our algorithm is that it produces a RDS < 0 
when the region has a high mutation rate. This immediately provides more biological 
information about the sequences to aid experimental studies. 

3.1   Analysis of Circulating Recombinant Forms of HIV-1 

Acquired Immune Deficiency Syndrome (AIDS) is a worldwide epidemic caused by a 
virus known as human immunodeficiency virus (HIV). Efforts to develop HIV 
vaccines and medicine have been thwarted with difficulties due to the fast mutation 
and recombination rates of HIV [12]. There are two types of HIV, namely HIV-1 and 
HIV-2. HIV-1, which is responsible for most human infections, consists of three 
major groups: M, N and O. The most common group M of HIV-1 is further 
characterized into 9 subtypes (A, B, C, D, F, H, J and K). The ease at which HIV-1 
subtypes recombine has also resulted in numerous circulating recombinant forms 
(CRFs) of HIV-1 [13]. These CRFs pose more difficulties to finding a cure. Thus, the 
analysis of existing CRFs and the identification of new CRFs will be vital to the 
efforts against HIV. 

The HIV database [14] contains a list of all existing CRFs to date. Each CRF is 
classified according to its recombinant subtypes. Eg CRF02_AG is a recombinant of 
subtype A and subtype G. In addition, a graphical representation of each CRF in 
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terms of where the recombination occurs at gene level is also available [15]. From the 
database, we downloaded the sequences of 13 CRFs and 35 reference sequences of 
the 9 subtypes. Experiments are performed in the following manner: 

 
1. For each CRF, download its sequence and several reference sequences of its parent 

subtypes. Align with ClustalW with default parameters. 
2. Run RB-Finder on each alignment. Gaps are not removed because they appear in 

almost all regions of the alignments. Instead, we modified our program so that a 
length-w sliding window is allowed to have 0.1w gaps. This is to accommodate 
insertions and deletions in our computation of recombination breakpoints. To 
prevent inaccuracies caused by incompletely assemblies, sequences with more than 
0.1w gaps in a particular window will not be considered. 

3. Identify breakpoints of each CRF and compare with the graphical representation of 
the corresponding CRF. In addition, identify the reference sequences of its parent 
subtypes that contributed to the recombination. 

L39106 (CRF02_AG) 
* AF286238 of subtype A2  
not involved 

AF193276 (CRF03_AB) 
* AF286238 of subtype A2 not 
involved 

AF193253 (CRF05_DF) 
* Subtype F2 not involved 

AF457051 (CRF21_A2D) 
* AF069670, AF004885,  
AF484509 of subtype A1  
involved 

DQ85873 (CRF28_BF) 
DQ85876 (CRF29_BF) 
* Subtype F2 not involved 

 

Fig. 6. The proposed putative phylogenetic network of 35 reference sequences of the 9 HIV 
type M subtypes and the 6 CRFs which had irregularities with their subtyping. In the diagram, 
irregularities are presented in red, italic font under their respective CRFs. In addition, the red 
arrow indicates our proposed change in genotyping of CRF05_DF, CRF28_BF and CRF29_BF 
not to include the subtype F2. The other 7 CRFs which had no irregularities with their 
subtyping are not shown. 

RB-Finder finds almost all breakpoints indicated by the literature, except that when 
the recombination region is too short, RB-Finder reports only one breakpoint for that 
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region instead of two breakpoints. Furthermore, using RB-Finder to identify reference 
sequences of parent subtypes that contributed to recombination events in the CRFs 
yielded some interesting findings. Firstly, RB-Finder is able to determine that none of 
the reference sequences belonging to subtype F2 contributed to recombination events 
in CRF28_BF and CRF29_BF. Subsequently, we found that although some CRFs are 
labeled as a recombinant of two subtypes, not all reference sequences of the parent 
subtypes are involved in the recombination events (Eg CRF02_AG, CRF03_AB and 
CRF05_DF). On the other hand, we also found that some reference sequences not in 
the reported parent subtype of a CRF may be involved in some of its recombination 
events (Eg CRF21_A2D may be a recombinant of subtype A1 as well). This suggests 
that further analysis may be needed to more accurately classify CRFs. Based on the 
results from RB-Finder, we propose a putative phylogenetic network of the 35 reference 
sequences belonging to the 9 subtypes and the 6 CRFs which had irregularities with 
their subtyping in Fig. 6. (Refer to supplementary for full summary). 

4   Conclusion 

This paper introduced a breakpoint specific positional weighted distance measure to 
detect recombination in DNA sequence alignment. Until our paper, there is no distance 
measure defined to compare the similarity of an alignment of two or more sequences 
with respect to putative breakpoints. Furthermore, the graphical representation of the 
results from our algorithm shows clearly mutational hotspots which previous 
algorithms could not identify. In terms of detection accuracy, our results are at least as 
good as the best current methods such as pruned PDM. Furthermore, our algorithm 
only takes a few minutes to compute the results for each of the four datasets described. 
In terms of result presentation, our algorithm produces only a single graph which 
clearly shows recombination breakpoints and mutational hotspots. Compared to 
RECOMP which produces four graphs, our presentation is less ambiguous. Our future 
work involves exploring the possibility of using shared (k,m)-mers, Contigs and our 
weighting strategy to estimate a localized optimal window length to detect regional 
recombination of an alignment. This would avoid the selection of a window length 
altogether and will no doubt improve the sensitivity and accuracy of window-based 
methods to detect recombination. An implementation of the algorithm in C or Java and 
all data used in this paper are available upon request. 

References 

1. Posada, D.: Evaluation of methods for detecting recombination from data sequences: 
Empirical data. Molecular Biology and Evolution 19 (2002) 1198-1212 

2. Weiller, G.F.: Phylogenetic profiles: a graphical method for detecting genetic 
recombination in homologous sequences. Molecular Biology and Evolution 15 (1998) 
326-335 

3. Myers, S.R. and Griffiths, R.C.: Bounds on the minimum number of recombination events 
in a sample history. Genetics 163 (2003) 375-394 

4. Schierup, M.H. and Hein, J.: Consequences of recombination on traditional phylogenetic 
analysis. Genetics 156 (2000) 879-891 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



532 W.-H. Lee and W.-K. Sung 

5. McGuire, G. and Wright, F.: TOPAL 2.0: improved detection of mosaic sequences within 
multiple alignments. Bioinformatics 16 (2000) 130-134 

6. Husmeier, D. and Wright, F.: Probabilistic divergence measures for detecting interspecies 
recombination. Bioinformatics 17 (2001) 123-131 

7. Husmeier, D., Wright, F. and Milne, I.: Detecting interspecific recombination with a 
pruned probabilistic divergence measure. Bioinformatics 21 (2005) 1797-1806 

8. Ruths, D. and Nakhleh L.: RECOMP: A parsimony-based method for detecting 
recombination. Proceedings of The Fourth Asia-Pacific Bioinformatics Conference (2006) 
59-68 

9. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T.: Kolmogorov-Smirnov 
Test. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (1992) 
617-620 

10. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions 
through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16 
(1980) 111-120 

11. Thompson, J.D., Higgins, D.G. and Gibson, T.J.: CLUSTAL W: Improving the sensitivity 
of progressive multiple sequence alignment through sequencing weighting, position 
specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673-4680 

12. Sturmer, M., Doerr, W. and Preiser, W.: Variety of interpretation systems for human 
immunodeficiency virus type 1 genotyping: Confirmatory information or additional 
confusion? Current Drug Targets Infectious Disorder 3 (2003) 373-382 

13. Leitner, T., Korber, B., Daniels, M., Calef, C. and Foley, B.: HIV-1 Subtype and 
Circulating Recombinant Form (CRF) Reference Sequences. http://www.hiv.lanl.gov/ 
content/hiv-db/REVIEWS/RefSeqs2005/RefSeqs05.html (2005) 

14. The HIV Sequence Database. http://www.hiv.lanl.gov/content/hiv-db/mainpage.html 
15. The Circulating Recombinant Forms. 
        http://hiv-web.lanl.gov/content/hiv-db/CRFs/ CRFs.html 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Comparative Analysis of Spatial Patterns of

Gene Expression in Drosophila melanogaster
Imaginal Discs

Cyrus L. Harmon1, Parvez Ahammad2, Ann Hammonds1,
Richard Weiszmann3, Susan E. Celniker3, S. Shankar Sastry2,

and Gerald M. Rubin1

1 Department of Molecular and Cell Biology,
University of California, Berkeley, Berkeley, CA 94720

2 Department of Electrical Engineering and Computer Science,
University of California, Berkeley, Berkeley, CA 94720

3 Department of Genome Sciences,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract. Determining the precise spatial extent of expression of genes
across different tissues, along with knowledge of the biochemical func-
tion of the genes is critical for understanding the roles of various genes
in the development of metazoan organisms. To address this problem, we
have developed high-throughput methods for generating images of gene
expression in Drosophila melanogaster imaginal discs and for the auto-
mated analysis of these images. Our method automatically learns tissue
shapes from a small number of manually segmented training examples
and automatically aligns, extracts and scores new images, which are ana-
lyzed to generate gene expression maps for each gene. We have developed
a reverse lookup procedure that enables us to identify genes that have
spatial expression patterns most similar to a given gene of interest. Our
methods enable us to cluster both the genes and the pixels that of the
maps, thereby identifying sets of genes that have similar patterns, and
regions of the tissues of interest that have similar gene expression profiles
across a large number of genes.

Primary keyphrases: Genomic imaging, Gene expression analysis,
Clustering.

Secondary keyphrases: Microarray data analysis, Imaginal discs.

1 Introduction

We have developed a high-throughput pipeline for generating images of imag-
inal discs, stained with labeled probes that hybridize to individual genes, and
an automated system for analyzing a database of such images and for building
an atlas of gene expression patterns. Using these tools, we construct consensus
shape models of individual imaginal disc types which are used to automatically
extract imaginal disc shapes from new images and to align these features to
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consensus shape models. In parallel, we extract the stain pattern for each disc
which is aligned to and overlaid on the consensus shape model, thereby yielding
a representation of the spatial extent of expression of a given gene in the context
of the consensus shape. These patterns are averaged to produce consensus gene
expression representations for each gene. The consensus representations are as-
sembled in a database and clustered to identify both genes and regions of the
discs with similar patterns of gene expression. New images can be used to search
the database to identify known patterns similar to a query pattern, which can
be automatically extracted from a new image. The data-flow of our approach is
shown in Figure 1.

Previous work has identified the vast majority of the genes in Drosophila [1, 2],
shown how a large numbers of genes are dynamically expressed across the en-
tire organism throughout the life cycle [3], and shown how genes are expressed
across space and time in embryos [4]. DNA-microarrays have enabled parallel,
high-throughput analysis of gene expression from many different tissues under
different conditions or at different time points [5, 6]. However, these techniques
do not provide spatial information about where these genes are expressed within
these tissues.

Image processing techniques have been applied to the problem of quantitative
gene expression analysis by analyzing the hybridization of fluorescent probes
to specific spots on DNA microarrays [6, 7], and, recently, fully-automated ap-
proaches to this problem have been developed [8].

Large-scale studies of patterns of gene expression in Drosophila have been
performed using DNA microarrays both on whole organisms [9, 3] and individual
tissues such as imaginal discs [10, 11]. Klebes et al. compared differential gene
expression in different imaginal discs and between imaginal discs and non-disc
tissue. Butler et al. manually dissected imaginal discs and were able to identify
transcripts that were enriched in specific compartments of the wing discs [10].
However, these studies yield little information about the precise spatial patterns
of gene expression.

2 Pipeline Overview

Our pipeline, shown in Figure 1, begins with the acquisition and purification of
the biological material, followed by steps to select appropriate genes for inclusion
in the project. The next phase of the pipeline entails generation of labeled probes
for specific genes, hybridization of these probes to appropriate pools of imaginal
discs, and imaging of the resulting stained discs. The data analysis portion of
the pipeline consists of two main sections, a learning process in which a small
number of manually segmented examples are used to learn the shapes of the
imaginal discs and an automated analysis phase in which the learned shapes are
used to automatically isolate instances of imaginal discs in the complete set of
images. These aligned images are then scored for stain, and used to produce
consensus maps for each gene. The consensus maps are then used for a variety
of clustering and analysis procedures.
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Fig. 1. Overview of the high-throughput process for determining spatial patterns of
expression of genes in Drosophila imaginal discs

For the high-throughput pipeline, we needed a sufficient source of imaginal
discs such that we would have a number of each type of imaginal disc for each
probe. Moreover, it was desirable to be able to work in 96-well plates, following
the protocol of the Berkeley Drosophila Genome Project (BDGP) Drosophila
embryo gene expression pattern project [4]. We adapted the imaginal disc mass-
isolation protocol from Eugene et al. [12] for use in a 96-well format. We collected
eggs from Canton S stocks and grew larvae until the wandering third instar
larval stage, at which point the larvae were harvested and the discs isolated.
The mass-isolation procedure typically yielded 500,000 discs, including wing,
leg, eye-antennal, haltere and genital discs, but not the smaller disc types, as
these were not recovered in our purification process. Approximately 100,000 discs
were used per 96-well plate, yielding on the order of 1000 discs per probe.

2.1 Gene Selection and Microarray Gene Expression Analysis

While it would be desirable to examine the spatial pattern of every gene, this is
prohibitively expensive and time-consuming. For the current project, we had the
resources to produce probes for only a few hundred genes. Many genes have no
detectable spatial expression pattern, or, on the other hand, are ubiquitously ex-
pressed and we would like to avoid making probes for these genes. Therefore, we
have developed a protocol to examine the over 13,000 genes in the Drosophila
genome using gene expression microarrays to analyze the levels of expression
across multiple tissues. The central idea is that by examining the quantitative
level of gene expression across multiple tissues, including Drosophila embryos at
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multiple time points, distinct classes of imaginal discs, and adults, we could iden-
tify genes that were differentially expressed in imaginal discs and therefore more
likely to have a non-trivial spatial pattern of gene expression than genes that
were expressed at a constant level across all tissues. In particular, we identified
genes that were expressed at a higher level in certain imaginal disc types, relative
to the other disc types, or that were more highly expressed in all imaginal discs
relative to the embryo and adult samples.

2.2 Disc Annotation Database

In order to facilitate the process of automatic segmentation, the operator records
meta-data about the images, as they are being captured, in a database [4].
The annotations include the orientation of the peripodial epithelium and the
handedness of the disc, from which we deduce whether or not the disc needs to
be reflected about the vertical axis with respect to the canonical orientation.

All imaginal discs except the genital discs occur in pairs, one on each side
of the larval body, yielding a left disc and a right disc of each type. When
the discs are placed on a microscope slide for imaging, the can be found in
on of two orientations, with the peripodial epithelium, which exists on only
one side of the disc, either on the top or the bottom. The combination of the
handedness of the disc and the orientation of the peripodial epithelium gives
us 4 possibilities for the combined state and orientation of the disc. We make a
simplifying assumption and assume that the left and right discs are mirror images
of each other and that the stain pattern of a gene in a right disc will be equivalent
to the mirror image of the stain pattern of that gene from the left disc of the
same type. This assumption gives us two handedness/orientation combinations
that are considered to be in the canonical orientation, and two combinations
that are mirror images of these. The shapes corresponding to the two mirror
image handedness/orientation combinations are automatically reflected about
the vertical axis by the congealing pipeline after manual segmentation, to bring
the images into the canonical orientation.

2.3 Shape Representation and Learning

The results of our manual segmentation process are a set of binary image masks
that represent shapes from individual images. From these shapes we learn a shape
representation in the form of a canonical binary image in which pixels are either
1 for foreground or 0 for background, or a canonical grayscale image in which
pixels values are between 0 and 1 and where the value represents the probability
that a given pixel is on in an element of that particular shape. This simple
shape model for each imaginal disc type serves as the reference map upon which
comparisons regarding patterns of gene expression will be made. While there are
many possible approaches to this task, including parameterizing the curve that
defines the borders of the shapes, we use a simple non-parametric method called
Congealing [13, 14], that iteratively learns a set of affine transformations that
minimize the overall pixelwise entropy of a stack of images to learn a canonical
shape model for each disc type [15].
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Fig. 2. (a) Raw RGB image file of a wing imaginal disc. (b) Discrete approximation of
the second derivative of a wing imaginal disc image, produced by convolution with a
Laplacian filter kernel. (c) The previous image after a round of morphological closing
by dilation and erosion. (d) Resulting image after applying the 3-4 distance transform.

Fig. 3. (a) Canonical wing disc shape model. (b) 3-4 distance transform of the wing
disc shape model.

3 Parallel Alignment and Automatic Feature Extraction

Our approach to identifying imaginal discs in images is based on extraction of
simple foreground features and subsequent alignment of the foreground features
to a shape model by optimizing the parameters of an affine transformation be-
tween the foreground features and the shape model. This approach was initially
proposed by Barrow et al. [16] for use with manually extracted point features
which were aligned to a traced boundary. In order to avoid becoming trapped in
local minima during the optimization process, a process known as “Chamfering”
is used to generate a map of the distance of foreground features to the near-
est edge. Borgefors called this map of the distance to the foreground features a
“Distance Transform” and proposed a hierarchical method for performing this
style of alignment in a coarse-to-fine manner [17].

3.1 Foreground Feature Extraction

Foreground biological material has substantially more variability than the back-
ground. While the measured intensity values of the background change across the
image, these values generally change smoothly. The biological material present
in the image, on the other hand, contains substantial pixel intensity variabil-
ity due to changes in the scattering and absorption of light by the material.
Therefore, we use the absolute value of a discrete approximation of the second
derivative of the image, produced by discrete convolution with a laplacian filter
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kernel [18], to detect the foreground biological material. An example image is
shown in Figure 2(b). After applying the Laplacian operation, the image is then
morphologically closed by first dilating the image, then eroding the image using
a square structuring element. The resulting image is shown in Figure 2(c).

The Distance Transform is a transformation of an image in which edge (or
foreground) pixels are assigned a value of zero and non-edge (or non-foreground)
pixels are assigned a value proportional to the distance to the nearest edge
pixel [17, 19]. The true Euclidean distance is somewhat computationally expen-
sive. Fortunately, Borgefors provides an efficient approach, known as the 3-4
Distance Transform, for approximating the true Euclidean distance using a two-
pass, forward and backward, algorithm that analyzes the backward and forward
8-neighbors, respectively, of each pixel and computes an approximation of the
distance of each pixel to the nearest edge pixel. A visual inspection of this ap-
proach and the L1-based approximation provided by Soille [19] shows that the
3-4 Distance Transform yields substantially better results.

Just as we apply the distance transform to the target image, we apply the
distance transform to the model to produce a smoothed-out representation of the
model, suitable for template matching. The results of the distance transformed
model can be seen in Figure 3.

3.2 Distance Metrics

There are multiple instances in our pipeline where it is necessary to compare
one template with another template, and assign a score based on a distance
measure that measures how dissimilar they are to each other. Depending on
the scenario, the template can be a real-valued vector or a real-valued or bi-
nary two-dimensional image patch. Common distance choices include the L1
and L2 distance metrics. However the L1 and L2 distances are not invariant to
scalings and shifts in image intensities. Therefore, we used the Normalized Cross-
Correlation distance[20] to compare images. To compare two image patches, X
and Y , where X, Y ∈ RMxN, we use the following formula:

NCC(X, Y) =

∑M
i=1

∑N
j=1(Xi,j − X̄)(Yi,j − Ȳ )

√∑M
i=1

∑N
j=1(Xi,j − X̄)2

∑M
i=1

∑N
j=1(Yi,j − Ȳ )2

(1)

where X̄ denotes the mean value of the template X . The value returned by NCC
always ranges between -1 and +1, irrespective of the size of the template. When
NCC=+1, the two templates match perfectly. If the templates X and Y take only
binary values 0, 1, we define the set of pixels on in both templates as A =∑M

i=1
∑N

j=1 1(Xi,j = 1,Yi,j = 1), the sets of pixels on in either template as B =
∑M

i=1
∑N

j=1 1(Xi,j = 1,Yi,j = 0), and C =
∑M

i=1
∑N

j=1 1(Xi,j = 0,Yi,j = 1),
and the set of pixels off in both templates as D =

∑M
i=1

∑N
j=1 1(Xi,j = 0,Yi,j = 0)

where 1(p) is an indicator function that takes value 1 if the condition p is satisfied.
The Jaccard metric can then be defined in terms of A, B, C, D.

Jaccard(X, Y) =
A

A + B + C
(2)
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The NCC measure is equivalent to the Jaccard metric when D >> (A + B +
C). While the Jaccard metric explicitly avoids computing distance between the
features that are absent in both X and Y templates – and is thus desirable, it
doesn’t extend well to real-valued templates.

3.3 Coordinate Descent from Multiple Starting Configurations

Given the distance-transformed model, an image corresponding to the identi-
fied foreground features, and an appropriate distance metric, we seek an affine
transformation that, when applied to the target image, minimizes the distance
between the (affine) transformed target features and the model. We use a rea-
sonable set of starting configurations, such as the identity affine transform, and
90 degree rotations of the identity transform, and perform coordinate descent
on the parameters of the affine transformation. This procedure quickly yields
an acceptable match between the target and the imaginal disc model over 85%
of the time. The procedure can fail to find a good match when the image is
cluttered or contains multiple discs. Poorly performing instances are manually
removed from the atlas prior to further processing.

While the correct alignment between two images generally yields a local min-
imum, this is not the only minimum to be found in the space described by the
parameters of the affine transformation. In congealing, we avoid settling on an in-
correct local minimum which may be found by reducing the scale of both images
towards zero or infinity, essentially matching two all black or all white images,
by rescaling the affine transformations in each iteration of the algorithm. In the
case of the distance transforms of the foreground features and the model, we
occasionally find that a better score is found via an incorrect alignment of two
images that have undergone substantial transformations to achieve this align-
ment. To address this problem, we constrain the affine transformations such that
the log-space parameters for x- and y-scaling are never allowed to go below -0.35
or above 0.35, constraining the minimum size of the figure to be 70% of the
original size and the maximum to be 142% of the original size. Similarly, the
log scale x- and y-shear parameters are never allowed to go below -0.2 or above
0.2. Finally, as an additional constraint on the transformations, we never allow
the absolute value of the difference between the x-scale and y-scale log-space
parameters to go over 0.2. This drives the alignment procedure to local minima
that are more likely to represent the true biologically relevant alignment, even
if the procedure would otherwise a find a lower-scoring alignment by using a
radical deformation of the shapes.

3.4 Stain Scoring

Imaginal discs are stained with digoxigenin labeled mRNA or DNA probes. The
labeled discs were then treated with anti-digoxigenin coupled to alkaline phos-
phatase, an enzyme that catalyzes a reaction that generates a blue dye from a
colorless substrate. The presence of labeled probe is indicated by a blue color,
resulting from the absorption of non-blue photons by the dye. We have devel-
oped a quantitative stain-scoring heuristic that uses the difference between the
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Fig. 4. (a) An image of Drosophila melanogaster wing imaginal discs with areas of
heavy stain. (b) The result from the stain-scoring algorithm using Equation 3 producing
clipped areas in the center where no stain is reported. (c) The improved stain-scoring
result obtained by using Equation 4.

pixel intensity values of the blue channel and the average of the red and green
channels. We compute the stain intensity for a given pixel as shown below.

sij = bij − rij + gij

2
(3)

As shown in Figure 4, this approach yields satisfactory results except in areas
of very high staining, at which point the pixel values become very dark gray with
no discriminating values between the blue channel and red and green channel
average. Therefore, we set a minimum value for the blue channel and treat values
in the red and green channels beneath this threshold as evidence of staining and
use the difference between the value in the average of the red and green channels
and the minimum as the value for the stain intensity in these areas.

sij = max (bmin, bij) − rij + gij

2
(4)

Ideally, we would be able to use the measured stain intensity as a direct
measure of the abundance of a particular transcript at a given location. Unfor-
tunately, this is not the case as there is substantial variability for the effectiveness
of individual probes. While the current method does not yield directly compa-
rable measures of abundance that are valid for comparisons between different
genes, the measures of abundance for a single gene, over the spatial extent of
the disc should be more directly comparable. In order to maximize the measured
differences in expression of a single gene across the entire disc, one can normal-
ize the recorded values, such that the highest measured stain value is assigned
to a predetermined value, and other values scaled, linearly, such that the high-
est measured value is assigned to the highest value on the new scale, and the
zero values on the original scale are assigned to zero values on the new scale.
By performing this kind of normalization, we expand the dynamic range of the
measured pixel values for given genes.

In Figure 5, we show images of imaginal discs that have been automatically
aligned, extracted from background. We have aligned over 800 images from over
130 different genes across the four main imaginal disc types.
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Fig. 5. Images of Drosophila melanogaster wing (first row), leg (second row), and
eye/antenna (third row) imaginal discs, automatically segmented and aligned to the
model. The original grayscale image is shown in the blue channel, the outline of the
disc model is shown in red and the scored stain is shown in green.

4 Gene Expression Maps and Map Clustering

We would like to construct maps of gene expression that incorporate multiple
samples, when possible. Two simple approaches are to use the mean and the
median of the available maps. For each gene and disc-type pair, if there is only
one image, we treat this image as the map. If there is more than one image, we
construct maps where the value of each pixel is the median of the values from
each aligned, stain-scored image at the given pixel, which are shown in Figure 6.
In addition to the median, we construct maps of the pixelwise standard deviation
of the stain scored image, yielding a measure of the variability at for a given pixel
across the samples (data not shown).

4.1 Reverse Lookup to Find Similar Expression Patterns

Having built a data set of images and maps, one can interrogate new images
to automatically extract a disc of a given type, score the image for stain and
compare the stain pattern to either the individual stain patterns in the database
or, perhaps more importantly, the median maps for each gene, thereby allowing
one to discover to which genes the new pattern is most similar. In Figure 7 we
see a new image which is then automatically segmented, extracted and scored
for stain. The resulting stain pattern is then searched against the median maps
using a simple L2 distance metric and the 5 resulting maps most similar to this
pattern are shown.
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Fig. 6. Gene expression maps of imaginal discs in Drosophila melanogaster. The maps
are made by taking the median expression value at each pixel from the stack of im-
ages for each gene. (a) Maps of MESR3, dpp, drl, CG4914, and CG9057 in the wing.
(b) Maps of CG9747, nub, dpp, fd96Cb, and drm in the leg. (c) Maps of Rapgap1,
EG:EG0007.7, dpp, btd, and Traf1 in the eye/antenna disc.

(a) (b)

(c)

Fig. 7. Reverse lookup procedure to search the database of average gene expression
maps for patterns most similar to the Doc1 gene. (a) Image of a wing imaginal disc
stained for Doc1 gene expression. (b) Automatically aligned and extracted stain pattern
for Doc1. (c) Average gene expression maps of Doc3, Doc2, nub, Cyp310a1 and Pepck.

4.2 Comparative Maps of Multiple Genes

By registering the images to a common global template for each shape, we are
able to make comparisons between expression patterns determined in different
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Fig. 8. Comparative gene expression maps. The expression patterns of multiple genes
in Wing imaginal discs are shown overlaid on a common reference map. (a) MESR3
(red), CG9057 (green) and Sp558 (blue). (b) BG:DS00180-3 (red), drm (green) and
Timp (blue).

experiments and we are able to create overlay maps that contain a representation
of the spatial patterns of more than one gene. While one can use biological
techniques to image multiple genes simultaneously [21, 22, 23], one must know
which genes to look for . Using our methods, we can computationally construct
virtual comparative maps of arbitrary sets of genes. Example overlay maps are
shown in Figure 8.

In addition to the reverse lookup and image overlay capabilities, we can look
for common features between different genes by clustering them together using
any number of standard clustering techniques. We have chosen to use simple
clustering techniques to perform two classes of clustering, a clustering of the
genes and a clustering of vectors of gene expression for all of the genes that can
be computed for each pixel.

4.3 Gene Clustering

The k-means clustering algorithm clusters n points in a d-dimensional space
around k cluster centers [24]. We denote the data points xn and establish a
variable zn which contains the value of the current cluster in which point xn

resides. The assignment to clusters stored in z is computed by the following
equation:

zn = argmin
j

||xn − μj || (5)

where ||.|| is an appropriate distance metric. The new cluster means μ are
computed by:

μi =
∑

n δ(zn, n)xn
∑

n δ(zn, n)
(6)

where δ is the Kronecker delta function. Thus, for a given a set of gene maps, x,
with xn indicating the nth gene map, and μj representing the jth cluster, we run
the k-means clustering as in Equations 5 and 6. In our experiments, we found that
using normalized cross correlation (NCC) produced better results than using L2
distance metric. Some representative clusters are shown in Figure 9.
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Fig. 9. Representative clusters from gene clustering. The first image in each set con-
tains a cluster center from an eye/antenna disc cluster (top and middle rows) and
a haltere disc cluster (bottom row). Other images are cluster members for the given
cluster centers: CG14516, Traf1, Rapgap1, stan, Nrt, CG9335, CG8965, Aplip1, and
SP555 for the eye/antenna cluster; Rel, MESR3, Fas2, tld, and SP558 for the haltere
cluster.

Fig. 10. Wing, leg, haltere and eye/antenna pixel clusters with 32 clusters (color-
coded) in each image. This figure shows which pixels in the imaginal disc are similar
to each other based on the gene expression profiles across all the genes measured in
that particular disc.

4.4 Pixel Clustering

Given a set of gene maps, we want to cluster the pixels based on a vector of
gene expression across all of the genes at each pixel. Given the set of all pixels
P and p ∈ P , we want to cluster the xp vectors. We refer to the cluster centers
as πj . To cluster the pixels, instead of the genes, we use the k-means clustering
equations as follows:

zn = argmin
j∈{1,...,P}

||xp − πj || (7)

where ||.|| is an appropriate distance metric for comparing the vectors, in our ex-
periments we used the L2 distance. The new cluster means π are computed by:
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πi =

∑
p δ(zp, p)xp

∑
p δ(zp, p)

(8)

The results of pixel clustering of wing, leg, haltere and eye/antenna imaginal
discs with 32 clusters are shown in Figure 10.

5 Discussion

In this paper, we have presented a method of generating a large number of spatial
patterns of gene expression in Drosophila melanogaster imaginal discs, and for
using generative models of shapes learned from all of the data, rather than using
a single exemplar, as a global model of the shape of interest, to which a set of
patterns can be aligned. We have presented methods for automatically detecting
an imaginal disc in an image and for aligning this image to the learned shape
model, for automatically scoring these images for stain, and for registering these
stain patterns to the global model. Our representation of stain patterns as a
quantitative measure of gene expression, aligned to a global model, enables us
to efficiently cluster both the patterns of the genes themselves, and the regions
of the tissues, as represented by the pixels in the global model. Finally, we have
developed a reverse-lookup procedure, that enables us to take a new image,
stained for a gene of interest, and to search our database of patterns to find
genes with similar spatial patterns of gene expression.

Using our methods, we have determined the patterns of over 130 genes in
some or all of the four largest and most well-characterized imaginal disc types,
the wing, leg, haltere and eye/antenna discs. Our parallel automated alignment
and feature extraction method works adequately over 85% of the time, but may
fail when presented with images containing multiple imaginal discs or substantial
amounts of biological clutter.

Our method of pixel clustering represents a novel way of viewing spatial gene
expression data. By clustering the pixels, we are able to identify regions of the discs
that are, on the basis of their gene expression profiles of on the order of 100 genes,
more similar to the other pixels in that region than to the other regions. The pixel
clusters identified are reminiscent of the zones of development identified in the
classical imaginal disc fate maps in the literature. We look forward to exploring
the relationships between these clusters and genetically-identified regions of the
discs for which the eventual fates of the cells have been determined.

Future work may include extending the procedure to be able to identify mul-
tiple discs in a single image, to be more robust to biological noise such as the
presence of trachea or other larval material in the image, and to use hierarchical
clustering methods for the gene and pixel clustering.
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A Appendix

A.1 Foreground Feature Extraction

Algorithm A.1: extract-foreground-features(img)

laplacian ← laplacian(img)
absLaplacian ← abs(laplacian)
dilated ← dilate(absLaplacian, SquareStructuringElement)
eroded ← erode(dilated, SquareStructuringElement)
foregroundFeatures ← distance-transform(eroded)
return (foregroundFeatures)

A.2 Aligning Target Image to Model

Algorithm A.2: align-target-to-model(target, model)

feat ← extractForegroundFeatures(target)
for each x ∈ initialConfigurationList

for iteration ← 0 to maxIterations
origScore ← NCC(feat, model)
for x ∈ x

x− ← x − stepSize
stepDownImage ← affineTransformImage(feat, x−,x)
stepDownScore ← NCC(stepDownImage, model)
if stepDownScore > origScore
then x ← x−

x+ ← x + stepSize
stepUpImage ← affineTransformImage(feat, x+,x)
stepUpScore ← NCC(stepUpImage, model)
if stepUpScore > max(origScore, stepDownScore)
then x ← x+

x ← update(x,x)
alignedTarget ← affineTransformImage(feat,x)
return (alignedTarget)
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Qureshi, Aaron M. 430

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



550 Author Index

Rao, Satish 503

Raphael, Benjamin 354
Reimers, Mark 122
Reinert, Knut 473
Reyes-Gomez, Manuel 181
Rivera, Corban G. 47
Rubin, Gerald M. 533
Ruppin, Eytan 1
Ruttenberg, Alan 296

Sastry, S. Shankar 533
Schneidman-Duhovny, Dina 412
Schueler-Furman, Ora 381
Schulz-Trieglaff, Ole 473
Segal, Eran 77
Shamir, Ron 339
Sharan, Roded 1
Sharon, Eilon 77
Shi, Yanxin 151
Shlomi, Tomer 1
Singh, Rohit 16
Sridhar, Srinath 503
Sung, Wing-Kin 518
Sze, Sing-Hoi 283

Tang, Xinyu 268
Tapia, Lydia 268
Thomas, Shawna 268
Tsalenko, Anya 122

Vaughn, David S. 32

Wang, Wenyi 137
Wehe, André 238
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